LCD Specification

LCD Group

LQ025Q3DW02 TFT-LCD Module

Product Specification March 2008

High Brightness, High Contrast LCD Module with Wide Viewing Angle and Normally Black display. Full Specifications Listing

PREP.	ARED BY: Yasunishi
APPR	OVED BY: Yabuuchi

CUSTOMER'S APPROVAL

SHARP

MOBILE LIQUID CRYSTAL DISPLAY GROUP SHARP CORPORATION SPECIFICATION

SPEC No. LD-19X15B
FILE No.
ISSUED: Mar. 7. 2008
PAGE: 29 pages
APPLICABLE GROUP
MOBILE LIQUID CRYSTAL DISPLAY
GROUP

DEVICE SPECIFICATION FOR

TFT-LCD module

MODEL No. LQ025Q3DW02

These parts have corresponded with the RoHS directive.

DATE	·
	PRESENTED
BY	BY R. Shim
	K. SHIONO
	Department General manager
•	Engineering Department

Mobile LCD Division 3

SHARP CORPORATION

Mobile Liquid Crystal Display Group

RECORDS OF REVISION

MODEL No: LQ025Q3DW02

SPEC No : LD-19X15B

SPEC	NO.	PAGE	SUMMARY	
2007. 10. 31		-	-	
2008. 3. 7	В	4	Change; Booster Capacitors	2 nd Issue
		5	Correction; Stabilization and charge sharing Capacitors	
		6	Correction; Ambient temp. of LED and the max. input	
		8	Addition; Power up sequence	
		8	Change; Register setting	
		11	Addition; Power down sequence	
		11	Addition; Enter sleep mode sequence	
		11	Addition; Exit sleep mode sequence	
		11	Correction; Parts No. of used LED	
		18	Correction; SPI Interface Timing Diagram	
		21	Correction; Measuring sensor	
		26	Correction; Lot No. marking	

NOTICE

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP's device. Manufacturing locations are also subject to change without notice.

Observe the following points when using any device in this publication. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for use in general electronic equipment designs, such as:

- Personal computers
- Office automation
- · Telecommunication equipment

- Test and measurement equipment
- Industrial control
- Personal Digital Assistant

- Audio visual and multimedia equipment
- · Consumer electronics

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- Transportation control and safety equipment(i.e. aircraft, trains, automobiles, etc.)
- Traffic signals
- · Gas leakage sensor breakers
- Alarm equipment
- · Various safety devices etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

- · Military and space applications
- Nuclear power control equipment
- Medical equipment for life support

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

1. Applicable Scope

This specification is applicable to TFT-LCD Module "LQ025Q3DW02".

2. General Description

This module is a color active matrix LCD module incorporating amorphous silicon TFT (<u>Thin Film Transistor</u>). It is composed of a color TFT-LCD panel, driver IC, Input FPC, a back light unit.

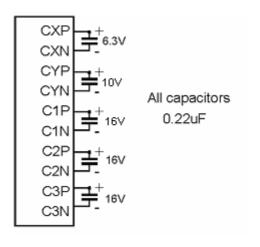
Graphics and texts can be displayed on a $320 \times RGB \times 240$ dots panel with about 262k colors by supplying 18bit data signals (6bit \times RGB), four timing signals, 3wires 9bit serial interface signals, logic (Typ. +3.3V), analog (Typ. +3.3V) supply voltages for TFT-LCD panel driving and supply voltage for back light.

3. Mechanical (Physical) Specifications

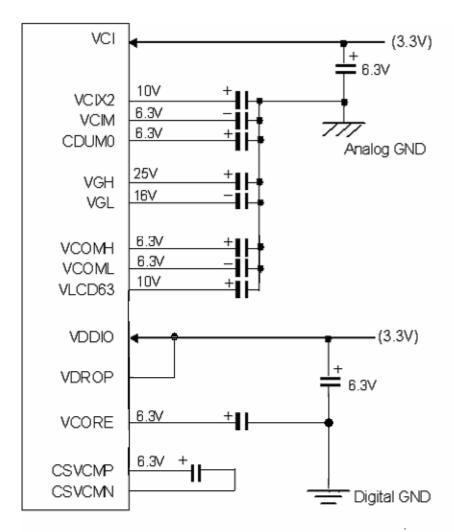
Item	Specifications	Unit
Screen size	6.3(2.5" type) diagonal	cm
Active area	49.92 (H) × 37.44 (V)	mm
Divisi formed	320 (H) × 240 (V)	pixel
Pixel format	1 Pixel = R+G+B dots	-
Pixel pitch	0.156 (H) × 0.156(V)	mm
Pixel configuration	R,G,B vertical stripes	-
Display mode	Normally black	-
Unit outline dimensions *	56.8(W) × 48.8 (H) × Max3.5(D)	mm
Mass	Max.25	g
Surface treatment	Anti glare	-

^{*}The above-mentioned table indicates module sizes without some projections and FPC. For detailed measurements and tolerances, please refer to 17. Outline Dimensions.

4. Input Terminal Names and Functions


Recommendation CN: [HIROSE] FH26G-67S-0.3SHBW(05)

