TFT COLOR LCD MODULE NL128102AC28-07

46 cm (18.1 inches), 1280×1024 pixels, 16,777,216 colors, LVDS interface, Ultra-wide viewing angle

DESCRIPTION

The NL128102AC28-07 is a TFT (thin film transistor) active-matrix color liquid crystal display (LCD) comprising an amorphous silicon TFT attached to each signal electrode, a driving circuit, and a backlight. The NL128102AC2807 has a built-in backlight. Backlight includes long-life-lamps.

The 46 cm (18.1 inch) diagonal display area contains 1280×1024 pixels and can display 16,777,216 colors simultaneously.

APPLICATIONS

- Desk top PCs, Engineering work stations
- Display terminals for control systems
- Monitors

FEATURES

- LVDS interface (adapted THC63LVDF84A $\times 2$, THine Electronics, Inc. as a receiver)
- Ultra-wide viewing angle (with lateral electric field)
- Fast response time
- High luminance ($240 \mathrm{~cd} / \mathrm{m}^{2}$, TYP.)
- Wide color gamut
- Small foot print
- Light weight
- Slim type
- Low reflection
- Incorporated direct type backlight
- Replaceable backlight unit and inverter
- Approved by UL1950 Third Edition (File No. E170632) and CSA-C22.2 No. 950-95 (File No. E170632)

STRUCTURE AND PRINCIPLE

NL128102AC28-07 module is composed of the driver LSIs for driving the TFT (Thin Film Transistor) array with an amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into the narrow gap between a TFT array glass substrate and a color filter glass substrate.

RGB (Red, Green, Blue) data signals from a source system are modulated into a form suitable for active matrix addressing by the onboard signal processor and sent to the driver LSIs which in turn address the individual TFT cells.

Working as an electro-optical switch, each TFT cell regulates transmitted light from the backlight assembly when worked by the data source. Color images are created by regulating the amount of transmitted light through the array of red, green and blue dots.

GENERAL SPECIFICATION

Display area	$359.04(\mathrm{H}) \times 287.232(\mathrm{~V}) \mathrm{mm}$
Diagonal size of display	46 cm (18.1 inches)
Drive system	a-Si TFT active matrix
Display color	16,777,216 colors
Number of pixels	1280 (H) $\times 1024(\mathrm{~V})$
Pixel arrangement	RGB (Red, Green, Blue) vertical stripe
Dot pitch	$0.0935(\mathrm{H}) \times 0.2805(\mathrm{~V}) \mathrm{mm}$
Pixel pitch	$0.2805(\mathrm{H}) \times 0.2805(\mathrm{~V}) \mathrm{mm}$
Module size	389.0 Typ. (H) $\times 317.2$ Typ. (V) $\times 30.3$ Typ. (D) mm
Weight	1650 g (Typ.)
Contrast ratio	300:1 (Typ.)
Viewing angle	- Horizontal: 85° (Typ., left side, right side)
(To be out of 10:1 for the contrast ratio)	- Vertical: 85° (Typ., up side, down side)
Designed viewing direction	- Optimum grayscale ($\gamma=2.2$): perpendicular
Color gamut	60\% (Typ.) At center, to NTSC
Response time	15 ms (Typ.), black (10\%) to white (90\%)
Luminance	$240 \mathrm{~cd} / \mathrm{m}^{2}$ (Typ.)
Signal system	LVDS interface (Receiver:THC63LVDF84A×2, THine Electronics, Inc.) RGB 8-bit signals, Synchronous signals (Hsync, Vsync), Data enable signal (DE) and Dot clock (CLK)
Supply voltages	12 V (for Logic, LCD driving) 12 V (for Backlight inverter)
Backlight	Direct light type: 12 cold cathode fluorescent lamps and an inverter [Replaceable parts] - Backlight unit: type No. 181LHS07 - Inverter: type No. 181PW051
Power consumption	38.7 W (Typ.)

BLOCK DIAGRAM

Note: GND is signal ground for logic and LCD driving. GND is connected to FG (frame ground) in the LCD module and neither GND nor FG are connected to GNDB (backlight ground). These grounds should be connected to system ground in customer equipment.

