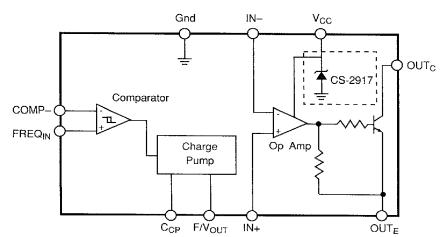
# 50mA F to V Converter

## Description

The CS-2907/2917 Series is designed for use in frequency-to-voltage conversion systems and is especially suitable for tachometer and motor-speed-control applications. The 2907 consists of a regenerative input comparator, a frequency doubling charge pump and a general purpose, differential op-amp output. The 2917 has the additional built-in feature of an internal shunt voltage regulator. The input signal, which can be single-ended, or differential, is applied to the regenerative comparator input; 30mV hysteresis provides noise rejection.

The frequency-doubling charge pump is triggered by the comparator output, converting the input-frequency information into a d.c. output voltage at  $F/V_{OUT}$ . The output op-amp is unity-gain compensated and can serve as an output-voltage follower or as an active filter for additional ripple reduction. 50mA current capability allows the output stage to drive a variety of loads either from emitter, or collector.

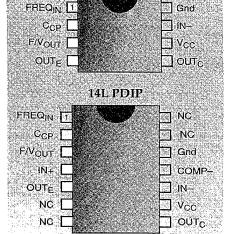

The output swings to ground for zero frequency input.

### Absolute Maximum Ratings

| Supply Voltage                              | 28V            |
|---------------------------------------------|----------------|
| Supply Current                              |                |
| Op. Amp./Comp. Differential Input Voltage   |                |
| Op. Amp./Comparator Input Voltage           |                |
| Op. Amp. Collector-Emitter Voltage          |                |
| Digital Interface Collector-Emitter Voltage |                |
| Operating Temperature Range                 | 40°C to +85°C  |
| Storage Temperature Range                   | 65°C to +150°C |
| Lead Temperature Soldering                  |                |
| 717 0 11 71 1 1 1 1 1 1 1 1 1 1 1 1 1 1     |                |

Wave Solder(through hole styles only)......10 sec. max, 260°C peak

#### **Block Diagram**




## **Features**

- 🕒 ±0.3% Linearity, Typical
- ☐ Buffered High-Level Frequency Output
- Single-ended or Differential Inputs
- Voltage Follower or Active Filter Output Capability
- Output Swings to Ground for Zero Frequency Input

## Package Options

8L PDIP



Cherry

Semiconductor

2067556 0003545 775

Cherry Semiconductor Corporation 2000 South County Trail East Greenwich, Rhode Island 02818-1530 Tel: (401)885-3600 Fax (401)885-5786 email: info@cherry-semi.com

