8-Bit, 4-Channel Data Acquisition System

FEATURES

FUNCTIONAL BLOCK DIAGRAM
2μ s ADC with T/H
4-Channel MUX
AD899 Compatible
+5 Volt Operation
On-Chip Reference
$4 \mu s$ Voltage Output DAC
Fast Bus Access Time-75 ns

APPLIGATIONS

Servo Controls

Digitally Confroled Calthration

GENERAL DESCRIPTION

The AD 8401 is a complete data acquisition and contro system containing ADC, DAC, 4-channel MUX, and intern voltage reference. Built using CBCM OS, this monolithic circuit offers the user a complete system with very high package density and reliability.

The converter is a successive approximation ADC with T/H, and is capable of operating with conversion times as short as $2 \mu \mathrm{~s}$. Analog input bandwidth is 200 kHz , and DAC output voltage settling time is less than $4 \mu \mathrm{~s}$, making the AD 8401 capable of controlling servo loops with speed and precision.
The 8-bit data interface provides both read and write operation for parallel bus interfaces to microcontrollers and DSP processors. An external 5 M Hz clock sets the $2 \mu \mathrm{~s}$ conversion rate. Slower clocks reduce the conversion time and the internal power dissipation. The standard control lines: Reset, Busy, Interrupt, Read and Write complete the handshaking signals for microprocessor communication. A start trigger $\overline{\text { ST }}$ input allows precise sampling intervals in synchronous sampling applications.

REV. 0

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

AD8401- SPECIFICATIONS

ADC ELECTRICAL CHARACTERISTICS
(@ $V_{D D}=+5.0 \mathrm{~V} \pm 5 \%, A G_{D A C}=A G_{A D C}=0.0 \mathrm{~V} ; \mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz} ;-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise noted)

[^1]Table I. Multiplexer Address Input Decode

A1	A0	Input Selected
0	0	$\mathrm{~V}_{\text {IN }} \mathrm{A}$
0	1	$\mathrm{~V}_{1 N} \mathrm{~B}$
1	0	$\mathrm{~V}_{\text {IN }} \mathrm{C}$
1	1	$\mathrm{~V}_{\text {IN }} \mathrm{D}$

DAC ELECTRICAL CHARACTERISTICS to $A G_{D A C} ;-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise noted)

[^2]

 unless otherwise noted)

Figure 1. Load Circuits for Data Access Time Test
Figure 2. Load Circuits for Bus Relinquish Time Test

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage (VDD) 8 V Input Voltages -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ Output Short-Circuit D uration Indefinite
Package Power Dissipation (T_{J} max- $\left.\mathrm{T}_{\mathrm{A}}\right) / \theta_{j A}$
Thermal Resistance $\theta_{\text {JA }}$
28-Lead SOIC (R) . $53^{\circ} \mathrm{C} / \mathrm{W}$

Storage T emperature Range $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating T emperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature Range (T , max) $\ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature Range (Soldering, 60 sec) $\ldots . . .+300^{\circ} \mathrm{C}$
*Stresses above those listed under "Absolute M aximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 8401 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

Pin\#	Name
1	$V_{D D}$

DICE CHARACTERISTICS

2			
3	A		
4			
5	V		
6		\quad	N
:---			

7-12, 14, 15	DB7 to DB0	Digital I/O Lines. DB7 (7) is the M ost Significant Bit (MSB), for both the ADC and the DAC, and DBO (15) is the Least Significant Bit (LSB).
13	DGND	Digital Ground.
16	$\overline{\mathrm{WR}}$	Rising Edge T riggered Write Input. Used to load data into the DAC register.
17	$\overline{\mathrm{CS}}$	Chip Select. Active Low Input
18	$\overline{\mathrm{RD}}$	Active L ow Read Input. When this input is active, ADC data can be read from the part. $\overline{\mathrm{RD}}$ going low starts the ADC conversion.
19	$\overline{\mathrm{ST}}$	F alling Edge Triggered Start Input. U sed for applications requiring precise sample timing. The falling edge of $\overline{\text { ST }}$ starts the conversion and sets the BUSY low. The $\overline{\mathrm{ST}}$ is not gated by $\overline{\mathrm{CS}}$.
20	$\overline{\text { BUSY }}$	ADC Active Low, Status Output. When the ADC is performing a conversion, the $\overline{B U S Y}$ output is low.
21	$\overline{\mathrm{INT}}$	Active Low Output. The Interrupt output notifies the system that the ADC has completed its conversion. $\overline{\mathrm{INT}}$ goes high on the rising edge of $\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$. It will also be forced high when RESET is asserted.
22	CLK	External Clock Input Pin. Accepts a T L or 5 V CM OS input logic levels.
23	$A G_{\text {ADC }}$	Analog ADC Ground
27-24	$V_{\text {IN }} A, B, C, D$	Four Analog Inputs
28	A0	Address input that controls multiplexer. See T able I for address decode.