DETAILED SPECIFICATION

Item	Contents	Unit
Module size	$389.0 \pm 1.0(\mathrm{H}) \times 317.2^{*} \pm 1.0(\mathrm{~V}) \times 30.3 \pm 1.0(\mathrm{D})$	mm
Display area	$359.04(\mathrm{H}) \times 287.232(\mathrm{~V})$	mm
Number of dots	$1,280 \times 3(\mathrm{H}) \times 1024(\mathrm{~V})$	dots
Pixel pitch	$0.2805(\mathrm{H}) \times 0.2805(\mathrm{~V})$	mm
Dot pitch	$0.0935(\mathrm{H}) \times 0.2805(\mathrm{~V})$	mm
Pixel arrangement	RGB (Red, Green, Blue) vertical stripe	-
Display colors	$16,777,216$	colors
Weight	$1650($ Typ. $), 1750($ Max. $)$	g

* Exclude the mounting space

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	Remarks
Supply voltage	VdD	-0.3 to +14	V	$\mathrm{Ta}=25^{\circ} \mathrm{C}$
	Vddb	-0.3 to +14		
LVDS input voltage (LCD)	Vi	-0.3 to +3.6	V	$\begin{gathered} \mathrm{Ta}=25^{\circ} \mathrm{C} \\ \mathrm{~V} D \mathrm{D}=12 \mathrm{~V} \end{gathered}$
Logic input voltage (BRTC, BRTP, PWSEL)	$\mathrm{V}_{\mathrm{iB1} 1,2}$	-0.3 to +5.5		$\begin{gathered} \mathrm{Ta}=25^{\circ} \mathrm{C} \\ \mathrm{~V} \mathrm{DDB}=12 \mathrm{~V} \end{gathered}$
BRTL input voltage (BRTL)	Vib3	-0.3 to +1.5		
Storage temperature	Tst	-20 to +60	${ }^{\circ} \mathrm{C}$	-
Operating temperature	Top1	0 to +55		Module front surface Note 1
	Top2	0 to +66		Module rear surface Note 2
Relative humidity (RH)	Note 3	≤ 95	\%	$\mathrm{Ta} \leq 40{ }^{\circ} \mathrm{C}$
		≤ 85		$40^{\circ} \mathrm{C}<\mathrm{Ta} \leq 50^{\circ} \mathrm{C}$
		≤ 70		$50^{\circ} \mathrm{C}<\mathrm{Ta} \leq 55^{\circ} \mathrm{C}$
Absolute humidity	Note 3	Absolute humidity shall not exceed $\mathrm{Ta}=55^{\circ} \mathrm{C}, \mathrm{RH}=70 \%$	$\mathrm{g} / \mathrm{m}^{3}$	$\mathrm{Ta}>55^{\circ} \mathrm{C}$
Operating altitude		$\leq 4,850$	m	$0^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 55^{\circ} \mathrm{C}$
Storage altitude		$\leq 13,600$	m	$-20^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 60^{\circ} \mathrm{C}$

Note 1: Measure at the surface of display area (including self-heat)
Note 2: Measure at the rear shield (including self-heat)
Note 3: No condensation

ELECTRICAL CHARACTERISTICS

(1) Logic/LCD driving
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remarks
Supply voltage	V_{DD}	10.8	12.0	13.2	V	-
Ripple voltage	V_{RP}	-	-	+100	mV	for VDD
Differential input (H) Threshold voltage	$\mathrm{V}_{\text {TH }}$	-	-	+100	mV	$\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}$
Differential input (L) Threshold voltage	V_{TL}	-100	-	-	mV	Note 1
Differential Input voltage	V_{I}	0	-	2.4	V	-
Terminating resistor	R_{T}	-	100	-	Ω	-
Supply current	IDD	-	315 Note 2	600 Note 3	mA	$\mathrm{V}_{\mathrm{DD}}=12.0 \mathrm{~V}$

