Technical Document

LCD Specification

LCD Group

LS028B7UX01 LCD Module

Product Specification June 2007

Transflective 240 × 400 portrait-mode LCD Module featuring high integration and wide viewing angles. Full Specifications Listing.

PREPARED BY : DATE K.Himeshima: Jun 27,2007

CHECKED BY: DATE

CHECKED BY: DATE

÷

T.Omori : Jun 27,2007

T.Yamaue : Jun 27,2007

SHARP

MOBILE LIQUID CRYSTAL DISPLAY DIVISION II SHARP CORPORATION

S P E C I F I C A T I O N

SPEC No.: LCP-2707023 FILE No.: ISSUE: Jun 27,2007 PAGE: 19 pages

APPLICABLE GROUP Mobile LCD Group II

DEVICE SPECIFICATION FOR

CG-Silicon TFT-LCD module

MODEL No. LS028B7UX01

CUSTOMER'S APPROVAL

DATA

BY

PRESENTED K. Hrinh $\mathbf{B}\mathbf{Y}$

K. Himeshima

DEPARTMENT GENERAL MANAGER ENGINEERING DEPARTMENT I MOBILE LCD DIVISION II MOBILE LCD GROUP SHARP CORPORATION

RECORDS OF REVISION

MODEL No.: LS028B7UX01

SPEC No.: LCP-2707023

	NO.	PAGE	SUMMARY	NOTE
2007.06.27	LCP-2707023	-	-	1st Issue
	-			
		u		
	-			
		-		
	-			
				[

NOTICE

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP's device. Manufacturing locations are also subject to change without notice.

Observe the following points when using any device in this publication. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for use in general electronic equipment designs, such as:

- Personal computers
 Office automation
 Telecommunication equipment
- Test and measurement equipment Industrial control
- Audio visual and multimedia equipment
 Consumer electronics

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- Transportation control and safety equipment(i.e., aircraft, trains, automobiles, etc.)
- Traffic signals
 Gas leakage sensor breakers
- Alarm equipment Various safety devices etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

- Military and space applications
 Nuclear power control equipment
- $\boldsymbol{\cdot}$ Medical equipment for life support

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

(1) Application

This literature applies to LS028B7UX01.

(2) Overview

This module is a color transflective and active matrix LCD module incorporating CG silicon TFT (Thin Film Transistor), named mASV-TFT(mobile-ASV TFT). It is composed of a color TFT-LCD panel, a driver IC, a FPC, a back light and a back sealed casing.

Graphics and texts can be displayed on a $240 \times 3 \times 400$ dots panel with 262,144 colors by supplying.

(3) General specifications

Table 1

Parameter	Specifications	Remarks
Screen size (Diagonal)	2.75" Diagonal	inch
Pixel format	240(H)×400(V)	
	(1 pixel = R+G+B dots)	
Pixel pitch	$0.050~({ m H})~ imes 0.150~({ m V})$	
Top Polarizer	3H Hardcoat	
Interface	8/16 bit CPU bus	
Display active area	36.00(H)×60.00(V) mm	
Unit outline dimension	$41.8(W) \times 70.5(H) \times 2.3$ (D)	[Note3-1]
Mass	10 grams	(TYP.)

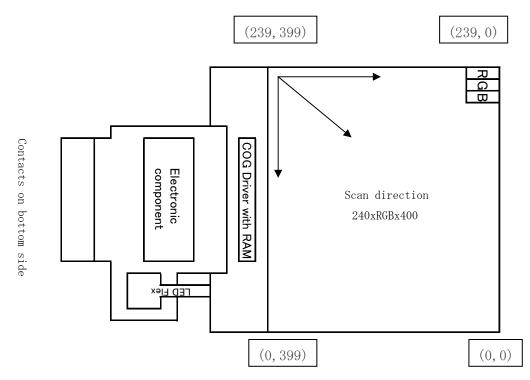
[Note 3-1]

Excluding protrusion. For detailed measurements and tolerances, please refer to Fig. 1.

