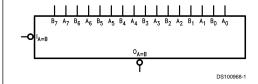


September 1998

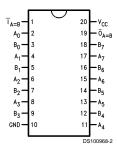
54FCT521 8-Bit Identity Comparator

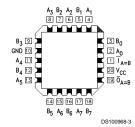

General Description

The 'FCT521 is an expandable 8-bit comparator. It compares two words of up to eight bits each and provides a LOW output when the two words match bit for bit. The expansion input $\bar{I}_{A=B}$ also serves as an active LOW enable input.

Features

- Expandable to any word length
- Outputs sink capability of 32mA, source capability of 12 mA
- TTL input and output level compatible
- CMOS power consumption
- Standard microcircuit Drawing (SMD) 5962-8854301


Logic Symbols



Connection Diagram

Pin Assignment for DIP and CERPACK

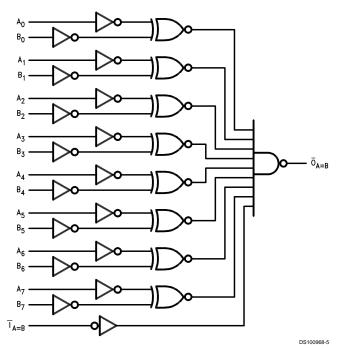
Pin Assignment for LCC

Pin Descriptions

Pin Names	Description			
A ₀ -A ₇	Word A Inputs			
B ₀ -B ₇	Word B Inputs			
T _{A = B}	Expansion or Enable Input			
$\overline{O}_{A = B}$	Identity Output			

FACT™ is a trademark of Fairchild Semiconductor Corporation.

© 1998 National Semiconductor Corporation


Truth Table

	Outputs		
Ī _{A = B}	A, B	O _{A = B}	
L	A = B (Note 1)	L	
L	A ≠ B	Н	
Н	A = B (Note 1)	Н	
Н	A ≠ B	Н	

H = HIGH Voltage Level L = LOW Voltage Level

Note 1: $A_0 = B_0$, $A_1 = B_1$, $A_2 = B_2$, etc.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (IIK)

 $V_1 = -0.5V$ -20 mA $V_I = V_{CC} + 0.5V$ +20 mA

DC Input Voltage (V_I) -0.5V to $V_{\rm CC}$ + 0.5V

DC Output Diode Current (I_{OK})

 $V_{\rm O} = -0.5 V$ -20 mA $V_{\rm O} = V_{\rm CC} + 0.5V$ +20 mA

DC Output Voltage (V_O) -0.5V to V_{CC} + 0.5V

DC Output Source ±50 mA

or Sink Current (I_O) DC $V_{\rm CC}$ or Ground Current

per Output Pin (I_{CC} or I_{GND})

-65°C to +150°C Storage Temperature (T_{STG}) Junction Temperature (T_J)

175°C CDIP

Recommended Operating Conditions

Supply Voltage (V_{CC})

FCT 4.5V to 5.5V 0V to $V_{\rm CC}$ Input Voltage (V_I) Output Voltage (V_O) 0V to V_{CC}

Operating Temperature (T_A)

54FCT -55°C to +125°C

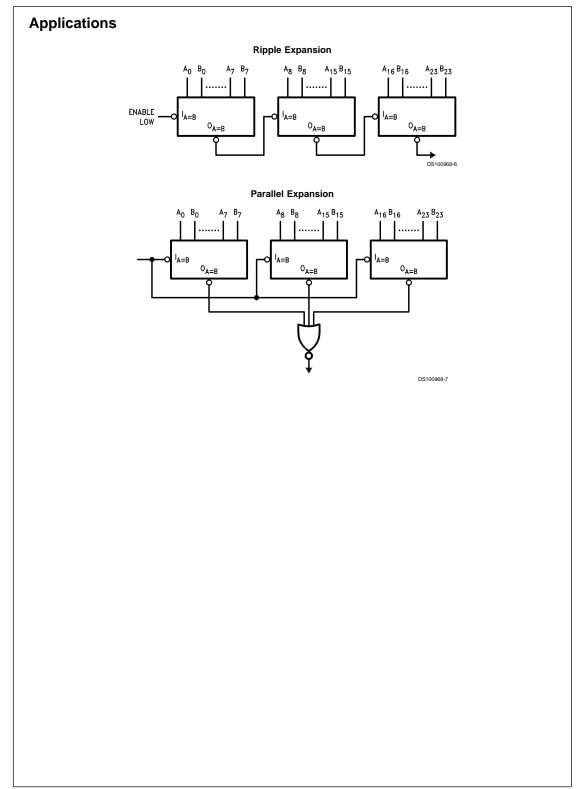
Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, output/input loading variables. National does not recommend operation of FACT™ circuits outside databook specifications.