Note 1: Common mode voltage in LVDS transmitter
Note 2: Checker flag pattern (in EIAJ ED-2522)
Note 3: Theoretical maximum current pattern
(2) Backlight driving
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remarks
Supply voltage	Vddb	11.4	12.0	12.6	V	Backlight power supply
Logic input "L" level 1	$\mathrm{V}_{\text {ibL1 }}$	0	-	0.8	V	for BRTP
Logic input "H" level 1	$\mathrm{V}_{\text {iBH1 }}$	2	-	5	V	
Logic input "L" level 2	$\mathrm{V}_{\text {ibL2 }}$	0	-	0.8	V	for BRTC, PWSEL
Logic input "H" level 2	$\mathrm{V}_{\text {iBH2 }}$	2	-	5	V	
Logic input "L" current 1	liBL_{1}	-1580	-	-	$\mu \mathrm{A}$	for BRTP
Logic input "H" current 1	lish1	-	-	3500	$\mu \mathrm{A}$	
Logic input "L" current 2	libl2	-810	-	-	$\mu \mathrm{A}$	for BRTC, PWSEL
Logic input "H" current 2	lish2	-	-	440	$\mu \mathrm{A}$	
BRTL input current	lib3	-130	-	-	$\mu \mathrm{A}$	for BRTL
Supply current	Idda	-	2910	3500	mA	$V_{D D B}=12.0 \mathrm{~V}$ (at Max. Iuminance)

(3) Inverter current wave

Note 1: The power supply lines (VDDB and GNDB) have large ripple voltage while dimming.
There is the possibility that the ripple voltage produces an acoustic noise and signal wave noise in a system circuit (e.g. audio circuit). If the noise occurred in a system circuit, put an aluminum electrolytic capacitor (5,000 to $6,000 \mu \mathrm{~F}$) between the power source lines (VdDв and GNDB), and the capacitor will be able to reduce the noise.
Note 2: Luminance control frequency indicates the input pulse frequency, when select the external pulse luminance control. See "Luminance control with external pulse".

SUPPLY VOLTAGE SEQUENCE

(1) Supply voltage sequence and backlight control sequence

* Signals: Hsync, Vsync, DE, CLK, RA0 to RB7, GA0 to GB7, BA0 to BB7

Note 1: The values of signals are measured at the termination of resistor of 100Ω.
Note 2: Logic signals (Hsync, Vsync, DE, CLK, RA0 to RB7, GA0 to GB7, Ba0 to BB7) must be "0" voltage (V), exclude the VALID period (See above sequence diagram). If these input voltages are higher than 0.3 V , the internal circuit will be damages.
Note 3: When turn on the LCD module, if V_{DD} has the chance of fall-down during the rising period up to 11.4 V , the LCD module may not start to work because of the protection circuit.
Note 4: Backlight ON/OFF should be controlled, while logic signals are supplied. The backlight power supply (Vддв) is not related to the power supply sequence. However, unstable data may be displayed when the backlight power is turned ON/OFF during logic signals out.
(2) Supply voltage ripple

This product works, even if the ripple levels are beyond the below values (See following the Table1.), but might have noise on the display image. Consider and evaluate enough before installing this product into customer's system.

Table1: Ripple (Measurement to input terminal of power supply)

Supply voltage (Acceptable level)	
VDD (for logic and LCD driver: 12 V)	VDDB (for backlight: 12 V)
$\leq 100 \mathrm{mVp}-\mathrm{p}$ Note 1	$\leq 200 \mathrm{mVp}-\mathrm{p}$ Note 1

Note 1: The acceptable ripple voltage level includes spike noise.

Example of the power supply connections
a) Separate the power supplies
b) Put in the filters

(3) Fuses

This product has fuses listed below. Check and evaluate power supplies of customer's system.

Supply voltage	Type	Supplier	Rating
$V_{D D}$	ICP-S1.8	ROHM	1.8 A
$V_{D D B}$	MMCT5A	SOC	5 A

Note 1: The power capacitor should be more than 2 times of fuse ratings from safety point of view. If the power capacity of customer system in less than above request, check and evaluate it carefully.

CONNECTIONS AND FUNTIONS FOR INTERFACE PINS

(1) Interface connectors for signals and powers

CN1 socket (module side): 53780-2010
Adaptable plug:
51146-2000
Supplier:
Molex Incorporated.