(4) Absolute Maximum Ratings

Table 2					Ta=25℃
Parameter	Symbol	Condition	Ratings	Unit	Remark
Supply voltage for LCD	VDD	_	-0.5~+6.0	V	VDD≧
Supply voltage for Logic	VDDIO	_	-0.5~+6.0	V	VDDIO
Input voltage (Digital)	VIN	_	-0.5~VDDIO+0.5	v	[Note4-1]
LED Power dissipation	P _{D LED}	_	123	mW	[Note4-2]
LED current	IL	—	30	mA	
Operating temperature (panel surface)	Тор	—	-10~60	°C	[Note4-3]
Storage temperature	Tstg	_	$-30 \sim 70$	°C	

[Note4-1] Applies to RESET,RS,CS,/WR,/RD,D0~D15


[Note4-2] Specification for LED per 1pcs

[Note4-3] Humidity: 95%RH Max.

(at Ta $\leq 40^{\circ}$ C).Maximum wet-bulb temperature is less than 39°C (at Ta $> 40^{\circ}$ C). Condensation of dew must be avoided.

${\rm LCP-}2707023-\!\!-3$

(5)Pixel and polarization configuration

(6)Input/Output terminal

6-1)TFT-LCD panel driving section

Table3

Pin No.	Symbol	I/O	Description	Remarks
1	VDDIO	-	Logic I/O power supply	-
2	VPP	-	Open or VDDIO	-
3	VDD	-	LCD power supply	-
4	BWS0	Ι	BWS0=L:16bit, BWS0=H:8bit	-
5	RESET	Ι	Reset signal input	"L" active
6	VSYNCO	0	Indicates start of frame	
7	VSS	-	GND	
8	CS	Ι	Chip select input	"L" active
9	RS	Ι	Register select input	-
10	/RD	Ι	Read control input	"L" active
11	/WR	Ι	Write control input	"L" active
12	VSS	-	GND	-
13	D0	I/O	Data bus(LSB)	-
14	D1	I/O	Data bus	-
15	D2	I/O	Data bus	-
16	D3	I/O	Data bus	-
17	D4	I/O	Data bus	-
18	D5	I/O	Data bus	-
19	D6	I/O	Data bus	-
20	D7	I/O	Data bus	-
21	VSS	-	GND	-
22	D8	I/O	Data bus If 8bit-I/F is used, connect to GND level.	-
23	D9	I/O	Data bus If 8bit-I/F is used, connect to GND level.	-
24	D10	I/O	Data bus If 8bit-I/F is used, connect to GND level.	-
25	D11	I/O	Data bus If 8bit-I/F is used, connect to GND level.	-
26	D12	I/O	Data bus If 8bit-I/F is used, connect to GND level.	-
27	D13	I/O	Data bus If 8bit-I/F is used, connect to GND level.	-
28	D14	I/O	Data bus If 8bit-I/F is used, connect to GND level.	-
29	D15	I/O	Data bus(MSB) If 8bit-I/F is used, connect to GND level.	-
30	VSS	-	GND	-
31	LED_AN	-	LED Anode	-
32	LED_CA	-	LED Cathode	-

Used connetion: 0.5mm pitch FPC connector

Correspondable connector: 32FLH-SM1-TB(JST)

${\rm LCP-}2707023-5$

(7)Color Input Reference & Data Transfer

Colors &	Gray								[)ata	Signa	al							
Gray	scale	R	R	R	R	R	R	G	G	G	G	G	G	В	В	В	В	В	В
Scale	Level	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5
	S																		
Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blue		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Green		0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Cyan		0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Red		1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Magenta		1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
Yellow		1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
White		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ſ	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	4				Ļ					ļ						Ļ			
↓ Brightor	↓ _									↓						↓			
Brighter	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
v	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	Ļ				4					1						J.			
↓ Brighter	•				4					, J		1				. ↓	1		
Brighter	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
v	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_ ↑	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
1î 11																<u> </u>			
Brighter	↓		-		V	-	-		-	1	-	-			-	↓			
blighter	GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
v	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
Blue	GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

SRAM Data and 8-bit+8-bit 2 times transfer

	CPU bus data																
	1 st 8bit 2 nd 8-bit																
D7	D7 D6 D5 D4 D3 - D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 -						-										
/		/										/	/	/			
					•			RAM	data								•
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	RDATA GDATA BDATA																
	1 pixel																

*Disply RAM data D12 and D0 are complemented by CPU bus data DB7 of the first transfer and DB4 of the second transfer.