a **CHERRY** company

469

|                                        | cal Characteristics: T <sub>A</sub> = 25                                                                                                            |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|
| PARAMETER                              | TEST CONDITI                                                                                                                                        | ONS                                                              | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAX                                                 | UNI                                   |
| l Comparator                           |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | e e e e e e e e e e e e e e e e e e e |
| Input Threshold Voltage                | $V_{FREQIN} = \pm 125 \text{mV}$                                                                                                                    | note 2                                                           | ±10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±40                                                 | mV                                    |
| Hysteresis                             | $V_{FREQIN} = \pm 125 \text{mV}$                                                                                                                    | note 2                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     | mV                                    |
| Input Offset Voltage                   | 19 pr. – 19 cm) smith 17 gra gra grae <del>a d</del> e graeit 19 tain 18 grae 14 graeit 19 graeit 19 graeit 19 graeit 19 gr<br>Tain 19 pr. – 19 cm) | and Tarris Calbert St. T. S. | on the same of the state of the | the section and the section of the s | 86.06 - 96.06 ASSESSES SECTOR SALES (400 4-25-4-29) | 1 Mars (1623ann) 5 m <sup>2</sup>     |
| -D14 Versions                          | note 2                                                                                                                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                  | mV                                    |
| -D8 Versions                           | note 2                                                                                                                                              |                                                                  | N SANGTAGA DUBUK 1900 SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                  | mV                                    |
| Input Bias Current                     | $V_{\text{FREQIN}} = \pm 50 \text{mV}$                                                                                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                                 | μA                                    |
| Common Mode Voltage                    |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>CC</sub> - 1.5                               | , V                                   |
| Charge Pump                            |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       |
| Output Voltage - high, V <sub>OH</sub> |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | <del></del>                           |
| CS-2907 Series                         | $V_{FREOIN} = +125 \text{mV}_{DC}$                                                                                                                  | note 3                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | V                                     |
| CS-2917 Series                         | $V_{\text{FREOIN}} = +125\text{mV}_{\text{DC}}$                                                                                                     | note 3                                                           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | V                                     |
| Output Voltage - low, V <sub>OL</sub>  |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | i kowa                                |
| CS-2907 Series                         | $V_{FREOIN} = -125 \text{mV}_{DC}$                                                                                                                  | note 3                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | V                                     |
| CS-2917 Series                         | $V_{FREQIN} = -125 \text{mV}_{DC}$                                                                                                                  | note 3                                                           | A TABLE PROPERTY OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | $\mathbf{v}$                          |
| Output Current Ipin 2, Ipin            | THE LITTLE CONTROL STREET, STREET, SANDERS OF THE PROPERTY OF STREET, SALES                                                                         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a barronnesses pros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | , nominata                            |
| CS-2907 Series                         | $V_{CCP} = VF/V_{OUT} = 6V_{I}$                                                                                                                     | oc note 4                                                        | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 240                                                 | μA                                    |
| CS-2917 Series                         | $V_{CCP} = V_F/V_{OUT} = 3.5V$                                                                                                                      | N <sub>DC</sub> note 4                                           | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250                                                 | μA                                    |
|                                        | $V_{CC} = 6V_{DC}$                                                                                                                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | •                                     |
| Leakage Current Ipin 3                 | $I_{CCP} = 0$ ; $V_F/V_{OUT} = 0$                                                                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4                                                 | μA                                    |
| Gain Constant K                        | note 3                                                                                                                                              | en e                         | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                 | : MERVALCINE CUE                      |
| Non-Linearity                          | note 5                                                                                                                                              |                                                                  | -1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +1.0                                                | %                                     |
|                                        |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       |
| Op. Amp.                               |                                                                                                                                                     | -                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       |
| Input Offset Voltage                   |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       |
| CS-2907 Series                         | $V_{IN} = 6V_{DC}$                                                                                                                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                  | mV                                    |
| CS-2917 Series                         | $V_{IN} = 3.5V_{DC}$                                                                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                  | - mV                                  |
| Input Bias Current                     |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       |
| CS-2907 Series                         | $V_{IN} = 6V_{DC}$                                                                                                                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                 | μA                                    |
| CS-2917 Series                         | $V_{\rm IN} = 3.5V_{\rm DC}$                                                                                                                        | Statute of Marie                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c = 132 <b>0:5</b>                                  | μA                                    |
| Common Mode Voltage                    |                                                                                                                                                     |                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>CC</sub> - 1.5                               | <b>V</b> .                            |
| Open Loop Gain                         |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | V/i                                   |
| I <sub>SINK</sub>                      | $V_{OUTC} = 1V$                                                                                                                                     |                                                                  | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     | mA                                    |
| I <sub>SOURCE</sub>                    |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       |
| CS-2907 Series                         | $V_{OUTE} = V_{CC} - 2V$                                                                                                                            |                                                                  | Joseph 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | mA                                    |
| CS-2917 Series                         | $V_{OUTE} = V_{CC} - 2V; V_{CC}$                                                                                                                    | = 6V <sub>DC</sub>                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     | mA                                    |
| Saturation Voltage                     | $I_{SINK} = 5mA$                                                                                                                                    |                                                                  | e elimina and on the lead of demonstra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                                                 | V                                     |
| *                                      | $I_{SINK} = 20 \text{mA}$                                                                                                                           |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                 | $\mathbf{v}$                          |
|                                        | $I_{SINK} = 50 \text{mA}$                                                                                                                           |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                                 | V                                     |
|                                        |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                       |
| Zener Regulator (CS-2917 S             |                                                                                                                                                     | 00                                                               | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                       |
| Regulator Voltage<br>Series Resistance | Dropping Resistor = 47                                                                                                                              | usa<br>Markanakan                                                | STREET VINITE VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | V<br>Ω                                |
| Temperature Stability                  |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.5<br>+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15 4 84                                             | mV/                                   |
| · · · · · · · · · · · · · · · · · · ·  |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       |
| Supply                                 |                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       |
| Current, Quiescent<br>CS-2907 Series   | 17 1017                                                                                                                                             |                                                                  | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | :                                     |
| I E MILL East on                       | $V_{CC} = 12V_{DC}$                                                                                                                                 |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0                                                 | mA                                    |
| CS-2907 Series<br>CS-2917 Series       | $V_{CC} = 6V_{DC}$                                                                                                                                  |                                                                  | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | mΑ                                    |