Pin No.	Symbol	Function	Description	
1	N.C.	Non-connection	Keep the terminal open	
2	N.C.			
3	GND	Ground	Signal ground	Note 1
4				
5	DA0-	Odd pixel data 0	LVDS differential signal	Note 2
6	DA0+			
7	GND	Ground	Signal ground	Note 1
8	DA1-	Odd pixel data 1	LVDS differential signal	Note 2
9	DA1+			
10	GND	Ground	Signal ground	Note 1
11	DA2-	Odd pixel data 2	LVDS differential signal	Note 2
12	DA2+			
13	GND	Ground	Signal ground	Note 1
14	CKA-	Odd pixel clock	LVDS differential signal	Note 2
15	CKA+			
16	GND	Ground	Signal ground	Note 1
17	DA3-	Odd pixel data 3	LVDS differential signal	Note 2
18	DA3+			
19	GND	Ground	Signal ground	Note 1
20	N.C.	Non-connection	Keep the terminal open	

Note 1: Do not keep pins open (except 1, 2 and 20 pin) to avoid noise problem.
Note 2: Use 100Ω twist pair wires for the cable.
CN1: Figure of socket

CN2 socket (module side): 53780-3010
Adaptable plug: 51146-3000
Supplier:
Molex Incorporated.

Pin No.	Symbol	Function		ription
1	N.C.	Non-connection	Keep the terminal open	
2	N.C.			
3	GND	Ground	Signal ground	Note 1
4	GND			
5	DB0-	Even pixel data 0	LVDS differential signal	Note 2
6	DB0+			
7	GND	Ground	Signal ground	Note 1
8	DB1-	Even pixel data 1	LVDS differential signal	Note 2
9	DB1+			
10	GND	Ground	Signal ground	Note 1
11	DB2-	Even pixel data 2	LVDS differential signal	Note 2
12	DB2+			
13	GND	Ground	Signal ground	Note 1
14	CKB-	Even pixel clock	LVDS differential signal	Note 2
15	CKB+			
16	GND	Ground	Signal ground	Note 1
17	DB3-	Even pixel data 3	LVDS differential signal	Note 2
18	DB3+			
19	GND	Ground	Signal ground	Note 1
20	Reserved	Reserved	Keep the terminal open.	
21	Reserved			
22	Reserved			
23	Reserved			
24	GND	Ground	Signal ground	Note 1
25	GND			
26	GND			
27	N.C.	Non-connection	Keep the terminal open	
28	VDD	+12 V Power Supply	$12 \mathrm{~V} \pm 5 \%$	
29	VDD			
30	VDD			

Note 1: Do not keep pins open (except 1, 2, 20, 21, 22, 23 and 27 pin) to avoid noise problem.
Note 2: Use 100Ω twist pair wires for the cable.
CN2: Figure of socket

(2) Connectors for backlight unit
CN201 socket (Inverter side): DF3-8P-2H
Adaptable plug:
DF3-8S-2C
Supplier:
HIROSE ELECTRIC Co,. Ltd.

Pin No.	Symbol	Function	Description
1	GNDB	Ground for backlight	Note 1, 2
2	GNDB		
3	GNDB		
4	GNDB		
5	Vddb	12 V power supply	$+12 \mathrm{~V} \pm 10 \%$
6	Vddb		
7	Vddb		
8	Vddb		

Note 1: GNDB should be connected to system ground in customer equipment.
Note 2: Do not keep pins open to avoid noise problem.
CN201: Figure of socket

CN202 socket (Inverter side): IL-Z-9PL1-SMTY
Adaptable plug: IL-Z-9S-S125C3
Supplier:
Japan Aviation Electronics Industry Limited (JAE)

Pin No.	Symbol	Function	Description		
1	GNDB	Ground for backlight	Note 1, 2		
2			Keep the terminal open		
3	N.C.	Non-connection	"H" or "Open" : Backlight on		
"L" Backlight off				\quad	See "(3) luminance control"
:---					
4					
5	BRTC	Backlight ON/OFF control signal			
:---					
(TTL level)					

Note 1: GNDB should be connected to system ground in customer equipment.
Note 2: Do not keep pins open (except 3) to avoid noise problem.
CN202: Figure of socket

$98 \bullet \bullet 21$

(3) Luminance Control

Control method	Function and adjustment	PWSEL	BRTP signal
PWM	Luminance controlled by BRTP signal. See "(4) External pulse control for luminance".	"L"	Input
Variable resistor Note 1	The variable resistor for luminance control should be $10 \mathrm{k} \Omega$ type, and zero point of the resistor corresponds to the minimum of luminance. Max. luminance (100\%): $R=10 \mathrm{k} \Omega$ Min. Iuminance (30\%): R = 0Ω Mating variable resistor: $10 \mathrm{k} \Omega \pm 5 \%$, B curve, $1 / 10 \mathrm{~W}$	"H" or "OPEN"	"OPEN"
Voltage Note 1	BRTH should be fixed to 0 V , and input to BRTL as follows. Max. Luminance (100\%): 1 V (Typ.) Min. Luminance (30\%): 0 V		