(8)Electrical characteristics

8-1)Recommended operating conditions

A) TFT-LCD panel driving section

Table 4							VSS=0V
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Applicable Pin
Supply voltage for LCD	VDD- VSS	Ta=-10∼60 °C	2.8	3.3	3.35	v	VDD
Supply voltage for Logic	VDDIO- VSS	1a-10 00 C	1.6	3.3	3.35	v	VDDIO 【Note8-1】
Input leakage current	I_{LI}	Ta=-10∼60 °C V _{IN} = VSS or VDDIO	-	-	10	μ A	[No4-9 2]
"H" level input voltage	V_{IH}	Ta=-10∼60 °C	$0.8V_{\text{DDIO}}$	-	-	v	[Note8-2]
"L" level input voltage	V _{IL}	$1a = -10^{-5} = -00^{-5} C$	-	-	$0.2V_{DDIO}$	V	
"H" level output voltage	V _{OH}	Ta=-10~60 °C	$0.8V_{\text{DDIO}}$	-	-	V	[Note8-3]
"L" level output voltage	V _{OL}	$\rm I_{OH}{=}{-}1~00~\mu$ A , $\rm I_{OL}{=}~1~00~\mu$ A	-	-	$0.2V_{\text{DDIO}}$	V	[10060-5]

[Note8-1] $V_{DD} \ge V_{DDIO}$

[Note8-2] Input mode of D0~D15pins, RESET, RS, /RD, /WR, CS

[Note8-3] Output mode of D0~D15 pins,VSYNCO

B) Back light driving section

Table 5

Ta=25 $^{\circ}$ C

Parameter	Symbol	MIN	TYP	MAX	Units	Remarks terminal
LED voltage	VL1-VL2	_	16	17.5	v	
LED current	IL	_	20	25	mA	
Power consumption	WL	_	320	350	mW	[Note 8-4]

[Note 8-4] Measurement Conditions

4V applied to 5 LED's in series.

Calculated reference value($IL(TYP) \times (VL1 - VL2)$)

8-2)Power consumption

Table 6

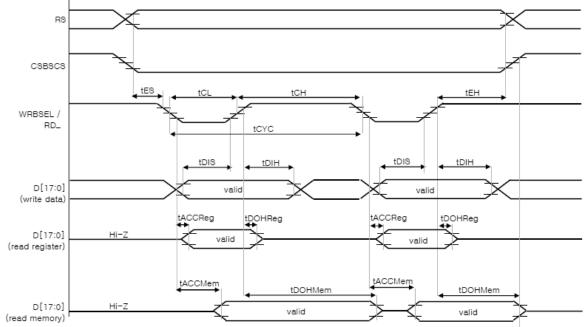
Ta=25 °C

Table 0							1a-25 C
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	Remarks
Power consumption, Panel	P _{LCD}	VDD=3.3V VDDIO=3.3V	-	33	46.2	mW	[Note 8-5]
Power consumption, Standby	P _{ST}	VDDIO=3.3V VSS=0V	-	-	200	$\mu \mathbf{W}$	[Note 8-6]

