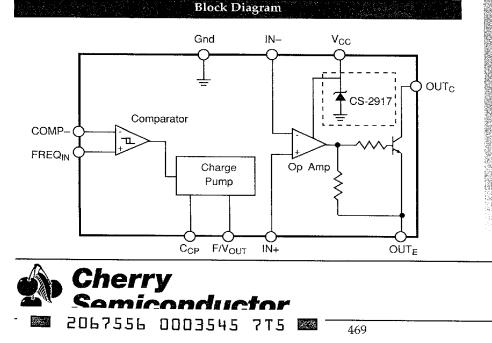


50mA F to V Converter

Description

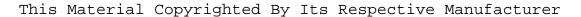

The CS-2907/2917 Series is designed for use in frequency-to-voltage conversion systems and is especially suitable for tachometer and motor-speed-control applications. The 2907 consists of a regenerative input comparator, a frequency doubling charge pump and a general purpose, differential op-amp output. The 2917 has the additional built-in feature of an internal shunt voltage regulator. The input signal, which can be single-ended, or differential, is applied to the regenerative comparator input; 30mV hysteresis provides noise rejection. The frequency-doubling charge pump is triggered by the comparator output, converting the input-frequency information into a d.c. output voltage at F/V_{OUT} . The output op-amp is unitygain compensated and can serve as an output-voltage follower or as an active filter for additional ripple reduction. 50mA current capability allows the output stage to drive a variety of loads either from emitter, or collector.

The output swings to ground for zero frequency input.

Absolute Maximum Ratings

Supply Voltage	
Supply Current	
Op. Amp./Comp. Differential Input Voltage	
Op. Amp./Comparator Input Voltage	
Op. Amp. Collector-Emitter Voltage	
Digital Interface Collector-Emitter Voltage	
Operating Temperature Range	
Storage Temperature Range	
Lead Temperature Soldering	
Waxa Soldor (through halo styles only)	10 0(0001

Wave Solder(through hole styles only)......10 sec. max, 260°C peak



Features

±0.3% Linearity, Typical **Buffered High-Level** Frequency Output Single-ended or **Differential Inputs Voltage Follower or Active Filter Output Capability Output Swings to Ground** for Zero Frequency Input **Package Options 8L PDIP** FREQIN 1 Gnd с_{ср} [🗐 IN-F/VOUT [Vcc OUTE [14L PDIP FREQIN T T NC CCP [] NC F/VOUT Gnd łN∓ COMP-OUTE IN-NC [$\Box v_{cc}$ NC

Cherry Semiconductor Corporation 2000 South County Trail East Greenwich, Rhode Island 02818-1530 Tel: (401)885-3600 Fax (401)885-5786 email: info@cherry-semi.com