Note 1: Luminance control may be overlap noises on the display image depending on input signal timing. In this case, keep off the interference between input signal and backlight driving signal, by PWM method.
(4) Luminance control with external pulse

Luminance control with external pulse is valid, when PWSEL = "L" and external pulse signal is inputted to BRTP. This luminance control is controlled by duty ratio, and luminance is as follows.

$$
\begin{array}{ll}
\text { Duty ratio }=100 \%: & \text { Max. luminance } \\
\text { Duty ratio }=20 \%: & \text { Min. luminance }
\end{array}
$$

In BRTC = " H " or "OPEN", the inverter will stop working when BRTP terminal is fixed to " L " in the condition of PWSEL = "L". In this case, backlight will not turn on, even if external pulse signal is inputted to BRTP again. This is not out of order. Inverter will start to work when power is supplied again.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remarks
Frequency	1/tPW	185	-	325	Hz	Note 1
"L" period	tLPW	-	-	50	ms	Note 2
Pulse-width	tHPW/tPW	20	-	100	$\%$	Note 3
Luminance ratio	-	-	30 to 100	-	$\%$	-
Input voltage	ViвL1 *	0	-	0.8	V	-
	V $_{\text {iвH1 }}$	2.0	-	5	V	-

Note 1: See the following formula for luminance control frequency.
Luminance control frequency $=$ Vsync frequency $\times(n+0.25)$ [or $(n+0.75)$]
Note 2: In case tLPW is out of 50 ms , backlight will turn off by its protection circuits.
Note 3: Max. Luminance at 100\%

The display image may be disturbed by luminance control with external pulse when set up frequency is interfered with internal signal frequency.

METHOD OF CONNECTION FOR THC63LVDM83A

Note 1: RSVD must connect to system GND.

DISPLAY COLORS TO INPUT DATA SIGNALS

Display colors		Data signal (0: Low level, 1: High level)																							
		RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0								GA7 GA6 GA5 GA4 GA3 GA2 GA1 GA0 GB7 GB6 GB5 GB4 GB3 GB2 GB1 GB0								BA7 BA6 BA5 BA4 BA3 BA2 BA1 BA0BB7 BB6 BB5 BB4 BB3 BB2 BB1 BB0							
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Basic	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
colors	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	\uparrow																								
grayscale	\downarrow																								
	bright	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green	\uparrow																								
grayscale	\downarrow					-								-											
	bright	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	\uparrow																								
grayscale	\downarrow					-								-											
	bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note: The combination of 8-bit signals (256-grayscale level) results in equivalent to 16,777,216 colors.

INPUT SIGNAL TIMINGS

(1) Input signal specifications for LCD controller

\bigcirc	Parameter	Symbol	Min.	Typ.	Max.	Unit	Remarks
CLK	Frequency	1/tc	$\begin{gathered} 51.5 \\ - \end{gathered}$	$\begin{gathered} 54.0 \\ 18.52 \end{gathered}$	56.5	MHz ns	-
	Duty	tc/tcl	Note 1			-	-
	Rise, fall	terf				ns	-
Hsync	Period	th	$\begin{aligned} & 12.3 \\ & 750 \end{aligned}$	$\begin{gathered} 15.630 \\ 844 \end{gathered}$	-	$\begin{gathered} \mu \mathrm{s} \\ \mathrm{CLK} \end{gathered}$	Typ $=64.0 \mathrm{kHz}$ Note 2, 3
	Display period	thd	-	640	-	CLK	-
	Front-porch	thf	-	-	-	CLK	-
	Pulse width	thp*	-	56	-	CLK	-
	Back-porch	thb*	-	124	-	CLK	-
	*thp + thb		110	-	-	CLK	-
Vsync	Period	tv	$\begin{gathered} - \\ 1028 \end{gathered}$	$\begin{gathered} 16.661 \\ 1066 \end{gathered}$	17.47	$\begin{gathered} \mathrm{ms} \\ \mathrm{H} \end{gathered}$	Typ $=60.0 \mathrm{~Hz}$
	Display period	tvd	-	1024	-	H	-
	Front-porch	tvf*	-	1	-	H	-
	Pulse width	tvp*	-	3	-	H	-
	Back-porch	tvb*	-	38	-	H	-
	*tvf + tvp + tvb		4	-	-	H	-
	Vsync-Hsync timing	tvhs	1	-	-	CLK	for Hsync
	Hsync-Vsync timing	tvhh	1	-	-	CLK	for Hsync
DATA	DATA-CLK (Set up)	ts	Note 1			ns	-
	CLK-DATA (Hold)	th				ns	-
	Rise, fall	trf				ns	-