This Material Copyrighted By Its Respective Manufacturer

## Electrical Characteristics: continued

#### Notes:

- 1. Above 25° Derate at 8.0mW/°C for package  $D_{14}$  and at 10.0mW/°C for package  $D_8$ .
- 2. Hysteresis is the sum +VTH-(VTH), offset voltage is their difference.
- 3.  $V_{OH}$  is equal to  $3/4 \times V_{CC}$   $1V_{BE}$ ,  $V_{OL}$  is equal to  $1/4 \times V_{CC}$   $1V_{BE}$  therefore  $V_{OH}$   $V_{OL}$  =  $V_{CC}/2$ . The difference,  $V_{OH}$   $V_{OL}$ , and the mirror gain, I2/I3, are the two factors that cause the tachometer gain constant to vary from 1.0.
- 4. Be sure when choosing the time constant  $R_1 \times C_1$  that  $R_1$  is such that the maximum anticipated output voltage at  $F/V_{OUT}$  can be reached with  $I_3 \times R_1$ . The maximum value for  $R_1$  is limited by the output resistance of  $F/V_{OUT}$  which is greater than  $10M\Omega$  typ.
- 5. Nonlinearity is defined as the deviation of  $V_{OUT}$  (@  $F/V_{OUT}$ ) for  $f_{IN}$  = 5kHz from a straight line defined by the  $V_{OUT}$  @ 1kHz and  $V_{OUT}$  @ 10kHz,  $C_1$  = 1000pF,  $R_1$  = 68k $\Omega$  and  $C_2$  = 0.22 $\mu$ F.

|                                                 | Package Pin Description                  |                           |                |                    |                                                                            |
|-------------------------------------------------|------------------------------------------|---------------------------|----------------|--------------------|----------------------------------------------------------------------------|
|                                                 | PACKA                                    | GE PIN#                   |                | PIN SYMBOL         | FUNCTION                                                                   |
| 8L P<br>CS-2907                                 | DIP<br>CS-2917                           | 14L P<br>CS-2907          | DIP<br>CS-2917 |                    |                                                                            |
| 1                                               | 1                                        | 1                         | 1              | FREQ <sub>IN</sub> | Analog input signal from speed sensor.                                     |
|                                                 |                                          | 11                        | 11             | COMP-              | Inverted input to comparator; connected to Gnd in D8.                      |
| 2                                               | 2                                        | 2                         | 2              | $C_{CP}$           | Charge pump capacitor.                                                     |
| <b>3</b> - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | 10 19 <b>3</b> 0 10 10<br>12 12 13 14 15 | 3 3 7 7 3<br>23 2 7 1 2 3 |                | F/V <sub>OUT</sub> | Charge pump output, the charge on the capacitor is measured at the output. |
| 4                                               | 4                                        | 5                         | 5              | $OUT_E$            | Emitter of op amp's output stage.                                          |
| 5                                               | 5                                        | 8                         | 8              | OUTC               | Collector of op amp's output stage.                                        |
| 6                                               | 6                                        | 9                         | 9              | $V_{CC}$           | Supply voltage.                                                            |
|                                                 |                                          | 4                         | 4              | [N+]               | Positive input to op amp.                                                  |
| 7                                               | 7                                        | 10                        | 10             | IN-                | Negative input to op amp.                                                  |
|                                                 |                                          | 6, 7, 13, 14              | 6, 7, 13, 14   | NC                 | No connection.                                                             |
| 8                                               | 8                                        | 12                        | 12             | Gnd                | Ground connection.                                                         |