[Note 8-5] Measurement Conditions frame frequency= 60 Hz

262k-color mode

All white pattern

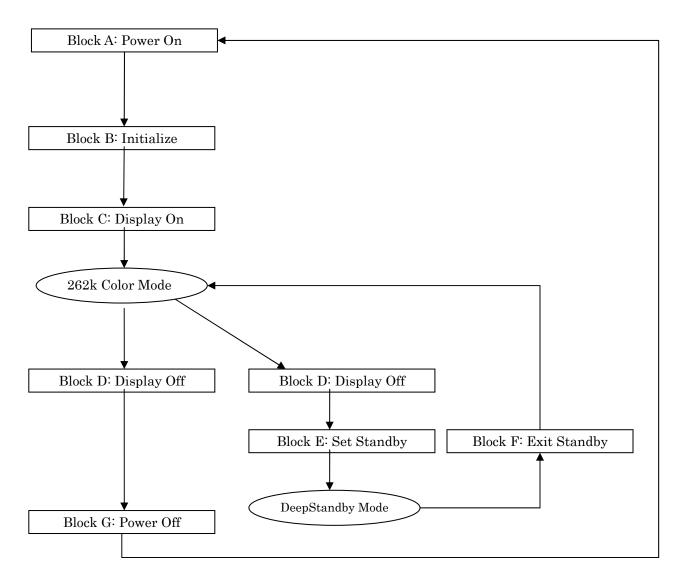

No Host CPU access

[Note 8-6] Measurement Conditions Standby mode (Oscillasion OFF/ Display OFF) No Host CPU access

VDD & VDDIO present; RESET,/RD,/WR,CS are high, VPP=N.C.

8-3) Timing diagrams of input signals(80-family MPU access)

a)Write/Read timing



The read or write operation starts when both of the /CS and /WR(/RD) are low. (TA=25°C, DGND=AGND=0V, VDDC=VDDIO=Recommended Operating Conditions)

Item	記号	COL	ndition	MIN	TYP	MAX	unit
enable Setup Time	tES	CS	40			nS	
enable Hold Time	tEH	CS	BCS,RS	40			nS
	tCYC	Write Register		80			nS
		Write Memory		110			nS
		Read Register	VDDIO>=2.2V	125			nS
		CL=10pF	VDDIO<2.2V	160			nS
Olash Orala Dariad		Read Register	VDDIO>=2.2V	180			nS
Clock Cycle Period		CL=30pF	VDDIO<2.2V	240			nS
		Read Memory	VDDIO>=2.2V	225			nS
		CL=10pF	VDDIO<2.2V	240			nS
		Read Memory	VDDIO>=2.2V	255			nS
		CL=30pF	VDDIO<2.2V	300			nS
	tCL	Write Register/M	emory	40			nS
		Read Register	VDDIO>=2.2V	85			nS
		CL=10pF	VDDIO<2.2V	120			nS
		Read Register	VDDIO>=2.2V	140			nS
Clock Low Width		CL=30pF	VDDIO<2.2V	200			nS
		Read Memory	VDDIO>=2.2V	155			nS
		CL=10pF	VDDIO<2.2V	170			nS
		Read Memory	VDDIO>=2.2V	185			nS
		CL=30pF	VDDIO<2.2V	230			nS
	tCH	Write/Read Regis	ter	40			nS
Clock High Width		Write/Read Memo	ory	70			nS
Write Data Setup Time	tDIS	D0-D17		40			nS
Write Data Hold Time	tDIH	D0-D17		30			nS
	tACCReg	D0-D17	VDDIO>=2.2V			75	nS
		CL=10pF	VDDIO<2.2V			100	nS
Register Access Delay		D0-D17	VDDIO>=2.2V			130	nS
		CL=30pF	VDDIO<2.2V			190	nS
	tACCMem	D0-D17	VDDIO>=2.2V			135	nS
M A DI		CL=10pF	VDDIO<2.2V			150	nS
Memory Access Delay		D0-D17	VDDIO>=2.2V			165	nS
		CL=30pF	VDDIO<2.2V			210	nS
Read Data(Register) Hold Time	tDOHReg	D0-D17		10		50	nS
Read Data(Memory) Hold Time	tDOHMem	D0-D17		10		50	nS
Rising/Falling Time	tr,tf	All signals				15	nS

(9)Software Flow & Register Settings

9-1) Software Flow

9-2) Register Settings

	Block A: Power On											
Step	Register	Setting	Operation									
1			RESETB=L									
2		VDDIO ON										
3		VDD ON										
4			Wait 10ms									
5			Logic initial state (CSB, WRB, RDB=H)									
6	Reset release. (RES = "L" \rightarrow "H")											
7		Wait 0.5ms										