Pin No.	Symbol	I/O	Description	Remarks
1	LED_C (-)	-	Power supply for LED (Cathode)	remand
2	LED_C (-)	-	Power supply for LED (Anode)	
3	DGND1		Digital Ground	
4	NC		Not connected	Note 1
5	NC		Not connected	Note 1
6	NC NC			
7		-	Not connected	Note 1
	NC A ON D 4	-	Not connected	Note 1
8	AGND1	-	Analog Ground	Note 2
9	V _{GH}	-	Connect to a Stabilizing capacitor	Note 3
10	C2P	-	Connect a Booster capacitor to C2N	Note 2
11 12	C2N C1P	-	Connect a Booster capacitor to C2P Connect a Booster capacitor to C1N	
13	C1P C1N	-	Connect a Booster capacitor to C1P	_
14	V _{GL}		Connect a Booster capacitor to CTP Connect a Stabilizing capacitor to GND	Note 3
15	C3P		Connect a Booster capacitor to C3N	Note 2
16	C3N		Connect a Booster capacitor to C3P	Note 2
17	AGND2	_	Analog Ground	
18	V _{CIX2}		Connect a Stabilizing capacitor to GND	Note 3
19	CYP		Connect a Stabilizing capacitor to GNB Connect a Booster capacitor to CYN	Note 2
20	CYN	_	Connect a Booster capacitor to CYP	11010 2
21	V _{CI}	_	3.3V(Booster input voltage pin)	Note 3
22	NC	_	Not connected	Note 1
23	AGND3	-	Analog Ground	
24	V_{CIM}	_	Connect a Stabilizing capacitor to GND	Note 3
25	CXP	_	Connect a Booster capacitor to CXN	Note 2
26	CXN	_	Connect a Booster capacitor to CXP	
27	TEST	0	TEST	Note 1
28	RESB	I	System reset	
29	DGND2	-	Digital Ground	
30	V_{DDIO}	-	3.3V(Voltage input pin for logic I/O)	
31	V _{CORE}	-	Connect a Stabilizing capacitor to GND	Note 3
32	DGND3	-	Digital Ground	
33	SHUT	I	Sleep mode control	
34	CSB	I	Chip select pin of serial interface	
35	SDI	I	Data input pin in serial mode	
36	SCK	I	Clock input pin in serial mode	
37	V_{DROP}	-	Connect a Stabilizing capacitor	
38	DEN	I	Display enable signal	
39	B5	I	BLUE data signal(MSB)	
40	B4	I	BLUE data signal	
41	В3	I	BLUE data signal	

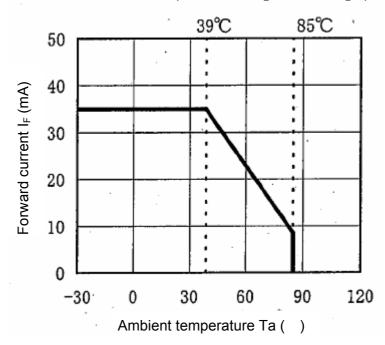

Pin No.	Symbol	I/O	Description	Remarks
42	B2	1	BLUE data signal	
43	B1	1	BLUE data signal	
44	В0	1	BLUE data signal(LSB)	
45	G5		GREEN data signal(MSB)	
46	G4	I	GREEN data signal	
47	G3	I	GREEN data signal	
48	G2	I	GREEN data signal	
49	G1	I	GREEN data signal	
50	G0	I	GREEN data signal(LSB)	
51	R5	I	RED data signal(MSB)	
52	R4	I	RED data signal	
53	R3	I	RED data signal	
54	R2	I	RED data signal	
55	R1	I	RED data signal	
56	R0	I	RED data signal(LSB)	
57	VSYNC	I	Frame synchronization signal	
58	HSYNC	I	Line synchronization signal	
59	DOTCLK	ı	Dot-clock signal	
60	CDUM0	-	Connect a Stabilizing capacitor to GND	Note 3
61	DGND4	-	Digital Ground	
62	V _{LCD63}	-	Connect a Stabilizing capacitor to GND	Note 3
63	V_{COMH}	-	Connect a Stabilizing capacitor to GND	
64	V_{COML}	-	Connect a Stabilizing capacitor to GND	
65	DGND5	-	Digital Ground	
66	CSVCMP	-	Connect a Stabilizing capacitor to CSVCMN	Note 3
67	CSVCMN	=	Connect a Stabilizing capacitor to CSVCMP	

Note 1) this pin should be opened.

Note 2) Booster Capacitors.

Note 3) Stabilization and charge sharing Capacitors

Remark:


All other capacitors 2.2uF

(2.2uF is preferred for better display quality and power consumption)

5. Absolute Maximum Ratings

Item	Symbol	Conditions	Rated value	Unit	Remarks
Input voltage	VI	Ta = 25°C	-0.3 ~ V _{DDIO} +0.3	V	Note 1
Logic I/O power supply voltage	V_{DDIO}	Ta = 25°C	-0.3 ~ +4.0	V	
Analog power supply voltage	V _{CI}	Ta = 25°C	AGND-0.3 ~ +5.0	V	
Temperature for storage	Tstg	-	-25 ~ +70	°C	Note 2
Temperature for operation	Торр	-	-10 ~ +60	°C	Note 3
LED input electric current	I _{LED}	Ta = 25°C	35	mA	
LED electricity consumption	P _{LED}	Ta = 25°C	123	mW	Note 4

- Note 1) RESB, SHUT, CSB, SDI, SCK, DEN, B5~B0, G5~G0, R5~R0, VSYNC, HSYNC, DOTCLK
- Note 2) Humidity: 95%RH Max. (Ta 40°C)
 - Maximum bulb temperature under 39°C (Ta>40°C) See to it that no dew will be condensed.
- Note 3) Panel surface temperature prescribes.
- Note 4) Power consumption of one LED ($Ta_{LED} = 25^{\circ}C$). (use 4 pieces LED) Ambient temperature and the maximum input are fulfilling the following operating conditions.

Ambient temperature of LED and the maximum input

6. Electrical Characteristics

6-1. TFT LCD Panel Driving

Ta = 25°C

It	em	Symbol	Min.	Тур.	Max.	Unit	Remarks
Logic I/O	DC voltage	V_{DDIO}	+3.0	+3.3	+3.6	V	
power supply	DC Current	I _{VDDIO}	-	0.15	0.30	mA	Note 1
Analog	DC voltage	V _{CI}	+3.0	+3.3	+3.6	V	
power supply	DC Current	I _{VCI}	-	7	10	mA	Note 1
Permissive inp	sive input	V _{RFVDDIO}	-	-	100	mVp-p	Note 2
Ripple	voltage	V _{RFVCI}	-	-	100	mVp-p	Note 2
Logic	High	V _{IH}	0.8 V _{DDIO}	-	V_{DDIO}	V	Note 3
Input Voltage	Low	V _{IL}	0	-	0.2 V _{DDIO}	V	Note 3
Logic inp	out Current	I _{IH} / I _{IL}	-1	-	1	μA	Note 3