#### Applications

A timing capacitor C<sub>CP</sub>, an output resistor R<sub>F</sub>, and an output filter capacitor  $C_F$ , are required as shown in Figure 1. On each transition of the input comparator, C<sub>P</sub> is linearly charged or discharged between voltage limits  $V_H$  and  $V_I$ . The difference,  $V_H$ - $V_I$ , equals  $V_{CC}/2$ . During one half cycle of input frequency, the change in charge on CCP is:  $C_{CP} V_{CC}/2$ . The average charge-pump current charging  $C_{CP}$  during one half cycle of input frequency =  $C_{CP}$   $V_{CC}$  $F_{IN}$  where  $F_{IN}$  = input frequency. This charge pump current, IC, is accurately mirrored into RF to generate a DC voltage at  $F/V_{OUT}$  such that  $V_F/V_{OUT} = I_C R_F = K R_F C_{CP}$  $V_{CC} F_{IN}$  where K is a circuit constant typically equal to one. Averaging, or filtering is accomplished with CF and both output ripple voltage and response time are dependent on the value of Cp Peak to peak ripple voltage  $V_R =$  $(V_{CC}/2) (C_{CP}/C_F) (1-F_{IN}/F_{max})$  where  $F_{max} = 12/(C_{CP})$  $V_{CC}$ ) and  $I_F$  is the current in  $C_F$ .

For the 2917 series on-board shunt-regulator an external resistor  $R_2$  is required for operation from the input supply voltage.

The value of  $R_F$  does not therefore affect ripple; however if it is too large by comparison with the output impedance

seen at F/V<sub>OUT</sub>, linearity will be adversely affected. Since the current at F/V<sub>OUT</sub>,  $I_F/V_{OUT}$ , is internally set,  $R_F$  must be chosen such that  $V_F/V_{OUT}$  max. =  $I_F/V_{OUT}R_F$ .

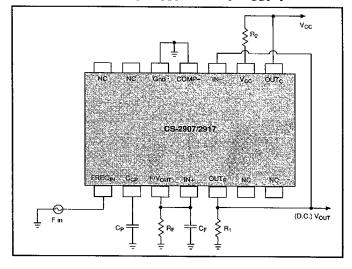



Figure 1: Application Diagram

**■** 2067556 0003547 578 **■** 

## Motor Speed Control Application

The CS-2917 F-to-V converter integrated circuit, with built-in operational amplifier, regulator, and output transistor is ideal for tachometer feedback motor speed control applications. Two typical application circuits are shown in Figure 2. Figure 2A employs the CS-2907-N14  $\mathcal{O}$  operating from the  $V_{CC}$  line. Figure 2B offers an alternative approach using the CS-2917-N8 operating from the V<sub>CC</sub> line and using the internal regulator. In both circuits, the tachometer feedback-signal is applied to the comparator input, and the F-to-V conversion gain is set by C<sub>CP</sub>R<sub>F</sub>. The general purpose op amp is used both as a summing node for the speed reference input (from potentiometer R<sub>T</sub>), and as a frequency compensated integrator which provides zero steady state speed error under varying load

conditions. Capacitors C2 and C3 provide the integrating function at low frequency while R2 and C2 provide the frequency compensation which insures loop stability. In Figure 2A, the on-chip driver transistor drives a discrete power transistor which in turn drives the motor. In Figure 2B, the on-chip driver transistor is used as an inverting gain stage to close the loop around the op amp, and the provide drive voltage for the discrete NPN darlington transistor which drives the motor.

Both of these approaches provide accurate regulation of motor speed under conditions of varying motor load, V<sub>CC</sub> and ambient temperature.

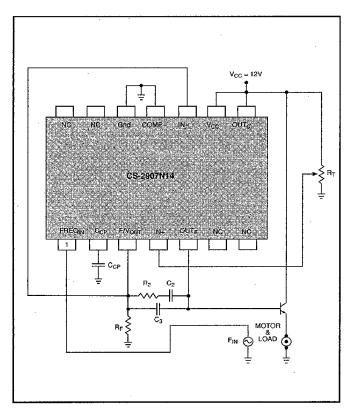



Figure 2A: Motor Speed Control with CS-2907N14.

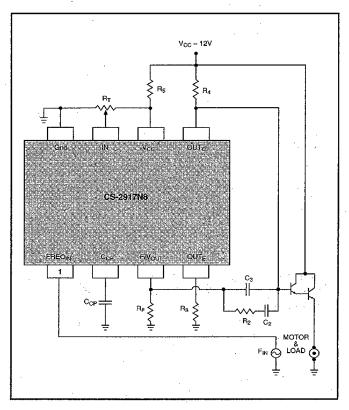



Figure 2B: Motor Speed control with CS-2917N8.