a **GHERRY** company

PARAMETER	TEST CONDITIONS		MIN	түр	MAX	UN
Comparator	· · ·					
Input Threshold Voltage	$V_{FREQIN} = \pm 125 mV$	note 2	±10	±15		m
Hysteresis	$V_{\text{FREQIN}} = \pm 125 \text{mV}$	note 2		30		M
Input Offset Voltage	a an an the second and the second	at the light of th	a oo affining san	, cernenetterister Ed	พ. ส.ศ. ระบทสาชสมมาณีรับได้สารณ์ได้	a an internet.
-D14 Versions	note 2			3.5	10	m
-D8 Versions	note 2	- Ministration and the state	A SAMAGAN MANY PART OF S	5	15	m
Input Bias Current	$V_{FREQIN} = \pm 50 mV$			0.1	1.0	 µ /
Common Mode Voltage			·	· ·	V _{CC} - 1.5	V
Charge Pump						
Output Voltage - high, V _{OH}				-		
CS-2907 Series	$V_{\text{FREQIN}} = +125 \text{mV}_{\text{DC}}$	note 3		8.3		v
CS-2917 Series	$V_{\text{FREQIN}} = +125 \text{mV}_{\text{DC}}$	note 3	:	5		V
Output Voltage - low, V _{OL}						
CS-2907 Series	$V_{FREQIN} = -125 m V_{DC}$	note 3		2.3		v
CS-2917 Series	$V_{\text{FREQIN}} = -125 \text{mV}_{\text{DC}}$	note 3		1.2		V
Output Current Ipin 2, Ipin 3						_
CS-2907 Series	$V_{CCP} = VF/V_{OUT} = 6V_{DC}$	note 4	140	180	240	μA
CS-2917 Series	$V_{CCP} = V_F / V_{OUT} = 3.5 V_{DC}$ $V_{CC} = 6 V_{DC}$	note 4	120	160	250	μA
Leakage Current Loin 3	$V_{CC} = 0; V_{F}/V_{OUT} = 0$	Second and the second	New Markager	CIRCIPLICA	r correctionations	1 266263
Gain Constant K	note 3		0.9	1.0	0.1 1.1	. P /
Non-Linearity	note 5		-1.0	±0.3	1.1 +1.0	Su of
AND AND ANY AND AND ANY						
		entrado de la compañía de c	· · · · · · · · · · · · · · · · · · ·	 Verrisez dez Principle Schools & Lines Analysis; 	An ann a' san a' ann ann ann ann ann ann ann ann an	9 - 400's 200- 9-00'00;
Op. Amp.		senn a fai thur dhiffinaille à fibh		• • • • • • • • • • • • • • • • • • •		
Input Offset Voltage	$V_{\rm DJ} = 6V_{\rm DC}$	22.5.m.4.1.75.1.05.105.106.105.106.105.10			- 	
Input Offset Voltage CS-2907 Series	$V_{IN} = 6V_{DC}$ $V_{DV} = 3.5V_{DC}$	22 Jun 41, 12 Jun 42, 16 Jun 41, 16 Jun 41, 17 Jun 41, 1		3	10 10	
Input Offset Voltage CS-2907 Series CS-2917 Series	$V_{IN} = 6V_{DC}$ $V_{IN} = 3.5V_{DC}$			33	10 10	
Input Offset Voltage CS-2907 Series	$V_{IN} = 3.5 V_{DC}$					m
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current				3	10	m` µA
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series	$V_{IN} = 3.5 V_{DC}$ $V_{IN} = 6 V_{DC}$		0	3 0:05	10 0.5 	m uA
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series	$V_{IN} = 3.5 V_{DC}$ $V_{IN} = 6 V_{DC}$		0	3 0:05	10 0:5	m ^V μΑ μΑ V
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage	$V_{IN} = 3.5 V_{DC}$ $V_{IN} = 6 V_{DC}$		0 40	3 0.05 0.05	10 0.5 	m ^γ μΑ μΑ V V
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage Open Loop Gain I _{SINK} ISOURCE	$V_{IN} = 3.5 V_{DC}$ $V_{IN} = 6 V_{DC}$ $V_{IN} = 3.5 V_{DC}$			3 0.05 0.05 200	10 0.5 	m ¹ μ2 μ2 V V