Note 1) $V_{DDIO} = V_{CI} = +3.3V$

Current situation for I_{VDDIO}: Black & White checker flag pattern

Current situation for I_{CI} : All white pattern

Note 2) $V_{DDIO} = V_{CI} = +3.3V$

Note 3) RESB, SHUT, CSB, SDI, SCK, DEN, B5~B0, G5~G0, R5~R0, VSYNC, HSYNC, DOTCLK

$$V_{DDIO}$$
 / V_{CI} ON (hold RESB = "L")
 \downarrow Wait min. 80us
 \downarrow Hard Reset (RESB "L" \rightarrow "H")
 \downarrow Display Data Start (VSYNC, HSYNC, DOTCLK)
 \downarrow

Enter the Sleep Mode

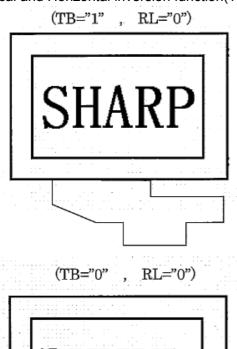
Reg.#	Register	Data	Remark
R28h	Power control (6)	0006 h	
R2Dh	Power control (8)	7F06 h	

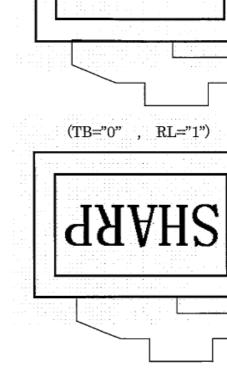
Register setting

Reg. #	Register	Data (Gamma 2.2)	Remark
R01 h	Driver output control	0xEF h	Note 1
R02 h	LCD drive AC control	0300h	
R03 h	Power control (1)	0A0E h	
R0B h	Frame cycle control	DC00 h	
R0C h	Power control (2)	0005 h	
R0D h	Power control (3)	0002 h	
R0E h	Power control (4)	2C00 h	
R0F h	Gate scan starting Position	0000 h	
R16 h	Horizontal Porch	9F86 h	Note 2
R17 h	Vertical Porch	0002 h	Note 3
R1E h	Power control (5)	0000 h	
R28 h	Power control (6)	0006 h	
R2C h	Power control (7)	C88C h	
R2E h	Gamma control (1)	B945 h	
R30 h	Gamma control (2)	0004 h	
R31 h	Gamma control (3)	0407 h	
R32 h	Gamma control (4)	0002 h	
R33 h	Gamma control (5)	0107 h	
R34 h	Gamma control (6)	0507 h	
R35 h	Gamma control (7)	0003 h	
R36 h	Gamma control (8)	0307 h	
R37 h	Gamma control (9)	0704 h	
R3A h	Gamma control (10)	1F09 h	
R3B h	Gamma control (11)	090E h	

Exit the Sleep Mode

Reg.#	Register	Data	Remark
R2Dh	Power control (8)	7F04 h	


↓
Wait 10 frames time
↓
Display On


Note 1)

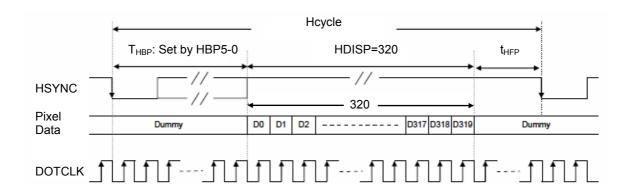
Driver Output Control (R01h)(POR=0xEFh)

		DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
V	/	1	0	0	0	0	1	0	TB	RL	1	1	1	0	1	1	1	1
	PC	R	0	0	0	0	1	0	Х	Х	1	1	1	0	1	1	1	1

Vertical and Horizontal inversion function(TB, RL)

(TB="1" , RL="1")

SHARP

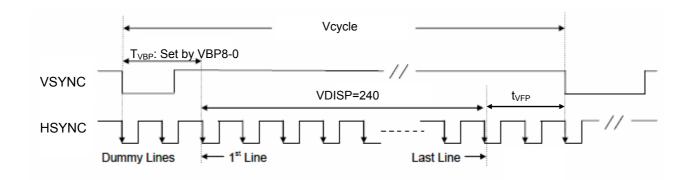

Note 2)

Horizontal Porch(R16h)(POR=9F86h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	1	0	0	1	1	1	1	1	1	0	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0
PC	R	1	0	0	1	1	1	1	1	1	0	0	0	0	1	1	0

HBP5-0: Set the delay period from falling edge of HSYNC to first valid line.

, 0. 00	o. Cot the delay period from laming edge of the first terms transmit											
HBP5	HBP4	HBP3	HBP2	HBP1	HBP0	No. of clock cycle of DOTCLK						
0	0	0	0	0	0	2						
0	0 0 0		0	0	1	3						
0	0	0	0	1	0	4						
0	0	0	0	1	1	5						
0	0	0	1	0	0	6						
		:	: :			: Step = 1 :						
1	1 1 1		1	1	0	64						
1 1 1		1	1	1	65							


Note 3)

Vertical Porch(R17h)(POR=0002h)

R/W	DC	IB15	` IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	VBP8	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
F	POR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

VBP8-0 : Set the delay period from falling edge of VSYNC to first valid line.