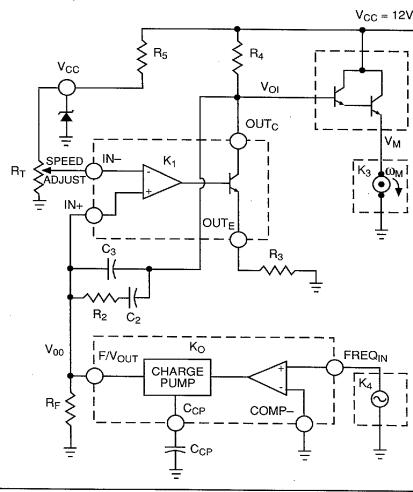



Figure 3: Motor Speed Control Block Diagram of CS-2917N8.

Figure 3 is the circuit of Figure 2B re-drawn in a block diagram form which lends itself to visualization and analysis of the regulator loop. (Figure 2A can be analyzed in the same manner.) Potentiometer  $R_T$  provides the loop reference input. The op amp integrator, the power darlington and the motor provide the forward gain components  $K_1$ ,  $K_2$  and  $K_3$ . The tachometer and F-to-V converter provide the gain components  $K_4$  and  $K_0$  in the feedback path. We will now derive the transfer functions for all components of the loop, write the expression for loop gain, and compute component values to insure loop stability.

**A.** K<sub>0</sub> is the transfer function for the F-to-V converter.

1. 
$$K_0 - \frac{V_{00}}{f_{IN}} = KV_R R_F C_{CP}$$
;  $K = 1.0$ ;  $V_R = 7.6V$ 

**B.**  $K_1$  is the transfer function for the integrator.

2. 
$$K_{1} = \left| \frac{V_{01}}{V_{00}} \right| = \frac{1 + j\omega R_2 C_2}{J\omega R_F (C_2 + C_3) \left[ 1 + \frac{j\omega C_2 C_3 R_2}{C_2 + C_3} \right]}$$

**2067556** 0003549 340 I

This Material Copyrighted By Its Respective Manufacturer

This transfer function has the following poles and zeros:

Zero at: 
$$\omega 1 = \frac{1}{R_2 C_2}$$

Pole at:  $\omega = 0$  (an integrator)

Pole at: 
$$\omega 2 = \frac{C_2 + C_3}{R_2 C_2 C_3}$$

C.  $K_2$  is the transfer function of the power darlington transistor. Assume it equals 0.9 over the frequency range of interest.

3. 
$$K_2 = \frac{V_m}{V_{01}} = 0.9$$

D. K<sub>3</sub> is the transfer function of the motor. (See Electrocraft Engineering Handbook, 4th edition, Pg. 2-19, eq. 2.3.28.)

4. 
$$K_3 = \frac{\omega_m}{V_m} = \frac{1/K_E}{(1 + j\omega J_m)(1 + j\omega J_e)}$$

 $\omega_m$  = Motor Rotational Speed (rad/sec)

 $V_m$  = Applied Motor Voltage

 $J_m = (R_A J_T / K_E K_T) = Mechanical Time Constant$ 

473

#### Design Example

 $J_e = (L_A/R_A) = Electrical Time Constant$ 

 $K_T = Motor Torque Const. (oz • in/A)$ 

 $K_E$  = Motor Back EMF Const. (V/rad/sec)

R<sub>A</sub> = Motor Armature Resistance (ohms)

L<sub>A</sub> = Motor Armature Inductance (henrys)

 $I_T$  = Total Inertial Load on Motor (oz, • in • sec<sup>2</sup>)

This design example describes an application using a small, permanent-magnet fractional-horsepower d.c. motor driving an inertial load. The following parameter values are taken from manufacturer's data for the motor and from laboratory measurements on the drive system.