Step	Register	Data	Operation
1	01	02	8bit 8/8 transfer
2	68	07	
3	69	40	
4	08	00	Normally black
5	10	F0	Panel X-size=240
6	11	90	Panel Y-size=400
7	12	01	
8	1E	50	Number of vertical line=400
9	1D	07	RAM write direction:landscape
10	1A	\mathbf{EF}	RAM pointer X
11	1B	8F	RAM pointer Y
12	1C	01	*
13	30	81	Select the display-RAM data
14	33	02	Non-display data color
15	42	07	Vertical front poach=7h
16	43	01	Vertical back poach=1h
17	44	$0\mathrm{F}$	H scan interval=47clock
18	45	08	GSP start position=4clock
19	46	06	GCK start position=6clock
20	48	01	VCOM inversion position=1clock
21	4A	01	Signal setting
22	4B	A8	SSD setting
23	4C	07	ASW start position=7clock
24	5A	00	Battery pull-out detection off
25	62	29	ASW width5, interval 1clock
26	65	02	AMP bias current setting
27	66	05	VGM5.1V
28	6A	02	VCOM output
29	81	44	VR, VS boost clock setting
30	82	15	DCK, DCKB timing setting
31	83	27	DCDC dual, VS5.4V, DCDC drivability=min
32	84	12	VR setting
33	85	26	DCDC dual, VR5.3V, DCDC drivability=min
34	86	17	VS setting
35	90	25	Auto on timing setting
36	91	05	Auto ON/OFF setting(1V)
37	92	15	Auto OFF timing setting
38	31	01	VAL

Block B: Initialize

Step	Register	Setting	Operation				
1	03		RAM write				
2	3E	01 Auto ON sequence					
3	Wait 120ms						

Block C: Display On

Block D: Display Off

	Block D: Display Off					
Step	Register	Register Setting Operation				
1	30	80	All black display			
2		Wait 50ms				
3	CO	C0 00				
4	3E	02	Auto OFF sequence			
5	Wait 100ms					

Block E: Set Standby

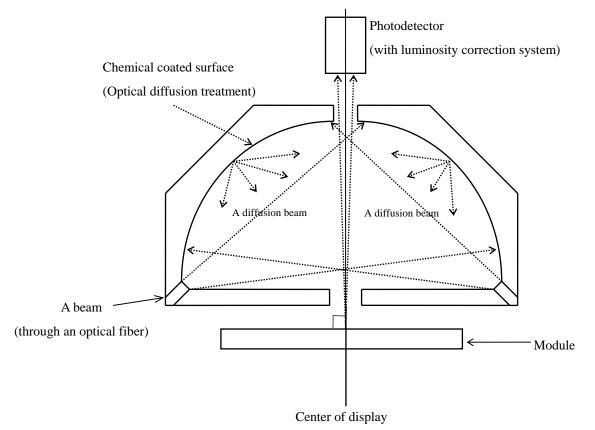
Step	Register	Setting	Operation	
1	07	00	Sscillator OFF	
2	80	01	Deep standby	

Block	F:	\mathbf{Exit}	Standby
-------	----	-----------------	---------

Step	Register	Setting	Operation			
1	80	81	Deep standby out			
2			Wait 0.1ms			
3	07	01	Oscillator on			
4		Wait 1ms				
5	CO	02				
6			Wait 1ms			
7	3E	E 01 Auto ON sequence				
8	Wait 120ms					
9	30	81	Display ON			

Block G: Power Off

Step	Register Setting Operation				
1	RESETB=L				
2	VDD OFF (Analog voltage Off)				
3			VDDIO OFF (IO voltage OFF)		