<u>0-0 . 0</u>	7. Oct the delay period from failing edge of vortivo to first valid line.												
VBP8	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0	No. of clock cycle of HSYNC				
0	0	0	0	0	0	0	0	0	0 (only allow when CAD=0)				
0	0	0	0	0	0	0	0	1	1				
0	0	0	0	0	0	0	1	0	2				
	; ; ;								: Step = 1 :				
1	0	0	1	1	1	1	1	0	319				
1	0	0	1	1	1	1	1	1	320				
1	0	1	*	*	*	*	*	*	Reserved				
1	1	*	*	*	*	*	*	*	Reserved				

6-3. Power down sequence

Write White Data (RGB Data: All "H" level)

Wait min. 1 frame time

Enter the Sleep Mode

Reg. #	Register	Data	Remark
R28h	Power control (6)	0006 h	
R2Dh	Power control (8)	7F06 h	

Wait min. 2 frames time

Display Data Stop (VSYNC, HSYNC, DOTCLK)

V_{DDIO} / V_{CI} OFF

6-4. Enter sleep mode sequence

Write White Data (RGB Data: All "H" level)

Wait min. 1 frame time

Enter the Sleep Mode

Reg.#	Register	Data	Remark
R28h	Power control (6)	0006 h	
R2Dh	Power control (8)	7F06 h	

Wait min. 2 frames time

 \downarrow

Display Data Stop (VSYNC, HSYNC, DOTCLK)

6-5. Exit sleep mode sequence

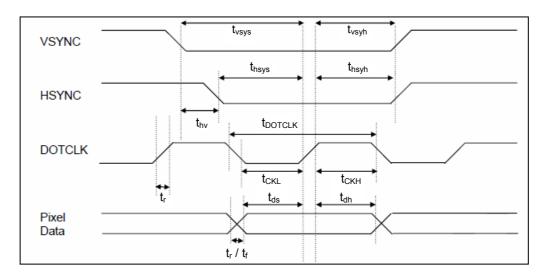
Display Data Start (VSYNC, HSYNC, DOTCLK)

Exit the Sleep Mode

Reg. #	Register	Data	Remark
R28h	Power control (6)	0006 h	
R2Dh	Power control (8)	7F04 h	

Wait 10 frames time

↓ Display On

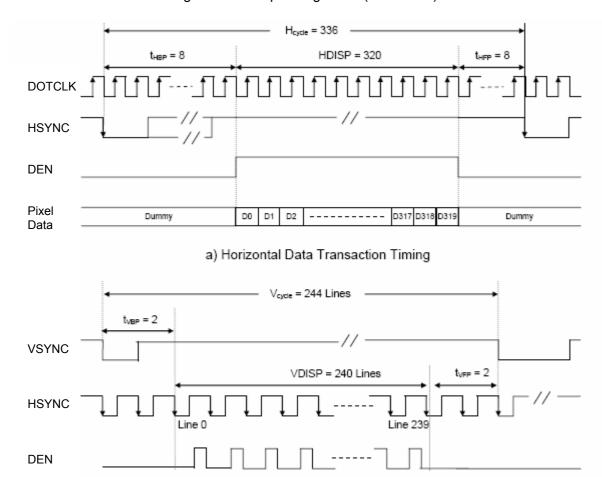

6-6. Back light driving

The back light system has 4 LEDs Used LED: GM4BW64318A[SHARP]

Symbol Parameter Min. Unit Тур. Max. Remark Rated Voltage 14.0 V_{BL} 12.8 V Rated Current ΙL 20 mA Ta=25°C 256 WL mW Power consumption

7. Timing characteristics of input signals

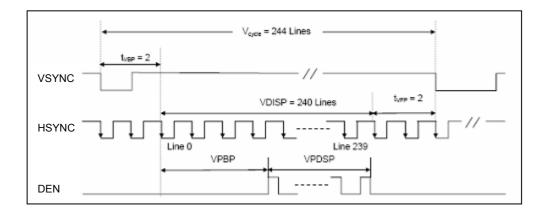
7-1. Pixel Clock Timing



Ch	aracteristics	Symbol	Min	Тур	Max	Unit
DOTCLK	Frequency	f _{DOTCLK}	-	5.0	8.0	MHz
	Period	t _{DOTCLK}	125	200	-	nSec
	High Period	t _{CKH}	62	-	-	nSec
Low Period		t _{CKL}	62	-	-	nSec
Data	Setup Time	t _{ds}	30	-	-	nSec
	Hold Time	t _{dh}	30	-	-	nSec
Vsync	Setup Time	t _{vsys}	20	-	-	nSec
	Hold Time	t _{vsyh}	20	-	-	nSec
Hsync	Setup Time	t _{hsys}	20	-	-	nSec
	Hold Time	t _{hsyh}	20	-	-	nSec
Phase differe	Phase difference of Sync signal		0	-	320	t _{DOTCLK}
Falling edge						
Reset Pulse	t _{RES}	10	-	-	nSec	
Rise / Fall Tir	t _r /t _f	20	-	100	nSec	

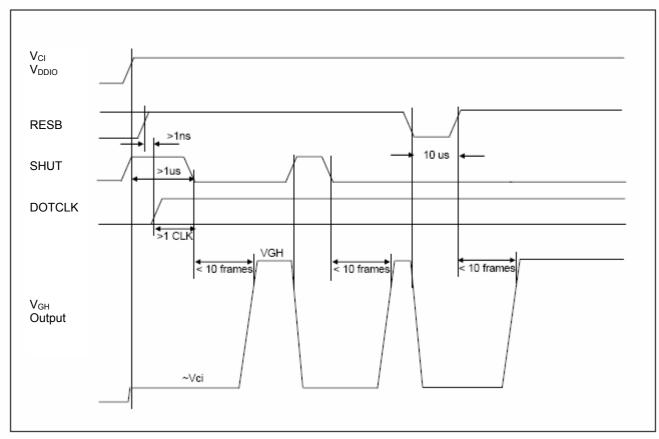
Note: External clock source must be provided to DOTCLK pin.

The module will not operate If absent of the clocking signal.