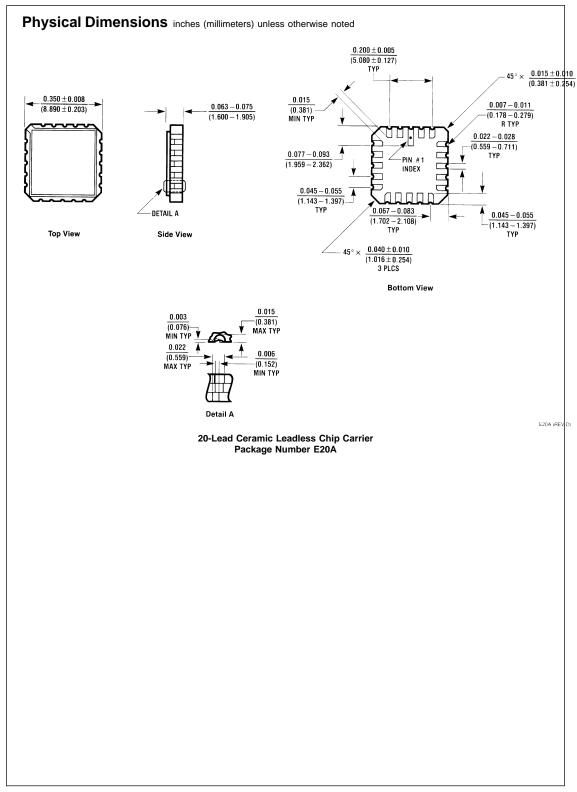
DC Electrical Characteristics for 'FCT Family Devices

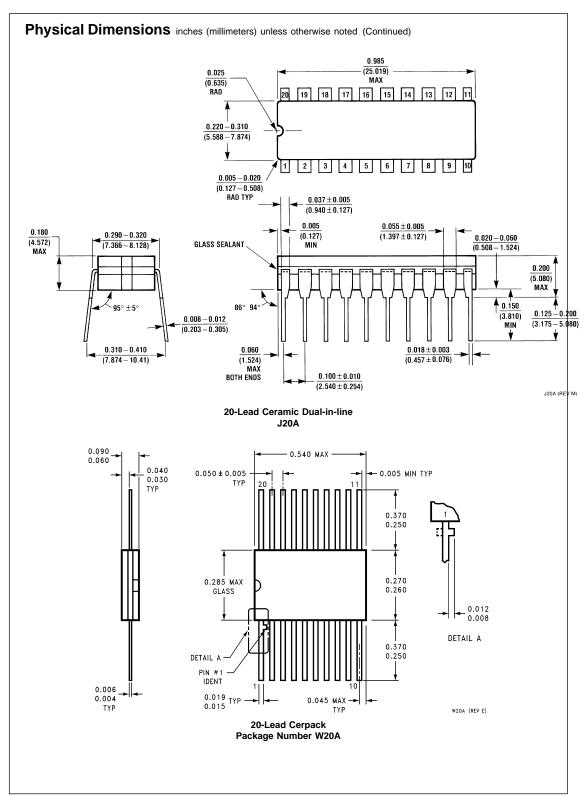
±50 mA

Symbol	Parameter		54FCT		Units	V _{cc}	Conditions	
			Min	Max				
V _{IH}	Input HIGH Voltage		2.0		V		Recognized HIGH Signal	
V _{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal	
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH Voltage	54FCT	4.3		V	Min	I _{OH} = -300 μA	
		54FCT	2.4		V	Min	$I_{OH} = -12 \text{ mA}$	
V _{OL}	Output LOW Voltage	54FCT		0.2	V	Min	I _{OL} = 300 μA	
		54FCT		0.5	V	Min	I _{OL} = 32 mA	
I _{IH}	Input HIGH Current			5	μA	Max	V _{IN} = V _{CC}	
I _{IL}	Input LOW Current			-5	μA	Max	V _{IN} = 0.0V	
Ios	Output Short-Circuit Current			-60	mA	Max	V _{OUT} = 0.0V	
I _{CCQ}	Quiescent Power Supply Current			1.5	mA	Max	V_{IN} < 0.2V or V_{IN} 5.3V, V_{CC} = 5.5V	
ΔI_{CC}	Quiescent Power Supply Current			2.0	mA	Max	$V_I = V_{CC} - 2.1V$	
I _{CCD}	Dynamic I _{CC}			0.25	mA/ MHz	Max	V_{CC} = 5.5V, Outputs Open, One Bit Toggling, 50% Duty Cycle, \overline{OE}_n = GND	
I _{cc}	Total Power Supply Current			5.0	mA	Max	V_{CC} = 5.5V, Outputs Open, fI = 10MHz, \overline{OE}_n = GND, One Bit Toggling, 50% Duty Cycle	

Note 3: All outputs loaded: thresholds on input associated with output under test.


Note 4: Maximum test duration 2.0 ms, one output loaded at a time.


AC Electrical Characteristics for 'FCT Family Devices T_A = -55°C to +125°C Symbol Parameter V_{CC} Units (V) $C_L = 50 pF$ (Note Min Max 5) t_{PLH} Propagation Delay 5.0 15.0 1.5 A_n or B_n to $\overline{O}_{A=B}$ Propagation Delay 5.0 1.5 15.0 t_{PHL} ns A_n or B_n to $\overline{O}_{A=B}$ Propagation Delay 5.0 1.5 9.0 ns t_{PLH} $\overline{I}_{A = B}$ to $\overline{O}_{A = B}$ Propagation Delay 5.0 1.5 9.0 $\mathsf{t}_{\mathsf{PHL}}$ $\overline{I}_{A = B}$ to $\overline{O}_{A = B}$


Note 5: Voltage Range 5.0 is 5.0V ±0.5V

Capacitance

Symbol Parameter		Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	40	pF	V _{CC} = 5.0V

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86

Fax: +49 (0) 1 80-530 85 86
Email: europe support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group

Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.