$$\omega_{\rm m} = 314.2 \ {\rm rad/sec} \ (3000 \ {\rm rpm})$$

$$K_T = 2.1$$
oz. in/A = 14.83 x 10-3 N.M/A

$$K_E = 14.83 \times 10-3 \text{ V/rad/sec}$$

$$R_A = 6.9\Omega$$

$$J_e = 0.7 \text{ msec}$$

$$\therefore$$
 L<sub>A</sub> = 4.83 mh, and

$$J_{\rm T} = 9.39 \times 10^{-4} \text{ oz} \cdot \text{in} \cdot \text{SEC}^2$$

$$= 6.63 \times 10^{-6} \text{ kg} \cdot \text{m}^2$$

5. 
$$J_m = \frac{R_A J_T}{K_E K_T} = 0.208 \text{ sec}$$

$$\omega_{\rm B} = \frac{1}{J_{\rm m}} = 4.8 \, \rm rad/ \, sec$$

$$f_B = 0.765 Hz$$

$$\omega_e = \frac{1}{J_e} = 1429 \text{ rad/sec}$$

$$f_e = 227Hz$$

$$1/K_e = 67.4$$

6. 
$$K_3 = \frac{\omega_m}{V_m} = \frac{67.4}{\left(1 + j\frac{\omega}{4.8}\right)\left(1 + j\frac{\omega}{1429}\right)}$$

Ignoring the electrical time constant (assumes that the loop crossover frequency is less than 1429 rad./sec.) we have:

7. 
$$K_E = \frac{\omega_m}{V_m} = \frac{67.4}{\left(1 + j\frac{\omega}{4.8}\right)}$$

E.  $K_4$  is the tachometer constant.

$$\omega_m K_4 = f_{in}$$

for 
$$f_{in} = 400$$
 Hz,  $\omega_m = 314.2$  rad/sec and

8.  $K_4 = 1.273 \text{ cyc/rad}$ 

The loop gain, A<sub>L</sub>, equals.

9. 
$$A_L = K_0 K_1 K_2 K_3 K_4$$
 at  $\omega = 1$  rad/sec, for 
$$1 < W_B < W_1, < W_Z$$
 
$$A_L \ (\omega = 1)$$

= 7.6(R<sub>1</sub>C<sub>1</sub>) 
$$\frac{1}{R_F(C_2 + C_3)}$$
 (0.9)(67.4)(1.273)

Arbitrarily selecting a loop gain of 50 (34db) at  $\omega$  = 1 rad/sec, we derive the following expression:

$$\frac{C_{CP}}{C_2 + C_3} = \frac{50}{(7.6)(0.9)(67.4)(1.273)} = 0.0852$$

10. 
$$C_2 + C_3 = 11.74 C_1$$

Now, select  $R_1C_1$  to set the loop reference voltage to about 1/2 of the on-chip zener reference voltage:

11. 
$$K_4 \omega_m \bullet K_0 = V_{REF} \approx 7.6/2$$

By selecting standard values for  $C_{CP}$  and  $R_F$ ,  $C_{CP}=0.01\mu F$  and  $R_F=146k\Omega$ , the reference voltage at the loop operating point is:

12. 
$$V_{REF} = (314.2 \text{ rad/sec}) (7.6) (1.0) (0.01 \mu\text{F})$$
  
(146k) (1.273) = 4.4 volts

4.4 volts is well within the regulated supply tolerance and should present no adjustment problem in production.

Now, plot the bode diagram for the loop with only the integrator response and motor break frequency,  $f_B = 0.765 Hz$  and determine suitable locations for  $f_1$  and  $f_2$  such that the compensated bode plot crosses the unity gain axis at about the mid point of the -6db/octave line segment connecting  $f_1$  and  $f_2$ . Selecting  $f_1 = 1.5 Hz$ , and  $f_2 = 7.0 Hz$  we have; (see Figure 4)

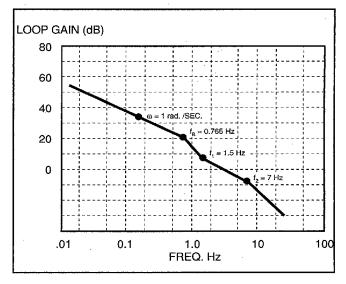



Figure 4.