7-2. Data Transaction Timing in Normal Operating Mode (262k color)

b) Vertical Data Transaction Timing

Charac	teristics	Symbol	Min	Тур	Max	Unit
DOTCLK	Frequency	f _{DOTCLK}	-	5.0	8.0	MHz
	Period	t _{DOTCLK}	125	200	-	ns
HSYNC	Frequency	f _h	-	14.9	18.18	kHz
	Cycle	H _{cycle}	-	336	-	clock
VSYNC	Frequency	f _v	50	60.1	-	Hz
	Cycle	V _{cycle}	-	244	-	line
Horizontal Back	Porch	t _{HBP}	-	8	-	clock
Horizontal Front	Porch	t _{HFP}	-	8	-	clock
Horizontal Data	Start Point	t _{HBP}	-	8	-	clock
Horizontal Blank	ing Period	t _{HBP} +t _{HFP}	-	16	-	clock
Horizontal Displa	ay Area	HDISP	-	320	-	clock
Vertical Back Po	orch	t _{VBP}	-	2	-	line
Vertical Front Po	Vertical Front Porch		-	2	-	line
Vertical Data Start Point		t _{VBP}	-	2	-	line
Vertical Blanking Period		t _{HBP} +t _{HFP}	-	4	_	line
Vertical Display	Area	VDISP	-	240	-	line


7-3. Synchronization Signals Timing in Power Save Mode (8 color)

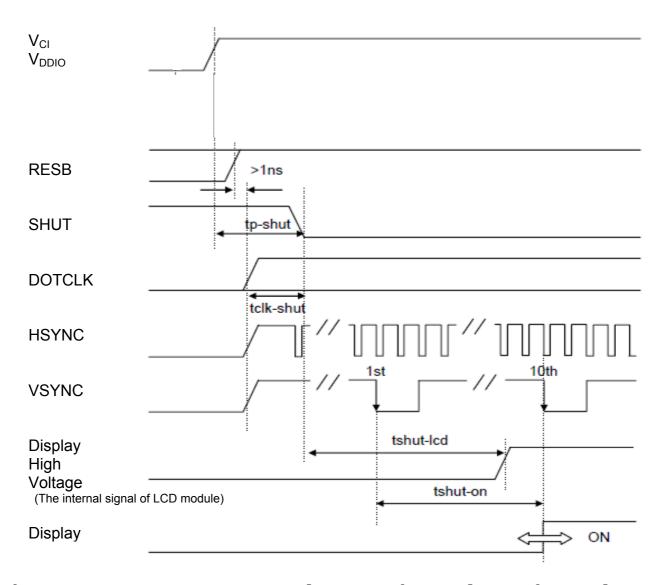
Charac	teristics	Symbol	Min	Тур	Max	Unit
DOTCLK	Frequency	f _{DOTCLK}	-	5.0	8.0	MHz
	Period	t _{DOTCLK}	125	200	ı	ns
HSYNC	Frequency	f _h	-	14.9	18.18	kHz
VSYNC	Frequency	f _v	50	60.1	ı	Hz
	Cycle	V_{cycle}	-	244	ı	line
Vertical Partial E	Back Porch	VPBP	0	-	239	line
Vertical Active A	Area	VPDSP	1	-	240	line
Vertical Back Po	t _{VBP}	-	2	ı	line	
Vertical Front P	t _{VFP}	-	2	-	line	
Vertical Display	VDISP	-	240	-	line	

Note: When entered to 8-color display mode, the RGB graphie data through the interface pin RR5, GG5 and BB5 are valid within the Vertical Active Area. Data "0" will be displayed the Vertical Active Area.

7-4. V_{GH} Output against SHUT & RESB

VGH Output against SHUT & RESB

Note1: The minimum cycle time of SHUT is 10 + 2 frames.

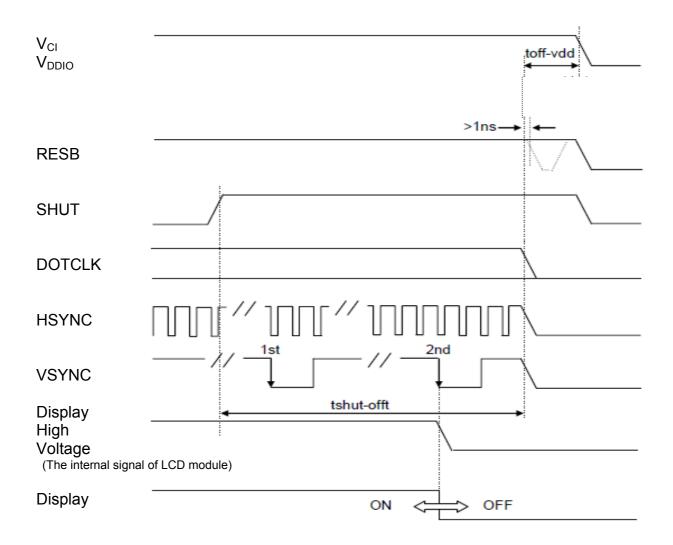

Note2: DOTCLK must be provided for boosting of V_{GH} . The above timing diagram assumed voltages and DOTCLK are

continuous supplied after power on.

Note3: V_{GH} will be forced to V_{CI} at the low stage of RESB.

Note4: The minimum pulse width of RESET is 10us.

7-5. Power Up Sequence

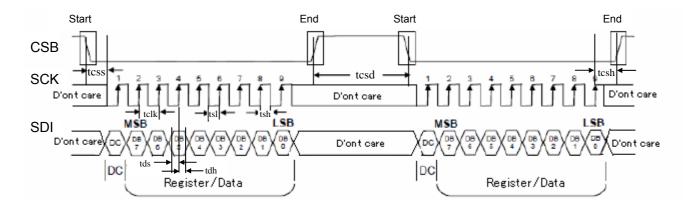


Characteristics	Symbol	Min	Тур	Max	Units
$ m V_{DDEXT} / m V_{DDIO}$ on to falling edge of SHUT	tp-shut	1	-	-	μsec
DOTCLK	tclk-shut	1	-	1	clk
Falling edge of SHUT to LCD power on	tshut-lcd	•	1	164	msec
Falling edge of SHUT to display start		-	-	10	frame
1 line: 336 clk	tshut-on				
1 frame: 244 line	tsiiut-Oii	-	164	-	msec
DOTCLK = 5.0MHz					

Note1: It is necessary to input DOTCLK before the falling edge of SHUT.

Note2: Display starts at 10th falling edge of VSYNC after the falling edge of SHUT.