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage Open Loop Gain I _{SINK} I _{SOURCE} CS-2907 Series	$V_{IN} = 3.5V_{DC}$ $V_{IN} = 6V_{DC}$ $V_{IN} = 3.5V_{DC}$ $V_{OUTC} = 1V$ $V_{OUTE} = V_{CC} - 2V$			3 0.05 0.05 200 50	10 0.5 	m ¹ μ2 μ2 ν ν μ2
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage Open Loop Gain I _{SINK} I _{SOURCE} CS-2907 Series CS-2917 Series	$V_{IN} = 3.5V_{DC}$ $V_{IN} = 6V_{DC}$ $V_{IN} = 3.5V_{DC}$ $V_{OUTC} = 1V$ $V_{OUTC} = 1V$ $V_{OUTE} = V_{CC} - 2V$ $V_{OUTE} = V_{CC} - 2V; V_{CC} = 6V$			3 0.05 0.05 200 50	10 0.5 	m ¹ μΔ μΔ V V mΔ mΔ mΔ
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage Open Loop Gain I _{SINK} I _{SOURCE} CS-2907 Series	$\begin{split} V_{IN} &= 3.5 V_{DC} \\ V_{IN} &= 6 V_{DC} \\ V_{IN} &= 3.5 V_{DC} \\ \end{split}$ $\begin{split} V_{OUTC} &= 1 V \\ V_{OUTC} &= 1 V \\ V_{OUTE} &= V_{CC} - 2 V \\ V_{OUTE} &= V_{CC} - 2 V \\ V_{OUTE} &= 5 M \end{split}$			3 0.05 0.05 200 50	10 0.5 V _{CC} - 1.5 0.5	m' µ2 µ2 V m/ m/ W
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage Open Loop Gain I _{SINK} I _{SOURCE} CS-2907 Series CS-2917 Series	$\begin{split} V_{IN} &= 3.5 V_{DC} \\ V_{IN} &= 6 V_{DC} \\ V_{IN} &= 3.5 V_{DC} \\ \\ V_{OUTC} &= 1 V \\ V_{OUTE} &= V_{CC} - 2 V \\ V_{OUTE} &= V_{CC} - 2 V \\ V_{OUTE} &= V_{CC} - 2 V \\ V_{CC} &= 6 V \\ I_{SINK} &= 5 m A \\ I_{SINK} &= 20 m A \end{split}$			3 0.05 0.05 200 50 10 10 10 0.1	10 0.5 0.5 V _{CC} - 1.5 0.5 1.0	m' µA µZ V V m v m m m v V V V V V
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage Open Loop Gain I _{SINK} I _{SOURCE} CS-2907 Series CS-2917 Series	$\begin{split} V_{IN} &= 3.5 V_{DC} \\ V_{IN} &= 6 V_{DC} \\ V_{IN} &= 3.5 V_{DC} \\ \end{split}$ $\begin{split} V_{OUTC} &= 1 V \\ V_{OUTC} &= 1 V \\ V_{OUTE} &= V_{CC} - 2 V \\ V_{OUTE} &= V_{CC} - 2 V \\ V_{OUTE} &= 5 M \end{split}$			3 0.05 0.05 200 50 10 10 10	10 0.5 V _{CC} - 1.5 0.5	m ^V µA V V m/ m/ m/ V
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage Open Loop Gain I _{SINK} I _{SOURCE} CS-2907 Series CS-2917 Series	$\begin{split} V_{IN} &= 3.5 V_{DC} \\ V_{IN} &= 6 V_{DC} \\ V_{IN} &= 3.5 V_{DC} \\ V_{OUTC} &= 1 V \\ V_{OUTC} &= 1 V \\ V_{OUTE} &= V_{CC} - 2 V \\ V_{OUTE} &= V_{CC} - 2 V \\ V_{OUTE} &= V_{CC} - 2 V \\ V_{OUTE} &= 5 M \\ I_{SINK} &= 5 M \\ I_{SINK} &= 50 M \\ \end{array}$			3 0.05 0.05 200 50 10 10 10 0.1	10 0.5 0.5 V _{CC} - 1.5 0.5 1.0	mV µA µA V V m/ m/ m/ V V V V
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage Open Loop Gain ISINK ISOURCE CS-2907 Series CS-2917 Series Saturation Voltage Zener Regulator (CS-2917 Ser Regulator Voltage	$\begin{split} V_{IN} &= 3.5 V_{DC} \\ V_{IN} &= 6 V_{DC} \\ V_{IN} &= 3.5 V_{DC} \\ V_{OUTC} &= 1 V \\ V_{OUTC} &= 1 V \\ V_{OUTE} &= V_{CC} - 2 V \\ V_{OUTE} &= V_{CC} - 2 V \\ V_{OUTE} &= V_{CC} - 2 V \\ V_{OUTE} &= 5 M \\ I_{SINK} &= 5 M \\ I_{SINK} &= 50 M \\ \end{array}$			3 0.05 0.05 200 50 10 10 10 0.1	10 0.5 0.5 V _{CC} - 1.5 0.5 1.0	V/ m/ m/ m/ V V