Note 1: Timing specifications are defined by the input signals of LVDS transmitter.
THC63LVDF83A (THine) or equivalent products are recommended for LVDS transmitter.
Note 2: Both of "time" and "CLK number" of the "th" must keep the Minimum value of specification.
Note 3: During operation, fluctuation of Hsync period must not exceed ± 1 CLK. Otherwise function error will occur in LCD module.
e.g.: Acceptable fluctuation range is 799-801 CLK, when the Hsync period is 800 CLK.
(2) Input signals timing chart for LCD

Note 1: DATA (A): RA0-RA7, GA0-GA7, BA0-BA7
DATA (B): RB0-RBA7, GB0-BG7, BB0-BB7

[^0](3) Display positions of input data
Odd Pixel: RA = R DATA
Even Pixel: RB = R DATA
Odd Pixel: $G A=G$ DATA Even Pixel: $G B=G$ DATA
Odd Pixel: $\mathrm{BA}=\mathrm{B}$ DATA Even Pixel: $\mathrm{BB}=\mathrm{B}$ DATA

D (1, 1)	D (2, 1)	D (3,1)	-••	-••	D (1280, 1)
D (1, 2)	D (2, 2)	D (3,2$)$	-••	-	D (1280, 2)
D (1, 3)	D (2, 3)	D (3,3)	-••	-••	D (1280, 3)
-	-	-	-•	-•	-
-	-	-	-•	-	-
-	-	-	-••	-••	-
-		-		. .	
D (1, 1024)	D (2, 1024)	D (3, 1024)	-	-•	D (1280, 1024)

OPTICAL CHARACTERISTICS

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit	Remarks
Contrast ratio	CR	Note 3	200	300	-	-	Note 2
Luminance	Lumax	Note 3	180	240	-	$\mathrm{cd} / \mathrm{m}^{2}$	-
Luminance uniformity	-	Max./Min., Note 3	-	1.1	1.3	-	Note 6

Reference data

Note 1: Measurement conditions
Optical characteristics are measured after 20 minutes from lighting the backlight with all pixels in white, in the dark room. The typical value is measured after luminance saturation.

Note 2: The contrast ratio is calculated by using th following formula.

$$
\text { Contrast ratio }(C R)=\frac{\text { Luminance with all pixels in "white" }}{\text { Luminance with all pixels in "black" }}
$$

Note 3: Viewing angle is $\theta \mathrm{x}= \pm 0^{\circ}, \theta \mathrm{y}= \pm 0^{\circ}$ and at center.

Note 4: Definitions of viewing angles are as follows

Note 5: Definitions of response times are as follows.
Response time is measured by photo-detector's out put level, when the luminance changes "white" to "black", or "black" to "white" on the same screen point. Ton is the time it takes the luminance to go from 10% on condition to 90% on condition. Toff is the reverse of Ton. (See the following diagram.)

Note 6: Luminance uniformity is calculated by using the following formula.

Luminance uniformity $=\frac{\text { Maximum luminance }}{\text { Minimum luminance }}$

The luminance is measured at near the five points shown below.

RELIABILITY TEST

Note 1: No display malfunctions (Display functions are checked under the same conditions as out-going inspection.)
Note 2: No physical damages
Note 3: See the following figure for discharge points

0	0	0
0	0	0
0	0	0

PRECAUTIONS

MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. Be sure to understand following contents, respectively.

CAUTION	This sign has a meaning that customer will be injured himself and/or the product will sustain a damage, if he makes a mistake in operations.

This sign has a meaning that customer will get an electric shock, if customer makes a mistake in operations.

This sign has a meaning that customer will be injured oneself, if customer makes a mistake in operations.