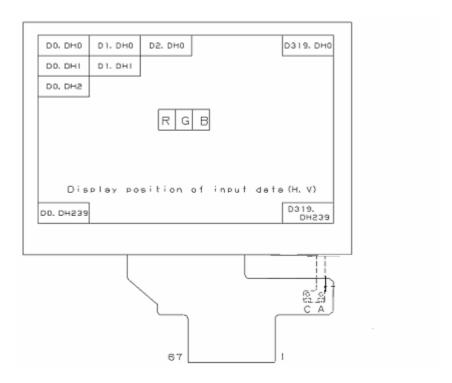
7-6. Power Down Sequence


Characteristics	Symbol	Min	Typ	Max	Units
Rising edge of SHUT to display off 1 line: 336 clk	tshut-off	2	-	-	frame
1 frame: 244 line DOTCLK = 5.0 MHz	tsiiut-oii	32.8	-	-	msec
Input-signal-off to V _{DDEXT} / V _{DDIO} off	toff-vdd	1	-	-	μsec

Note1: DOTCLK must be maintained at least 2 frames after the rising edge of SHUT.

Note2: Display become off at the 2nd falling of VSYNC after the falling edge of SHUT.

Note3: IF RESET(RESB) signal is necessary for power down, provide it after the 2-frames-cycle of the SHUT period.


7-7. SPI Interface Timing Diagram & Transaction Example (9 bit)

Chara	acteristics	記号	Min	Тур	Max	単位
Serial Clock	Frequency	fclk	-	-	20	MHz
	Cycle Time	tclk	50	-	-	ns
	Low Width	tsl	25	-	-	ns
	High Width	tsh	25	-	-	ns
Chip Select	Setup Time	tcss	0	-	-	ns
	Hold time	tcsh	10	-	-	ns
	High Delay Time	tcsd	20	-	-	ns
Data	Setup Time		5	-	-	ns
	Hold Time	tdh	10	_	-	ns

The example transmit "2AEFh" to register R01h. cs D'ont care D'ont care MSB SDI D'ont care DC DB D'ont oare D'ont care D'ont care Data set (IB7-0) DC Address set DC DC Data set (IB15-8) 1110 1111 0000 0001 0010 1010 0 01h DC=1 2Ah DC=1 EFh DC=0 Data Address Data Data

7-8. Input Data Signals and Display Position on the screen

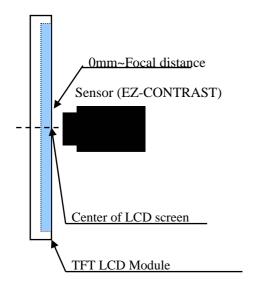
Please refer to 4. Input Terminal Names and Functions

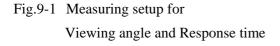
8. Input Signals, Basic Display Colors and Gray Scale of Each Color

0. 11		iis, bas	ls, Basic Display Colors and Gray Scale of Each Color																	
	Colors & Date signal							l .	l _			1 .	1.							
	Gray	Gray	R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	B0	B1	B2	В3	B4	B5
	Scale	Scale	LSB					MSB	LSB					MSB	LSB			ı	ı	MSB
	Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	-	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Ве	Green	-	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic Color	Cyan	-	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Colc	Red	-	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
)r	Magenta	-	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	-	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Red	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sca	仓	→	↓								,	ı			ψ					
ale c	Û	\	\downarrow								,	L			V					
of Re	Brighter	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
ď	Ţ.	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Sca	Daikei û	V				L						լ և						 		
		+							↓						↓					
of Green	Û	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
een.	Brighter																			
	Û	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Gray Scale of Blue	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Scal	仓	V	↓			₩						↓								
e of	Û	V		1	\	ı	1		\downarrow					1			,	V		,
. Blu	Brighter	GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
е	Ŷ	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	Blue	GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
										_). I o	w le	ر ای	oltoo	. 1.	Llia	<u> </u>		. 11	

0: Low level voltage, 1: High level voltage

Each basic color can be displayed in 64 gray scales from 6 bit data signals.


According to the combination of 18 bit data signals, the 262k color display can be achieved on the screen.


9. Optical Characteristics

T- 0	1500 V	,	. 0 0 /	١./	
1a = 2	ໃວ"ປ. າ	\[\text{DDID} = \]	+3.3V.	V CI =	+5.5V

Parar	Parameter		Condition	Min.	Тур.	Max.	Unit	Remark
Viewing	Horizontal	θ21		-	80	-	deg.	
angle		θ22	CR 10	-	80	-	deg.	[Noted 43]
range (Wide View)	Vertical	θ11		-	80	-	deg.	【Note1,4】
,	Vertical	θ12		-	80	-	deg.	
Contrast ratio		CR	Optimum viewing angle	300	500	-		【Note2,4】
Response	Rise	Tr		ı	15	30	ms	T 1 1 2 3
Time	Decay	Td		ı	15	30	ms	【Note3,4】
Chroma	Chromaticity of		0.00	0.26	0.31	0.36	-	F
White		у	θ=0°	0.29	0.34	0.39	-	【Note4】
Luminanc	Luminance of white			250	350	-	cd/m²	I _{LED} =20mA

^{*} The optical characteristics measurements are operated under a stable luminescence (I_{LED} = 20mA) and a dark condition. (Refer to Fig.9-1 and Fig.9-2)

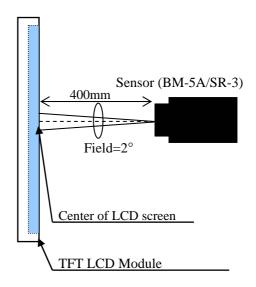
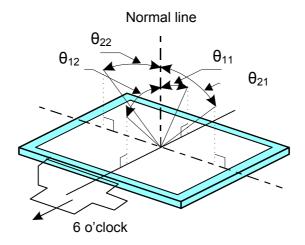
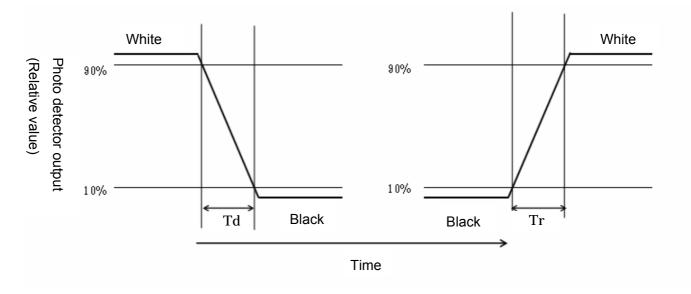



Fig.9-2 Measuring setup for
Luminance, Chromaticity and Contrast ratio

[Note 1] Definitions of viewing angle range


[Note 2] Definition of contrast ratio

The contrast ratio is defined as the following

Contrast ratio (CR) = $\frac{\text{Luminance (brightness) with all pixels white}}{\text{Luminance (brightness) with all pixels black}}$

[Note 3] Definition of response time

The response time is defined as the following figure and shall be measured by switching the input signal for "Black" and "White"

[Note 4] This shall be measured at center of the screen.