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage Open Loop Gain ISINK ISOURCE CS-2907 Series CS-2917 Series Saturation Voltage Series Regulator (CS-2917 Ser Regulator Voltage Series Resistance	$V_{IN} = 3.5V_{DC}$ $V_{IN} = 6V_{DC}$ $V_{IN} = 3.5V_{DC}$ $V_{OUTC} = 1V$ $V_{OUTC} = V_{CC} - 2V$ $V_{OUTE} = V_{CC} - 2V; V_{CC} = 6V$ $I_{SINK} = 5mA$ $I_{SINK} = 50mA$ $I_{SINK} = 50mA$ iies Only)			3 0.05 0.05 2000 50 10 10 0.1 1.0	10 0.5 0.5 V _{CC} - 1.5 0.5 1.0	m' µ2 µ2 V V m/ m/ m/ m/ W V V V V
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage Open Loop Gain ISINK ISOURCE CS-2907 Series CS-2917 Series Saturation Voltage Zener Regulator (CS-2917 Ser Regulator Voltage	$V_{IN} = 3.5V_{DC}$ $V_{IN} = 6V_{DC}$ $V_{IN} = 3.5V_{DC}$ $V_{OUTC} = 1V$ $V_{OUTC} = V_{CC} - 2V$ $V_{OUTE} = V_{CC} - 2V; V_{CC} = 6V$ $I_{SINK} = 5mA$ $I_{SINK} = 50mA$ $I_{SINK} = 50mA$ iies Only)			3 0.05 0.05 200 50 10 10 0.1 1.0 7.56	10 0.5 0.5 V _{CC} - 1.5 0.5 1.0 1.5	m' µ2 µ2 V V m/ m/ m/ m/ W V V V V
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage Open Loop Gain ISINK ISOURCE CS-2907 Series CS-2917 Series Saturation Voltage Series Regulator (CS-2917 Ser Regulator Voltage Series Resistance	$V_{IN} = 3.5V_{DC}$ $V_{IN} = 6V_{DC}$ $V_{IN} = 3.5V_{DC}$ $V_{OUTC} = 1V$ $V_{OUTC} = V_{CC} - 2V$ $V_{OUTE} = V_{CC} - 2V; V_{CC} = 6V$ $I_{SINK} = 5mA$ $I_{SINK} = 50mA$ $I_{SINK} = 50mA$ iies Only)			3 0.05 0.05 200 50 10 10 10 0.1 1.0 7.56 10.5	10 0.5 0.5 V _{CC} - 1.5 0.5 1.0 1.5	m [\] μ2 V V m m m m v v V V V V
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage Open Loop Gain ISINK ISOURCE CS-2907 Series CS-2917 Series Saturation Voltage Saturation Voltage Series Resistance Temperature Stability Supply Current, Quiescent	$V_{IN} = 3.5V_{DC}$ $V_{IN} = 6V_{DC}$ $V_{IN} = 3.5V_{DC}$ $V_{OUTC} = 1V$ $V_{OUTC} = V_{CC} - 2V$ $V_{OUTE} = V_{CC} - 2V; V_{CC} = 6V$ $I_{SINK} = 5mA$ $I_{SINK} = 20mA$ $I_{SINK} = 50mA$ $ies Only$ $Dropping Resistor = 470\Omega$			3 0.05 0.05 0.05 200 50 10 10 0.1 1.0 7.56 10.5 +1	10 0.5 015 V _{CC} - 1.5 0.5 1.0 1.5 15	mV µA V V V m/ M m/ V V V V V V V
Input Offset Voltage CS-2907 Series CS-2917 Series Input Bias Current CS-2907 Series CS-2917 Series Common Mode Voltage Open Loop Gain I _{SINK} I _{SOURCE} CS-2907 Series CS-2907 Series CS-2917 Series Saturation Voltage Saturation Voltage Series Resistance Temperature Stability Supply	$V_{IN} = 3.5V_{DC}$ $V_{IN} = 6V_{DC}$ $V_{IN} = 3.5V_{DC}$ $V_{OUTC} = 1V$ $V_{OUTC} = V_{CC} - 2V$ $V_{OUTE} = V_{CC} - 2V; V_{CC} = 6V$ $I_{SINK} = 5mA$ $I_{SINK} = 50mA$ $I_{SINK} = 50mA$ iies Only)			3 0.05 0.05 200 50 10 10 10 0.1 1.0 7.56 10.5	10 0.5 0.5 V _{CC} - 1.5 0.5 1.0 1.5	m\ µA µA V V m/ m/ v v V V V V V