CAUTIONS

Do not touch HIGH VOLTAGE PART of the inverter while turn on. Customer will be in danger of an electric shock.

* Pay attention to handling for the working backlight. It may be over $35^{\circ} \mathrm{C}$ from ambient temperature.
* Do not shock and press the LCD panel and the backlight. There will be in danger of breaking, because they are made of glass. (Shock: To be not greater $294 \mathrm{~m} / \mathrm{s}^{2}$ and to be not greater 11 ms , Pressure: To be not greater 19.6 N)

ATTENTIONS

(1) Handling the product
(1) When customer pulls out products from carton box, take hold of both ends without touch the circuit board. If customer touches it, products may be broken down and/or out of adjustment, because of stress to mounting parts.
(2) If customer places products temporarily, turn down the display side and place on a flat table.
(3) Handle products with care and avoid electrostatic discharge (e.g. Decrease with earth band, ionic shower, etc.), because products (LCD modules) may be damaged by electrostatic.
(4) The torque for mounting screws should never exceed $0.45 \mathrm{~N} \bullet \mathrm{~m}$. Over torque may cause mechanical damage to the product.
(5) Do not press or friction, because LCD panel surface is sensitive. If customer will clean the product surface, NEC Corporation or their supplier will recommended using the cloth with ethanolic liquid.
(6) Do not push-pull the interface connectors while turn on, because wrong power sequence may break down the product.
(7) Connection cables such as flexible cable, and so on, are danger of damage. Do not hook cables nor pull them.
(2) Environment
(1) Dewdrop atmosphere must be avoided.
(2) Do not operate and/or store in high temperature and/or high humidity atmosphere. If customer stores the product, keep in antistatic pouch in room temperature, because of avoidance for dusts and sunlight.
(3) Do not operate in high magnetic field. Circuit boards may be broken down by it.
(4) Use an original protection sheet on product surface (polarizer). Adhesive type protection sheet should be avoided, because it may change color and/or properties of the polarizer.
(3) Specification for products
(1) Do not display the fixed pattern for a long time because it may cause image sticking. If the fixed pattern is displayed on the screen, use a screen saver.
(2) The product may be changed of color by viewing angle because of the use of condenser sheet for backlight unit.
(3) The product may be changed of luminance by voltage variation, even if power source applied recommended voltage to backlight inverter.
(4) Optical characteristics may be changed by input signal timings.
(4) Other
(1) All GND, GNDB, VDD and VdDb terminals should be connected without a non-connected signal line.
(2) Do not disassemble a product and/or adjust volume.
(3) If customer would like to replace backlight lamps, see 'REPLACEMENT MANUAL FOR BACKLIGHT'.
(4) If customer uses screwnails, pay attention not to insert waste materials in inside of products.
(5) When customer returns product for repair and so on, pack it with original shipping package because of avoidance of some damages during transportation.

General specifications for the LCD

The following items are neither defects nor failures.

* Response time, luminance and color gamut may be change by ambient temperature.
* The LCD may be seemed luminance uniformity, flicker, vertical seam and/or small sport by display patterns.
* Optical characteristics (e.g. Iuminance, display uniformity, etc.) gradually is going to change depending on operating time, and especially low temperature, because the LCD has cold cathode fluorescent lamps.

OUTLINE DRAWINGS (Unit: mm)

FRONT VIEW

(Unit: mm)

Note 1: The torque for mounting screws should never exceed $0.45 \mathrm{~N} \bullet \mathrm{~m}$.
Note 2: Tolerances of dimensions not shown is $\pm 0.5 \mathrm{~mm}$.

REAR VIEW

(Unit: mm)

Note 1: The torque for mounting screws should never exceed $0.45 \mathrm{~N} \cdot \mathrm{~m}$.
Note 2: Tolerances of dimensions not shown is $\pm 0.5 \mathrm{~mm}$.
[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its electronic components, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC electronic component, customers must incorporate sufficient safety measures in its design, such as redundancy, firecontainment, and anti-failure features. NEC devices are classified into the following three quality grades:
"Standard," "Special," and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majorityowned subsidiaries.
(2) "NEC electronic component products" means any electronic component product developed or manufactured by or for NEC (as defined above).

[^0]: * VIH, VIL: Refer to LVDS transmitter specifications.