OPERATION

The AD8401 is a complete data acquisition and control system. It contains the DAC, a four channel input multiplexer, a track/ hold, an ADC, as well as an internal bandgap reference. It interfaces to the microcontroller via an 8 -bit digital I/O port.

D/A CONVERTER SECTION

The DAC is an 8-bit voltage mode DAC with an output that swings from $A G_{\text {DAC }}$ to the 1.25 volt bandgap voltage. It uses an R-2R ladder fed by PN P current sources which allow the output to swing to ground so that the DAC operates in a unipolar mode.

AMPLIFIER SECTION

The DAC's output is buffered by an internal high speed op amp. Theopamps output range is set at 0 V to 2.5 V . The op anp has 500 ns typical settling time to 0.2% for positive slewing signals. There are differences in settling time for negafive slewing siqnals. Sjgnarsoing to zero volts will settle slightly slower to groynd thap is been inthe positive direction.

Figure 3. Equivalent Amplifier Output Stage
C urrent sinking capability is also limited near zero volts in single supply operation. Figure 3 provides an equivalent amplifier output stage schematic.

INTERNAL REFERENCE

An on-chip bandgap is provided as a voltage reference to both the DAC and the ADC. This reference is internal to the AD 8401 and is not accessible to the user. It is laser trimmed for both absolute accuracy and temperature coefficients. The reference is internally buffered by a separate control amplifier for both the DAC and ADC to improve isolation between the converters.

DIGITAL I/O

The 8-bit parallel data I/O port on the AD 8401 provides access to both the DAC and the ADC. This port is TTL/CM OS compatible with three-state outputs that are ESD protected.
The data format is binary. This data coding applies to both the DAC and the ADC. See the applications information section.

ADC SECTION

A fast successive approximation ADC is used to attain a conversion time of 2 microseconds. Start of conversion is initiated by $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$. F ollowing a Start command the BUSY signal will become active and another Start command should not be given until the conversion is complete.
The RESET ($\overline{\mathrm{RS}}$) input does not affect A/D conversion, but the $\overline{\mathrm{INT}}$ (Interrupt or conversion complete) which normally goes active low at the end of a conversion will be forced high by RESET asynchronously.

Figure 4 shows the wave forms for a conversion cycle. The track and hold begins holding the input voltage $\mathrm{V}_{\text {IN }}$ approximately 50 ns after the falling edge of the Start command. The M SB decision is made approximately 50 ns after the second falling edge of the CLK. If t_{x} is greater than 50 ns , then the falling edge of the CLK will be seen as the first falling clock edge. If t_{x} is less than 50 ns , the first M SB conversion will not occur until one clock cycle later. The following bits will each be converted in a similar manner 50 ns after each CLK edge until all eight bits have been converted. After the end of conversion the contents of the ADC SAR register are transferred to the output data latch, the track and hold is returned to the track mode, INT goes low and the SAR is reset.

ANALOG HNRUT
The anatog inphits of the AD 8401 are fed in 0 resist or voltage divider networks with typical yalue of $8.5 \mathrm{k} \Omega$. The amplifiers driving these inputs must have an outp/ut resistanc\& low enough to drive these nodes without losing accuracy. T ap $\$$ frok the voltage dividers are connected to the track and hotcamplifier by the multiplexer switches.

Figure 5. Equivalent Analog Input Circuit

TRACK-AND-HOLD AMPLIFIER

F ollowing the resistive divider at the input of the AD 8401 is a track-and-hold amplifier that captures input signals accurately up to the 200 kHzN yquist frequency of the ADC. To attain this performance the T / H amplifier must have a much greater bandwidth than the signal of interest. Because of this the user must be careful to band limit the input signal to avoid aliasing high frequency components and noise into the passband.
The track-and-hold amplifier is internally controlled by the Start command and is not directly available to the user. After the Start command signal the track-and-hold is placed into the hold mode; it returns to the track mode after the conversion is complete.

CLOCK

The AD 8401 uses an external clock that is TTL or 5 V CM OS compatible. T he external clock speed is 5 M Hz and the duty cycle may vary from 30% to 70%. The external clock can be continuously operated between conversions.

DIGITAL INTERFACE: ADC TIMING AND CONTROL

Two basic ADC operating modes are available with the AD 8401. The first mode uses the Start ($\overline{\mathrm{ST}}$) pin to trigger a synchronized A/D conversion. As soon as the $\overline{\text { ST }}$ pin is asserted, the T / H switches from tracking to the hold mode capturing the present analog input-voltage sample. With the T / H holding the analog sample the successive-approximation analog-to-digital conversion is completed on that sample value. At the end of conversion the T / H returns to the tracking mode. This mode of contversion ; ideaffor digital signal processing applications where precise interval sampling is necessary to minimize errors due to sampl) ng /uncertating or jitter A recise clock source can be used yo dive the scinput.
Thesecond mode ff conversion is stakted bythe $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ it putsgoing low, after whigh the BUSY linesuts the mieropro cessor into a LAIT state undil enter of conversion/ M $\%$ de 2 is asserted by connecting the ST in to logichigh. The major advantage of this interface is that a single Read nstruction will start and complete a new analog-to-digital conversion without the need for carefully tailored software delays that ofter arenot portable when software routines are taken to a different processor running at a different clock speed.