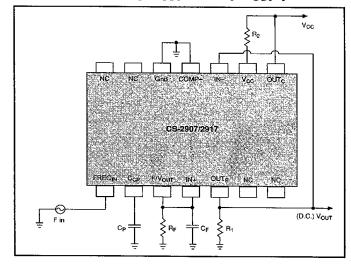
Notes:

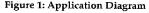
- 1. Above 25° Derate at 8.0mW/°C for package D_{14} and at 10.0mW/°C for package D_8 .
- 2. Hysteresis is the sum +VTH-(VTH), offset voltage is their difference.
- 3. V_{OH} is equal to $3/4 \times V_{CC} 1V_{BE}$, V_{OL} is equal to $1/4 \times V_{CC} 1 V_{BE}$ therefore $V_{OH} V_{OL} = V_{CC}/2$. The difference, $V_{OH} V_{OL}$, and the mirror gain, I2/I3, are the two factors that cause the tachometer gain constant to vary from 1.0.
- 4. Be sure when choosing the time constant $R_1 \times C_1$ that R_1 is such that the maximum anticipated output voltage at F/V_{OUT} can be reached with $I_3 \times R_1$. The maximum value for R_1 is limited by the output resistance of F/V_{OUT} which is greater than $10M\Omega$ typ.
- 5. Nonlinearity is defined as the deviation of V_{OUT} (@ F/V_{OUT}) for $f_{IN} = 5kHz$ from a straight line defined by the V_{OUT} @ 1kHz and V_{OUT} @ 10kHz, $C_1 = 1000$ pF, $R_1 = 68k\Omega$ and $C_2 = 0.22\mu$ F.

			Packa	age Pin Descriptio	n
	PACKA	GE PIN #	FUNCTION		
8L P CS-2907	DIP CS-2917	14L I CS-2907	PDIP CS-2917		
1	1	1	1	FREQIN	Analog input signal from speed sensor.
		11	11	COMP-	Inverted input to comparator; connected to Gnd in D8.
2	2	2	2	C _{CP}	Charge pump capacitor.
3 .	3	3	3	F/V _{OUT}	Charge pump output, the charge on the capacitor is measured at the output.
4	4	5	5	OUT _E	Emitter of op amp's output stage.
5	5	8	8	OUT _C	Collector of op amp's output stage.
6	6	9	9	V _{CC}	Supply voltage.
		4	4	IN+	Positive input to op amp.
7	7	10	10	IN-	Negative input to op amp.
		6, 7, 13, 14	6, 7, 13, 14	NC	No connection.
8	8	12	12	Gnd	Ground connection.

Applications

471


A timing capacitor C_{CP}, an output resistor R_F, and an output filter capacitor C_F , are required as shown in Figure 1. On each transition of the input comparator, C_P is linearly charged or discharged between voltage limits V_H and V_I. The difference, V_H - V_I , equals $V_{CC}/2$. During one half cycle of input frequency, the change in charge on CCP is: $C_{CP} V_{CC}/2$. The average charge-pump current charging C_{CP} during one half cycle of input frequency = $C_{CP} V_{CC}$ F_{IN} where F_{IN} = input frequency. This charge pump current, IC, is accurately mirrored into RF to generate a DC voltage at F/V_{OUT} such that $V_F/V_{OUT} = I_C R_F = K R_F C_{CP}$ V_{CC} F_{IN} where K is a circuit constant typically equal to one. Averaging, or filtering is accomplished with CF and both output ripple voltage and response time are dependent on the value of Cp Peak to peak ripple voltage $V_R =$ $(V_{CC}/2) (C_{CP}/C_F) (1-F_{IN}/F_{max})$ where $F_{max} = 12/(C_{CP})$ V_{CC}) and I_F is the current in C_F .


For the 2917 series on-board shunt-regulator an external resistor R_2 is required for operation from the input supply voltage.

The value of R_F does not therefore affect ripple; however if it is too large by comparison with the output impedance

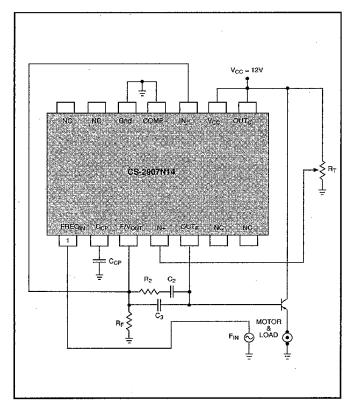
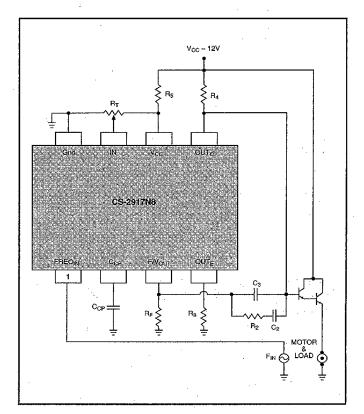
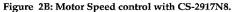
2067556 0003547 578

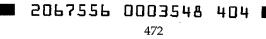
seen at F/V_{OUT}, linearity will be adversely affected. Since the current at F/V_{OUT}, I_F/V_{OUT}, is internally set, R_F must be chosen such that V_F/V_{OUT} max. = I_F/V_{OUT}R_F.