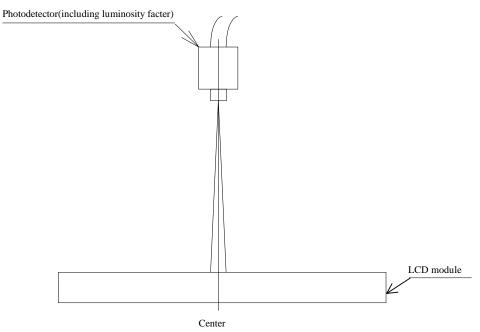

(10)Optical characteristics

10-1)Not driving the Back light condition

Table 7VDD=3.3V, VDDIO=1.8VTa=25°C								
Parameter		Symbol	Condition	Min	Тур	Max	Unit	Remarks
Viewing ar	ngle	θ21,22		40	50	-	degree	[Note 10-1,2]
range		θ11	CR≥2	40	50	-	degree	
		θ12		40	50	-	degree	
Contrast ratio		CR	$\theta = 0^{\circ}$	9	13	-	-	[Note 10-2,3]
Response	Rise	τr	0 08	-	20	30	ms	[Note 10-4]
time	Fall	τd	$\theta = 0^{\circ}$	-	10	15	ms	
White chromaticity		x	$\theta = 0^{\circ}$	-	0.31	-	-	
		у		-	0.34	-	-	
Reflection ratio		R	$\theta = 0^{\circ}$	1.6	2.5	-	%	[Note 10-5]

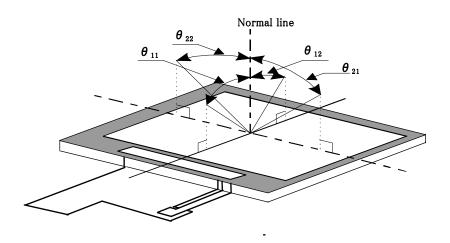
* The measuring method of the optical characteristics is shown by the following figure.

* A measurement device is Otsuka luminance meter LCD5200.(With the diffusion reflection unit.)


Measuring method (a) for optical characteristics

10-2)Driving the Back light condition

Table 8	VDD=3.0V	VDDIO=1	.8V					Ta=25°
Parameter		Symbol	Condition	Min	Тур	Max	Unit	Remarks
Viewing an	gle	θ11	CR≥5	55	80	-	degree	[Note 10-1,2]
range		θ12		55	80	-	degree	
		θ21		55	80	-	degree	
		θ22		55	80		degree	
Contrast ratio		CR	$\theta = 0^{\circ}$	280	400	-	-	[Note 10-2]
Response	Rise	τr	$\theta = 0^{\circ}$	-	25	35	ms	[Note 10-4]
time	Fall	τd		-	15	20	ms	
White chro	maticity	х	$\theta = 0^{\circ}$	0.25	0.30	0.35	-	
		у		0.27	0.32	0.37	-	
Brightness		Y	$\theta = 0^{\circ}$	210	300	-	cd/m ²	IL=20mA
NTSC ratio				-	70	-	%	


* The measuring method of the optical characteristics is shown by the following figure.

* A measurement device is TOPCON luminance meter SR-3.(Viewing cone 1)

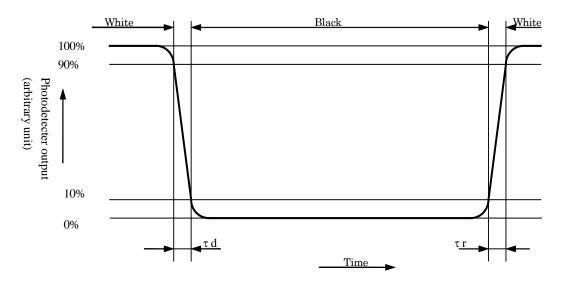
Measuring method (c) for optical characteristics

[Note 10-1] Viewing angle range is defined as follows.

Definition for viewing angle

[Note10-2] Definition of contrast ratio:

The contrast ratio is defined as follows:


Photodetecter output with all pixels white(GS63)

Contrast ratio(CR)=

Photodetecter output with all pixels black(GS0)

- [Note10-3] A measurement device is Minolta CM-2002.
- [Note10-4] Definition of response time:

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

[Note10-5] Definition of reflection ratio Reflection ratio =

Light detected level of the reflection by the LCD module

Light detected level of the reflection by the standard white board

(11)Display quality

The display quality of the color TFT-LCD module shall be in compliance with the Incoming Inspection Standards for TFT-LCD.