2067556 0003550 062 **688** 

$$f_1 = \frac{1}{2\pi R_2 C_2} = 1.5 Hz$$

$$f_2 = \frac{C_2 + C_3}{2\pi R_2 C_2 C_3} = 7.0 \text{Hz}$$

$$\frac{f_1}{f_2} = \frac{C_3}{C_2 + C_3} = 0.214$$

$$C_3 = 0.214 (C_2 + C_3)$$

From Equation 10

$$C_2 + C_3 = 11.74C_{CP} = 0.1174\mu F$$

$$C_3 = (0.214) (0.1174) = 0.025 \mu F$$

Select  $C_3 = 0.022 \mu F$ 

and  $C_2 = 0.1 \mu F$ 

Then;

$$R_2 = \frac{1}{2\pi f_1 C_2} = 1M\Omega$$

Resistors  $R_3$  and  $R_4$  are chosen to bias the on-chip drive transistor in a linear region at the desired motor speed. To maintain closed loop stability of the integrator we keep the inverting gain of this stage close to unity. For this application  $R_3=570\Omega$  and  $R_4=1000\Omega.$  A  $470\Omega$  resistor is selected for  $R_5$  to provide sufficient zener bias from the 12V supply. The component list for the circuit in Figure 2B is:

 $R_F = 146k\Omega$ 

 $C_{CP} = 0.01 \mu F$ 

 $R_2 = 1M\Omega$ 

 $C_2 = 0.1 \mu F$ 

 $R_3 = 510\Omega$ 

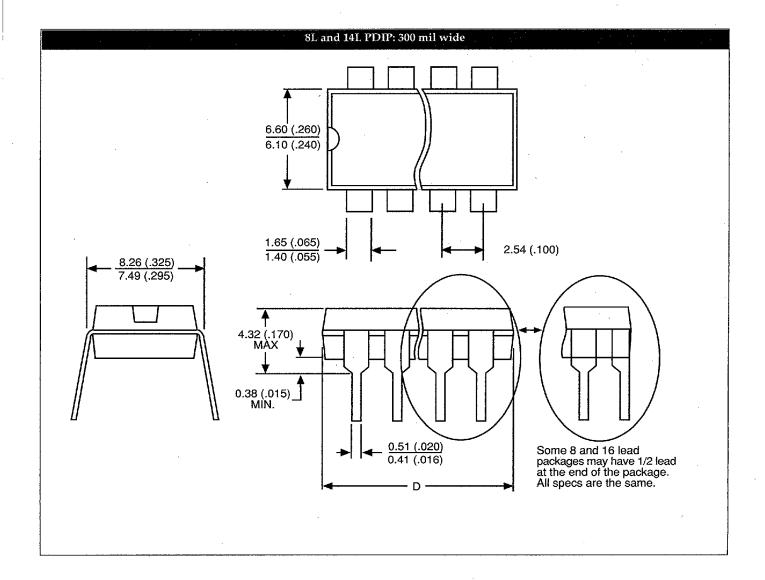
 $C_3 = 0.022 \mu F$ 

 $R_4 = 1000\Omega$ 

 $R_5 = 470\Omega$ 

 $R_T = 100k\Omega$ 

This design example illustrates a method for computing component values to insure closed loop stability of the motor speed regulator system. It is based on an application circuit which includes an integrator to provide for zero steady state error under varying load conditions. This system, with loop gain equal to 50 at  $\omega$  equals 1 rad/sec gave acceptable static and dynamic performance for the intended application.


## Package Specification

## PACKAGE DIMENSIONS IN mm (INCHES)

|            |       | . <b>D</b> . |      |      |
|------------|-------|--------------|------|------|
| Lead Count | M     | etric        | Engl | ish  |
|            | Max   | Min          | Max  | Min  |
| 8L PDIP    | 9.40  | 9.14         | .370 | .360 |
| 14L PDIP   | 19.18 | 18.92        | .755 | .745 |

# PACKAGE THERMAL DATA

| Therma          | l Data | 8 Lead<br>PDIP | 14 Lead<br>PDIP |      |
|-----------------|--------|----------------|-----------------|------|
| $R_{\Theta JC}$ | typ    | 52             | 48              | °C/W |
| $R_{\Theta JA}$ | typ    | 100            | 85              | °C/W |



| LOTE: | erino | Intorr | nation |
|-------|-------|--------|--------|

| Part Number | Description  |
|-------------|--------------|
| CS-2907N14  | 14 Lead PDIP |
| CS-2907N8   | 8 Lead PDIP  |
| CS-2917N14  | 14 Lead PDIP |
| CS-2917N8   | 8 Lead PDIP  |

**2067556 0003552 935** 

11/25/96

476