Motor Speed Control Application

Motor Speed The CS-2917 F-to-V converter integrated circuit, with built-in operational amplifier, regulator, and output transistor is ideal for tachometer feedback motor speed control applications. Two typical application circuits are shown in Figure 2. Figure 2A employs the CS-2907-N14 operating from the V_{CC} line. Figure 2B offers an alternative approach using the CS-2917-N8 operating from the

 V_{CC} line and using the internal regulator. In both circuits, the tachometer feedback-signal is applied to the comparator input, and the F-to-V conversion gain is set by $C_{CP}R_{F}$. The general purpose op amp is used both as a summing node for the speed reference input (from potentiometer R_{T}), and as a frequency compensated integrator which provides zero steady state speed error under varying load


Figure 2A: Motor Speed Control with CS-2907N14.

conditions. Capacitors C_2 and C_3 provide the integrating function at low frequency while R_2 and C_2 provide the frequency compensation which insures loop stability. In Figure 2A, the on-chip driver transistor drives a discrete power transistor which in turn drives the motor. In Figure 2B, the on-chip driver transistor is used as an inverting gain stage to close the loop around the op amp, and the provide drive voltage for the discrete NPN darlington transistor which drives the motor.

Both of these approaches provide accurate regulation of motor speed under conditions of varying motor load, V_{CC} and ambient temperature.

Design Example

CS-2907/2917 SERIES $V_{CC} = 12V$ R_4 R_5 V_{CC} Vol OUTC ŇЛ K_1 IN-SPEED 1119 IN+ OUTE C_3 R_3 R_2 C_2 Ko V₀₀ F/V_{OUT} FREQIN CHARGE PUMP R_{F} C_{CP} COMP C_{CP}

Figure 3: Motor Speed Control Block Diagram of CS-2917N8.

Figure 3 is the circuit of Figure 2B re-drawn in a block diagram form which lends itself to visualization and analysis of the regulator loop. (Figure 2A can be analyzed in the same manner.) Potentiometer R_T provides the loop reference input. The op amp integrator, the power darlington and the motor provide the forward gain components K1, K2 and K3. The tachometer and F-to-V converter provide the gain components K₄ and K₀ in the feedback path. We will now derive the transfer functions for all components of the loop, write the expression for loop gain, and compute component values to insure loop stability.

A. K₀ is the transfer function for the F-to-V converter.

1.
$$K_0 \frac{V_{00}}{f_{IN}} = KV_R R_F C_{CP}; K = 1.0; V_R = 7.6V$$

B. K_1 is the transfer function for the integrator.

2.
$$K_{1} = \left| \frac{V_{01}}{V_{00}} \right| = \frac{1 + j\omega R_2 C_2}{J\omega R_F (C_2 + C_3) \left[1 + \frac{j\omega C_2 C_3 R_2}{C_2 + C_3} \right]}$$

2067556 0003549 340
473

This transfer function has the following poles and zeros:

Zero at:
$$\omega 1 = \frac{1}{R_2C_2}$$

Pole at: $\omega = 0$ (an integrator)
Pole at: $\omega 2 = \frac{C_2 + C_3}{R_2C_2C_3}$

C. K_2 is the transfer function of the power darlington transistor. Assume it equals 0.9 over the frequency range of interest.

3.
$$K_2 = \frac{V_m}{V_{01}} = 0.9$$

D. K_3 is the transfer function of the motor. (See Electrocraft Engineering Handbook, 4th edition, Pg. 2-19, eq. 2.3.28.)

$$K_3 = \frac{\omega_m}{V_m} = \frac{1/K_E}{(1+j\omega J_m)(1+j\omega J_e)}$$

 ω_m = Motor Rotational Speed (rad/sec)

V_m = Applied Motor Voltage

4.

$$J_m = (R_A J_T / K_E K_T) = Mechanical Time Constant$$

CS-2907/2917 SERIES

5.

