$\qquad$
New Product
Vishay Siliconix

## Load Switch with Level-Shift

| PRODUCT SUMMARY |  |  |
| :---: | :---: | :---: |
| $\mathbf{V}_{\mathbf{D S} 2}(\mathbf{V})$ | $\mathbf{r}_{\mathrm{DS}(\mathrm{on})}(\Omega)$ | $\mathrm{I}_{\mathrm{D}}(\mathbf{A})$ |
| 4.5 to 20 | $0.105 @ \mathrm{~V}_{\mathbb{N}}=10 \mathrm{~V}$ | $\pm 2.3$ |
|  | $0.150 @ \mathrm{~V}_{\mathbb{N}}=5.0 \mathrm{~V}$ | $\pm 1.9$ |
|  | $0.175 @ \mathrm{~V}_{\mathbb{N}}=4.5 \mathrm{~V}$ | $\pm 1.7$ |

## FEATURES

- 105-m $\Omega$ Low $r_{\text {DS(on) }}$ TrenchFET $^{\text {m }}$
- 4.5 to $20-\mathrm{V}$ Input
- 1.5 to 8 -V Logic Level Control
- Low Profile, Small Footprint TSOP-6 Package
- 3000-V ESD Protection On Input Switch, $\mathrm{V}_{\text {ON/OFF }}$
- Adjustable Slew-Rate


## DESCRIPTION

The Si3861DV includes a $p$ - and $n$-channel MOSFET in a single TSOP-6 package. The low on-resistance p-channel TrenchFET ${ }^{\circledR}$ is tailored for use as a load switch. The n-channel, with an external resistor, can be used as a
level-shift to drive the p-channel load-switch. The n-channel MOSFET has internal ESD protection and can be driven by logic signals as low as $1.5-\mathrm{V}$. The Si3861DV operates on supply lines from 4.5 to $20-\mathrm{V}$, and can drive loads up to 2.3 A .

## APPLICATION CIRCUITS



## COMPONENTS

| R1 | Pull-Up Resistor | Typical $10 \mathrm{k} \Omega$ to $1 \mathrm{~m} \Omega^{\star}$ |
| :---: | :---: | :---: |
| R2 | Optional Slew-Rate Control | Typical 0 to $100 \mathrm{k} \Omega^{*}$ |
| C1 | Optional Slew-Rate Control | Typical 1000 pF |

*Minimum R1 value should be at least $10 \times$ R2 to ensure Q1 turn-on.


Note: For R2 switching variations with other $\mathrm{V}_{\mathrm{IN}} / \mathrm{R} 1$ combinations See Typical Characteristics

The Si3861DV is ideally suited for high-side load switching in portable applications. The integrated $n$-channel level-shift device saves space by reducing external components. The slew rate is set externally so that rise-times can be tailored to different load types.

FUNCTIONAL BLOCK DIAGRAM


ABSOLUTE MAXIMUM RATINGS $\mathbf{( T}_{\mathbf{A}} \mathbf{=} \mathbf{2 5}^{\circ} \mathrm{C}$ UNLESS OTHERWISE NOTED)

| Parameter |  | Symbol | Limit | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Input Voltage |  | $\mathrm{V}_{\text {IN }}$ | 20 | V |
| ON/OFF Voltage |  | $\mathrm{V}_{\text {ON/OFF }}$ | 8 |  |
| Load Current | Continuous ${ }^{\text {a, }}$ b | L | $\pm 2.3$ | A |
|  | Pulsed ${ }^{\text {b, c }}$ |  | $\pm 4$ |  |
| Continuous Intrinsic Diode Conduction ${ }^{\text {a }}$ |  | $\mathrm{I}_{\text {s }}$ | -1 |  |
| Maximum Power Dissipation ${ }^{\text {a }}$ |  | $\mathrm{P}_{\mathrm{D}}$ | 0.83 | W |
| Operating Junction and Storage Temperature Range |  | $\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$ | -55 to 150 | ${ }^{\circ} \mathrm{C}$ |
| ESD Rating, MIL-STD-883D Human Body Model ( $100 \mathrm{pF}, 1500 \Omega$ ) |  | ESD | 3 | kV |

THERMAL RESISTANCE RATINGS

| Parameter | Symbol | Typical | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: |
| Maximum Junction-to-Ambient (continuous current) ${ }^{\text {a }}$ | $\mathrm{R}_{\text {thJA }}$ | 120 | 150 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Maximum Junction-to-Foot (Q2) $^{y y y y y y}$ | $\mathrm{R}_{\text {thuc }}$ | 35 | 50 |  |


| SPECIFICATIONS ( $\mathbf{T}_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ UNLESS OTHERWISE NOTED) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Test Condition |  | Min | Typ | Max | Unit |
| OFF Characteristics |  |  |  |  |  |  |  |
| Reverse Leakage Current | $I_{\text {FL }}$ | $\mathrm{V}_{\text {IN }}=30 \mathrm{~V}, \mathrm{~V}_{\text {ONJOFF }}=0 \mathrm{~V}$ |  |  |  | 1 | $\mu \mathrm{A}$ |
| Diode Forward Voltage | $\mathrm{V}_{\text {SD }}$ | $\mathrm{I}_{\mathrm{s}}=-1 \mathrm{~A}$ |  |  | -0.8 | -1 | v |
| ON Characteristics |  |  |  |  |  |  |  |
| Input Voltage Range | $\mathrm{V}_{\text {IN }}$ |  |  | 4.5 |  | 20 | v |
| On-Resistance (p-channel) @ 1A | rDS(on) | $\begin{gathered} \mathrm{V}_{\text {ONOFF }}=1.5 \mathrm{~V} \\ \mathrm{D}_{\mathrm{D}}=1 \mathrm{~A} \end{gathered}$ | $\mathrm{V}_{1 \mathrm{~N}}=10 \mathrm{~V}$ |  | 0.085 | 0.105 | $\Omega$ |
|  |  |  | $\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$ |  | 0.123 | 0.150 |  |
|  |  |  | $\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ |  | 0.145 | 0.175 |  |
| On-State (p-channel) Drain-Current | $\mathrm{I}_{\text {D(on) }}$ | $\begin{array}{\|l} \hline \mathrm{V}_{\text {IN-OUT }} \leq 0.2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=10 \mathrm{~V}, \mathrm{~V}_{\text {ONOFF }}=1.5 \mathrm{~V} \\ \hline \mathrm{~V}_{\text {IN-OUT }} \leq 0.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {ONOFFF }}=1.5 \mathrm{~V} \\ \hline \end{array}$ |  | 1 |  |  | A |
|  |  |  |  | 1 |  |  |  |

Notes
a. Surface Mounted on FR4 Board.
b. $\mathrm{V}_{\text {IN }}=12, \mathrm{~V}_{\text {ON/OFF }}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
c. Pulse test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
New Product

Si3861DV

TYPICAL CHARACTERISTICS ( $25^{\circ} \mathrm{C}$ UNLESS NOTED)


$V_{\text {DROP }}$ Variance vs. Junction Temperature





## TYPICAL CHARACTERISTICS ( $25^{\circ} \mathrm{C}$ UNLESS NOTED)



Si3861DV
New Product
Vishay Siliconix

## TYPICAL CHARACTERISTICS (25${ }^{\circ} \mathrm{C}$ UNLESS NOTED)




## Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