(12)Mechanical characteristics

12-1) External appearance

See Fig. 1

12-2) FPC (for LCD panel) characteristics

(1)Specific connector

32FLH-SM1-TB(JST)

(13)Handling Precautions

13-1) Insertion and taking out of FPCs

Be sure insert and take out of the FPC into the connector of the set after turning off the power supply on the set side.

13-2) Handling of FPCs

The FPC for LCD panel shall be bent only slit portion. The bending slit shall be bent uniformly on the whole slit portion with bending radius larger than 0.6mm ,and only inner side (back side of the module). Don't bend it outer side (display surface side).

Don't give the FPCs too large force, for example, hanging the module with holding FPC.

13-3) Installation of the module

On mounting the module, be sure to fix the module on the same plane. Taking care not to warp or twist the module.

13-4) Precaution when mounting

If water droplets and oil attaches to it for a long time, discoloration and staining occurs.
 Wipe them off immediately.

- (2) Glass is used for the TFT-LCD panel. If it is dropped or bumped against a hard object, it may be broken. Handle it with sufficient care.
- (3)As the CMOS IC is used in this module, pay attention to static electricity when handling it.

Take a measure for grounding on the human body.

13-5) Others

- (1) The liquid-crystal is deteriorated by ultraviolet rays. Do not leave it in direct sunlight and strong ultraviolet rays for many hours.
- (2) If it is kept at a temperature below the rated storage temperature, it becomes coagulated and the panel may be broken. Also, if it is kept at a temperature above the rated storage temperature, it becomes isotropic liquid and does not return to its original state. Therefore, it is desirable to keep it at room temperature as much as possible.
- (3) If the LCD breaks, don't put internal liquid crystal into the mouth. When the liquid crystal sticks to the hands, feet and clothes, wash it out immediately.
- (4) Wipe off water drop or finger grease immediately. Long contact with water may cause discoloration or spots.
- (5) Observe general precautions for all electronic components.

(14) Reliability Test Conditions for TFT-LCD Module

Ta	ble	.9

lable	5	1	
No.	Test items	Test conditions	
1	Low temperature storage test	Ta≕-30℃	240h
2	High temperature storage test	Ta=+70°C	240h
3	Thermal Shock storage test	Ta=-30°C:1h~70°C:1h	50cycles
4	Low temperature operating test	Ta=-10°C	240h
5	High temperature operating test	Ta=+60°C	240h
6	High temperature and high humidity operating test	Ta=+40°C , 95%RH (But no condensation of dew)	240h
7	Electro static discharge test	$\pm 2 \text{kV} \cdot 100 \text{pF}(1.5 \text{k} \Omega)$ 1 time for e	ach terminals
8	Shock test	980 m/s ² , 6 ms ±X,±Y,±Z 3 times for each direct (JIS C0041, A-7 Condition	
9	Vibration test	Frequency range: 10Hz~55Hz Stroke: 1.5 mm Sweep: 10Hz~55 X,Y,Z 2 hours for each direction (to (JIS C0040,A-10 Conditio	Hz tal 6 hours)

[Note] Ta = Ambient temperature

[Check items] Test No.1 \sim 9 : In the standard condition, there shall be no practical problems that may affect the display function.

(15) Others

15-1) Indication of lot number

The lot number is printed in the position shown in Fig. 1. (Outline Dimensions).

07EO	00000
12	3

2007:7, 2008:8

①product year

②product month Jan:A, Feb:B, Mar:C, ·····Oct:J, Nov:K, Dec:L

③serial number

15-2) Used Regulation of Chemical Substances Breaking Ozone Stratum

Substances with the object of regulating : CFCS, Carbon tetrachloride, Halon

1,1,1-Trichloro ethane (Methyl chloroform)

- (a) This LCD module, Constructed part and Parts don't contain the above substances.
- (b) This LCD module, Constructed part and Parts don't contain the above substances in processes of manufacture.
- 15-3) If some problems arise about mentioned items in this document and other items, the user of the TFT-LCD module and Sharp will cooperate and make efforts to solve the problems with mutual respect and good will.
- (16) Forwarding form
 - a) Piling number of cartons : 8 deep
 - b) Package quantity in one cartons : 400(pcs)
 - c) Carton size : (w) $382 \times$ (D) $578 \times$ (H) 255 (mm)
 - d) Total mass of 1 carton filled with full modules : approximately 9.5 (Kg)