Design Example

 $J_e = (L_A/R_A) = \text{Electrical Time Constant}$ $K_T = \text{Motor Torque Const. (oz • in/A)}$ $K_E = \text{Motor Back EMF Const. (V/rad/sec)}$ $R_A = \text{Motor Armature Resistance (ohms)}$ $L_A = \text{Motor Armature Inductance (henrys)}$ $J_T = \text{Total Inertial Load on Motor (oz, • in • sec^2)}$

This design example describes an application using a small, permanent-magnet fractional-horsepower d.c. motor driving an inertial load. The following parameter values are taken from manufacturer's data for the motor and from laboratory measurements on the drive system.

$$\begin{split} &\omega_m = 314.2 \ rad/sec \ (3000 \ rpm) \\ &K_T = 2.1oz. \ in/A = 14.83 \times 10{\text{-}}3 \ N.M/A \\ &K_E = 14.83 \times 10{\text{-}}3 \ V/rad/sec \\ &R_A = 6.9\Omega \\ &J_e = 0.7 \ msec \\ &\therefore L_A = 4.83 \ mh, \ and \\ &J_T = 9.39 \times 10^{-4} \ oz \bullet in \bullet SEC^2 \\ &= 6.63 \times 10^{-6} \ kg \bullet m^2 \\ &J_m \ = \frac{R_A J_T}{K_{\rm E} K_{\rm T}} = 0.208 \ sec \end{split}$$

$$\omega_{B} = \frac{1}{J_{m}} = 4.8 \text{ rad/sec}$$

$$f_{B} = 0.765 \text{Hz}$$

$$\omega_{e} = \frac{1}{J_{e}} = 1429 \text{ rad/sec}$$

$$f_{e} = 227 \text{Hz}$$

$$1/K_{e} = 67.4$$

6.
$$K_3 = \frac{\omega_m}{V_m} = \frac{67.4}{\left(1 + j\frac{\omega}{4.8}\right)\left(1 + j\frac{\omega}{1429}\right)}$$

Ignoring the electrical time constant (assumes that the loop crossover frequency is less than 1429 rad./sec.) we have:

7.
$$K_{\rm E} = \frac{\omega_{\rm m}}{V_{\rm m}} = \frac{67.4}{\left(1 + j\frac{\omega}{4.8}\right)}$$

E. K₄ is the tachometer constant.

$$\label{eq:wmK4} \begin{split} \omega_m K_4 &= f_{in} \\ \text{for } f_{in} &= 400 \text{ Hz}, \ \omega_m = 314.2 \text{ rad/sec and} \end{split}$$

8. $K_4 = 1.273 \text{ cyc/rad}$

The loop gain, A_L, equals.

9. $A_L = K_0 K_1 K_2 K_3 K_4$ at $\omega = 1$ rad/sec, for $1 < W_B < W_1, < W_Z$

$$A_{L}(\omega = 1)$$

$$= 7.6(R_1C_1) \frac{1}{R_F(C_2 + C_3)} (0.9)(67.4)(1.273)$$

Arbitrarily selecting a loop gain of 50 (34db) at $\omega = 1$ rad/sec, we derive the following expression:

$$\frac{C_{CP}}{C_2 + C_3} = \frac{50}{(7.6)(0.9)(67.4)(1.273)} = 0.0852$$

10.
$$C_2 + C_3 = 11.74 C_1$$

Now, select R_1C_1 to set the loop reference voltage to about 1/2 of the on-chip zener reference voltage:

11.
$$K_4 \omega_m \bullet K_0 = V_{REF} \approx 7.6/2$$

By selecting standard values for C_{CP} and R_F , $C_{CP} = 0.01 \mu F$ and $R_F = 146 k\Omega$, the reference voltage at the loop operating point is:

12. $V_{REF} = (314.2 \text{ rad/sec}) (7.6) (1.0) (0.01 \mu\text{F})$ (146k) (1.273) = 4.4 volts

4.4 volts is well within the regulated supply tolerance and should present no adjustment problem in production.

Now, plot the bode diagram for the loop with only the integrator response and motor break frequency, $f_B = 0.765$ Hz and determine suitable locations for f_1 and f_2 such that the compensated bode plot crosses the unity gain axis at about the mid point of the -6db/octave line segment connecting f_1 and f_2 . Selecting $f_1 = 1.5$ Hz, and $f_2 = 7.0$ Hz we have; (see Figure 4)

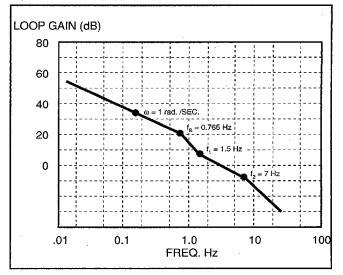


Figure 4.