10 Handling of modules

- 10-1. Inserting the FPC into its connector and pulling it out
- 1) Be sure to turn off the power supply and the signals when inserting or disconnecting the cable.
- 2) Please insert for too much stress not to join FPC in the case of insertion of FPC.

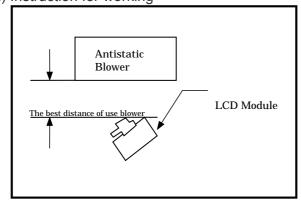
10-2. About handling of FPC

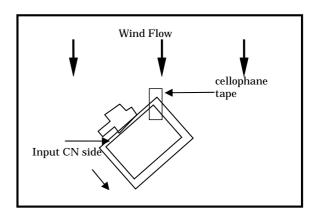
- 1) The bending radius of the FPC should be more than 1.4mm, and it should be bent evenly.
- 2) Do not dangle the LCD module by holding the FPC, or do not give any stress to it.

10-3. Mounting of the module

- 1) The module should be held on to the plain surface. Do not give any warping or twisting stress to the module.
- 2) Please consider that GND can ground a modular metal portion etc. so that static electricity is not charged to a module.

10-4. Cautions in assembly / Handling pre cautions


As the polarizer can be easily scratched, be most careful in handling it.


1) Work environments in assembly.

Since removing laminator may causes electrostatic charge that tends to attract dust, the following work environment would be desired.

- a) Floor: Conductive treatment having $1M\Omega$ resistance onto floor's tile
- b) The room free from dust coming from outdoor environment, and put an adhesive mat at entrances.
- c) Humidity from 50% to 70% and temperature from 15°C to 27°C are desirable.
- d) Worker should ware conductive shoes, conductive fatigue, conductive glove and earth wrist band.

2) Instruction for working

- a) Wind direction of an antistatic blower should slightly downward to properly blow the module.
 The distance between the blower and the module should
 be the best distance of use blower. Also, pay attention to the direction of the module.
- b) To prevent polarizer from scratching, adhesive tape (cellophane tape) should be stuck at the part of laminator sheet, which is closed to blower. [See the above]
- c) Pull slowly adhesive tape to peel the laminator off, with spending more than 5 second.
- d) The module without laminator should be moved to the next process to prevent adhesion of dust.

- 3) How the remove dust on the polarizer
 - a) Blow out dust by the use of an N2 blower with antistatic measures taken. Use of an ionized air Gun is recommendable.
 - b) When the panel surface is soiled, wipe it with soft cloth.
- 4) In the case of the module's metal part (shield case) is stained, wipe it with a piece of dry, soft cloth.

 If rather difficult, give a breath on the metal part to clean better.
- 5) If water dropped, etc. remains stuck on the polarizer for a long time, it is apt to get discolored or cause stains. Wipe it immediately.
- 6) As a glass substrate is used for the TFT-LCD panel, if it is dropped on the floor or hit by something hard, it may be broken or chipped off.
- 7) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.

10-5. Others

- 1) Regarding storage of LCD modules, avoid storing them at direct sunlight-situation.
- 2) If stored at temperatures below the rated values, the inner liquid crystal may freeze, causing cell destruction. At temperatures exceeding the rated values for storage, the liquid crystal may become isotropic liquid, making it no longer possible to come back to its original state in some cases.
- 3) If the LCD is broken, do not drink liquid crystal in the mouth. If the liquid crystal adheres to a hand or foot or to clothes, immediately cleanse it with soap.
- 4) If a water drop or dust adheres to the polarizer, it is apt to cause deterioration. Wipe it immediately.
- 5) Be sure to observe other caution items for ordinary electronic parts and components.

11. Reliability test items

No.	Test item	Conditions
1	High temperature storage test	Leaves the module at Ta=+70°C for 240h
2	Low temperature storage test	Leaves the module at Ta=-25°C for 240h
3	High temperature & high humidity operation test	Operates the module at Ta=+40°C; 95%RH for 240h (No condensation)
4	High temperature operation test	Operates the module with +60°C at panel surface for 240h
5	Low temperature operation test	Operates the module at Ta=10°C for 240h
6	Vibration test (non- operating)	Frequency range: 10 to 55Hz Stroke: 1.5mm Sweep time: 1minutes Test period: 2 hours for each direction of X,Y,Z
7	Shock test	Direction: ±X, ±Y, ±Z, Time: Third for each direction. Impact value: 980m/s², Action time 6ms
8	Thermal shock test	Ta=-10°C to 70°C /10 cycles (30 min) (30min)

[Note] Ta = Ambient temperature, Tp = Panel temperature

[Check items]

In the standard condition, there shall be no practical problems that may affect the display function.

12. Display Grade

The standard regarding the grade of color LCD displaying modules should be based on the delivery inspection standard.