Conditions for storage

(1)Temperature	$:0\sim40^{\circ}C$
(2)Humidity	: 60%RH or less (at 40°C)
	No dew condensation at low temperature and high humidity.
(3)Atmosphere	: Harmful gas, such as acid or alkali which bites electronic
	components and/or wires, must not be detected.
(4)Period	: about 3 months
(5)Opening of the package	: In order to prevent the LCD module from breakdown by
	electrostatic charges, please control the room humidity
	over 50%RH and open the package taking sufficient
	countermeasures against electrostatic charges, such as
	earth, etc.

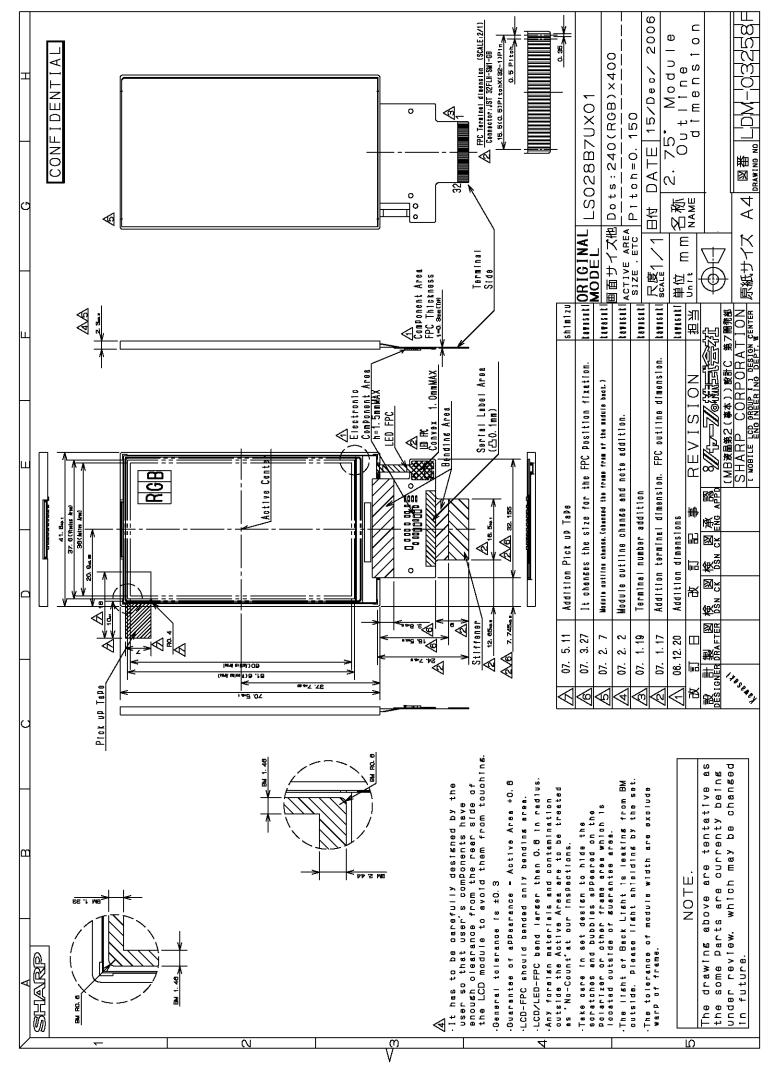


Fig. 1 Outline Dimensions

LCD Specification

LCD Group

SHARP.

NORTH AMERICA

Sharp Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 www.sharpsma.com

TAIWAN

Sharp Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328

CHINA

Sharp Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Oiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 Head Office: No. 360, Bashen Road, Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

EUROPE

Sharp Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com

SINGAPORE

Sharp Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

KOREA

Sharp Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819

JAPAN

Sharp Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com

HONG KONG

Sharp-Roxy (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk Shenzhen Representative Office: Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731 Fax: (86) 755-3273735

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or responsible in any way, for any incidental or consequential economic or property damage.