2067556 0003550 062 **8** 474

$$f_1 = \frac{1}{2\pi R_2 C_2} = 1.5 Hz$$

$$f_2 = \frac{C_2 + C_3}{2\pi R_2 C_2 C_3} = 7.0 Hz$$

$$\frac{f_1}{f_2} = \frac{C_3}{C_2 + C_3} = 0.214$$

$$C_3 = 0.214 (C_2 + C_3)$$

From Equation 10

 $C_2 + C_3 = 11.74C_{CP} = 0.1174\mu F$ $C_3 = (0.214) (0.1174) = 0.025\mu F$

Select $C_3 = 0.022 \mu F$

and $C_2 = 0.1 \mu F$ Then;

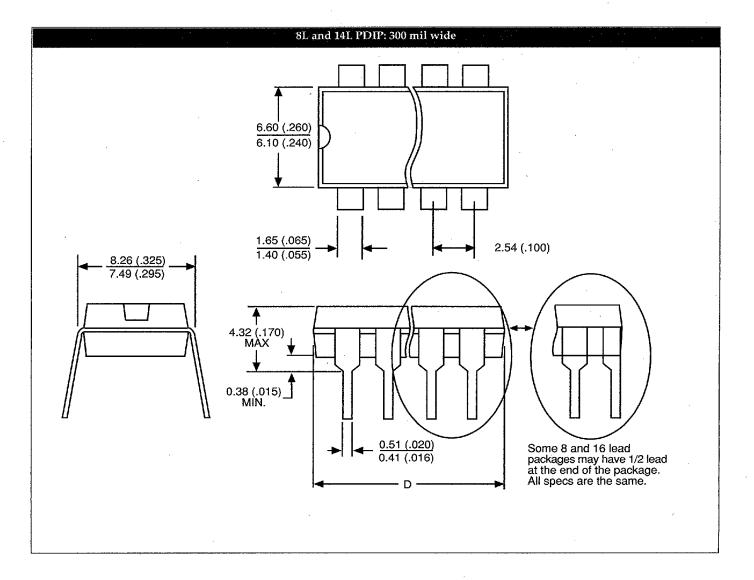
$$R_2 = \frac{1}{2\pi f_1 C_2} = 1M\Omega$$

Resistors R_3 and R_4 are chosen to bias the on-chip drive transistor in a linear region at the desired motor speed. To maintain closed loop stability of the integrator we keep the inverting gain of this stage close to unity. For this application $R_3 = 570\Omega$ and $R_4 = 1000\Omega$. A 470Ω resistor is selected for R_5 to provide sufficient zener bias from the 12V supply. The component list for the circuit in Figure 2B is:

$R_F = 146 k\Omega$	$C_{CP} = 0.01 \mu F$
$R_2 = 1M\Omega$	$C_2 = 0.1 \mu F$
$R_3 = 510\Omega$	$C_3 = 0.022 \mu F$
$R_4 \simeq 1000 \Omega$	
$R_5 = 470\Omega$	
$R_{\rm T} = 100 {\rm k} \Omega$	

This design example illustrates a method for computing component values to insure closed loop stability of the motor speed regulator system. It is based on an application circuit which includes an integrator to provide for zero steady state error under varying load conditions. This system, with loop gain equal to 50 at ω equals 1 rad/sec gave acceptable static and dynamic performance for the intended application.

This Material Copyrighted By Its Respective Manufacturer


2067556 0003551 TT9 | 475

CS-2907/2917 SERIES

PACKAGE DIMENSIONS IN mm (INCHES)

	. D .				
Lead Count	M	Engl	ish		
	Max	Min	Max	Min	
8L PDIP	9.40	9.14	.370	.360	
14L PDIP	19.18	18.92	.755	.745	

	PAC	KAGE THERN	IAL DATA	
Therma	l Data	8 Lead PDIP	14 Lead PDIP	
R _{ØJC}	typ	52	48	°C/W
R _{OJA}	typ	100	85	°C/W

Package Specification

'art Number	Description				
CS-2907N14	14 Lead PDIP				
CS-2907N8	8 Lead PDIP				
CS-2917N14	14 Lead PDIP				
CS-2917N8	8 Lead PDIP				
		2067556	0003552	935 🔳	

This Material Copyrighted By Its Respective Manufacturer

GE THERMAL DATA