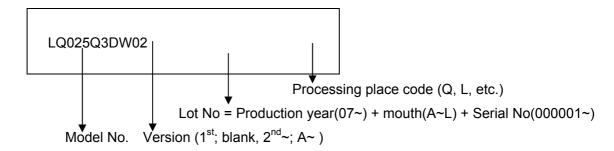
13. Delivery Form

1) Carton piling-up: Max 8 rows

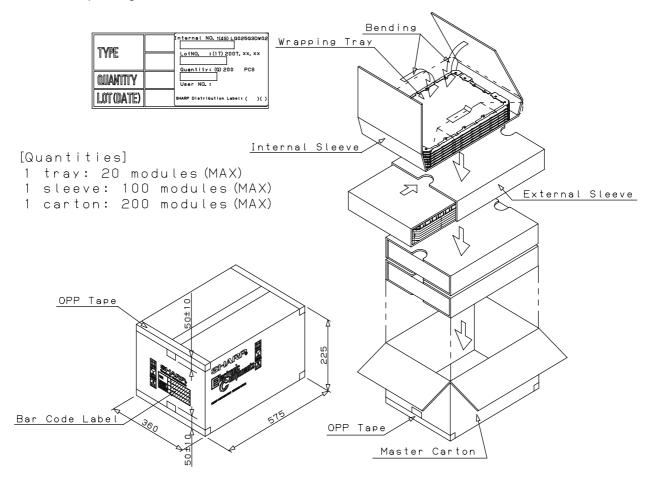
2) Environments

Temperature: 0 ~ 40°C

Humidity: 65% RH or less (at 40°C)

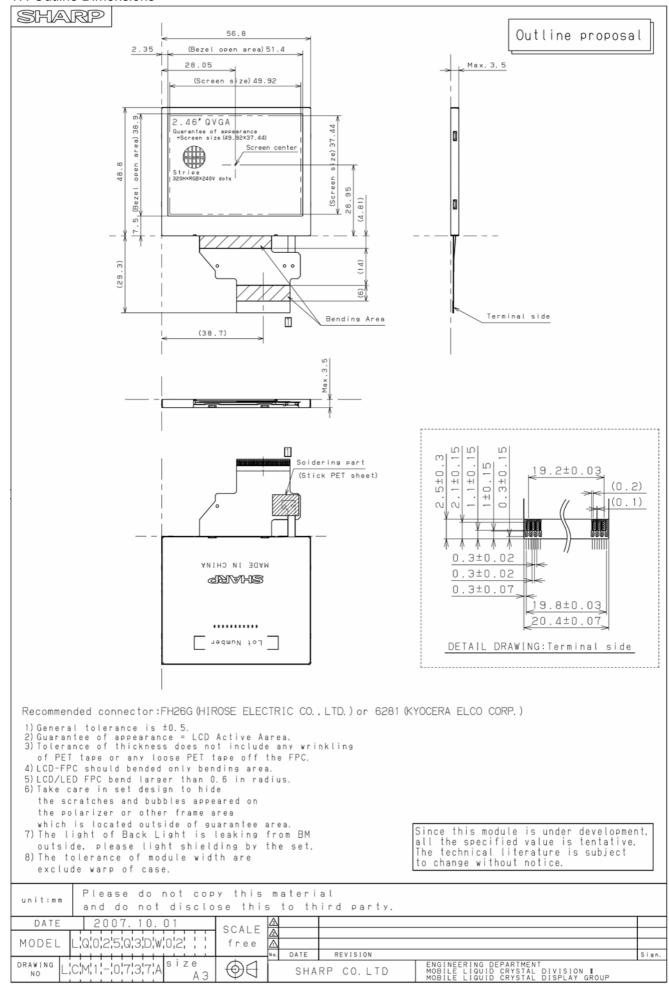

There should be no dew condensation even at a low temperature and high humidity.

3) Packing form: 15. LCD module packing carton


Cartons are weak against damp, and they are apt to be smashed easily due to the compressive pressure applied when piled up. The above environmental conditions of temperature and humidity are set in consideration of reasonable pile-up for storage.

14. Lot No. marking

The lot No. will be indicated on individual inkjet. The location is as shown


15. LCD module packing carton

16. Others

- 1 Disassembling the module can cause permanent damage and you should be strictly avoided.
- 2 Please be careful that you don't keep the screen displayed fixed pattern image for a long time, since retention may occur.
- 3 If you pressed down a liquid crystal display screen with your finger and so on, the alignment disorder of liquid crystal will occur. And then It will become display fault.
 - Therefore, be careful not to touch the screen directly, and to consider not stressing to it.
- 4 If any problem arises regarding the items mentioned in this specification sheet or otherwise, it should be discussed and settled mutually in a good faith for remedy and/or improvement.

17. Outline Dimensions

LCD Specification

LCD Group

NORTH AMERICA

Sharp Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 www.sharpsma.com

TAIWAN

Sharp Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328

CHINA

Sharp Microelectronics of China (Shanghai) Co., Ltd.

28 Xin Jin Qiao Road King Tower 16F
Pudong Shanghai, 201206 P.R. China
Phone: (86) 21-5854-7710/21-5834-6056
Fax: (86) 21-5854-4340/21-5834-6057
Head Office:
No. 360 Bashen Road

No. 360, Bashen Road, Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

EUROPE

Sharp Microelectronics Europe
Division of Sharp Electronics (Europe) GmbH
Sonninstrasse 3
20097 Hamburg, Germany
Phone: (49) 40-2376-2286
Fax: (49) 40-2376-2232
www.sharpsme.com

SINGAPORE

Sharp Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

KOREA

Sharp Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819

JAPAN

Sharp Corporation
Electronic Components & Devices
22-22 Nagaike-cho, Abeno-Ku
Osaka 545-8522, Japan
Phone: (81) 6-6621-1221
Fax: (81) 6117-725300/6117-725301
www.sharp-world.com

HONG KONG

Sharp-Roxy (Hong Kong) Ltd.
3rd Business Division,
17/F, Admiralty Centre, Tower 1
18 Harcourt Road, Hong Kong
Phone: (852) 28229311
Fax: (852) 28660779
www.sharp.com.hk
Shenzhen Representative Office:
Room 13B1, Tower C,
Electronics Science & Technology Building
Shen Nan Zhong Road
Shenzhen, P.R. China
Phone: (86) 755-3273731
Fax: (86) 755-3273735

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or responsible in any way, for any incidental or consequential economic or property damage.