Figure 6. Mode 1, ADC Interface Timing

Mode 1 Interface

As shown in Figure 6, the falling edge of the $\overline{\text { ST }}$ pulse initiates a conversion and puts the T / H amplifier into the hold mode. The BUSY signal goes low during the whole A/D conversion time and returns high signaling end of conversion. The $\overline{\mathrm{INT}}$ line can be used to interrupt the microprocessor. When the microprocessor performs a READ to access the AD 8401 data, the rising edges of $\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$ will reset the $\overline{\mathrm{INT}}$ output to high after the t_{15} timing specification. INT can also be used to externally trigger a pulse that activates the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ and places the new data into a buffer or First In First Out FIFO memory. The microprocessor can then load a series of readings from this buffer memory at a convenient time. Care must be taken not to have the $\overline{\mathrm{ST}}$ input high when $\overline{\mathrm{RD}}$ is brought low; otherwise, the AD 8401 will not operate properly. Also triggering the $\overline{\mathrm{ST}}$ line a second time before conversion is complete will cause erroneous readings.

Figure 7. Mode 2, ADC Interface Timing

Mode 2 Interface

This interface mode can be used with microprocessors that can be put into a WAIT state for at least 2 microseconds. The $\overline{\text { ST }}$ pin must be tied to logic high for proper operation. The microprocessor begins a conversion by executing a READ instruction that asserts the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ pins at the AD 8401's decoded addre55. The AD 8401 BUSY output then goes low, forcing the microprocessor's READY (or WAIT) line into a WAIT state. T/he analog input/signatisared by the T / H on the falling \&dge of RD. When theonerslof is ermplete (8 clocks later), the BUSY line returbs high, and then the μ P completes its READ of the new data nowpn the digita/ outplut/port of the AD 8401 .Note that while conversion is ih progress theADC places the esplits the last conyersion (Old D at 6) on the data bus. The Figure 7 timng diagram/details the applicabty timing specification requirements.

DIGITAL INTERFACE: DAC TIMING ANDEONTROY

 Table II shows the truth table for DAC operation. The Internal 8 -bit DAC register contents are loaded from the data bus when both $\overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ are asserted. The DAC register determines the D/A converter analog-output voltage. The $\overline{\mathrm{WR}}$ input is a positive edge triggered input that loads the bus data into the DAC register subject to the data setup and data hold timing requirements. When $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ are low, the D AC register contents will not change with changing data bus values. Figure 8 provides the detail timing diagram for write cycle operation.Table II. DAC Register Logic

$\overline{\overline{\mathbf{C S}}}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R S}}$	DAC Function
H	H	H	No Effect
L	L	H	No Effect
L	\wedge	H	DAC Register U pdated
Λ	L	H	DAC Register U pdated
X	X	L	DAC Register L oaded with all Zeros

Figure 8. Write Cycle Timing

An active low pulse, at any time, on the RESET pin asynchronously forces all DAC register bits to zero. The DAC output voltage becomes zero volts and stays at that value until a new data word is loaded into the DAC register with a new WR command. The equivalent input logic for the D AC register loading is shown in Figure 9.

Figure 9. Equivalent DAC Register Control Logic

Figure 10. ADC Linearity Error vs. Digital Code

Figure 11. DAC Linearity Error vs. Digital Code

Figure 13. ADC Full-Scale Error vs. Temperature

Figure 15. DAC Full-Scale Error vs. Temperature

Figure 19. DAC Output Slew Rate Negative Transition

Figure 16. DAC Full-Scale Out Change vs Time Accelerated by Burn-In

Figure 20. DAC Output Swing with Capacitive Load

Figure 22. Power Supply Rejection Ratio vs. Frequency

APPLICATIONS INFORMATION

The software programming needs to format data as defined by the transfer equations and Code T ables that follow.

DAC Transfer Equation

$\mathrm{V}_{\text {OUT }}=2.500 \times \frac{\mathrm{D}}{256}=2.500 \times \frac{255}{256}$ for a 2.50 V full scale
where D is the decimal value 0 through 255 of the 8 -bit data word.

Table III. DAC Unipolar Code

The nominal output voltages listed in the Code T able are subject to the static performance specifications. The INL, ZeroScale and Full-Scale errors describe the total specified variation that will be encountered from part to part. O ne LSB of error for the 2.5 V FS range is 9.766 millivolts ($=2.50 / 256$).
Although separate AGND s exist for both the DAC and ADC to minimize crosstalk, writing data to the DAC while the ADC is performing a conversion may result in an incorrect conversion from the ADC due to signal interaction between the DAC and ADC. Therefore, to ensure correct operation of the ADC, the DAC register should not be updated while the ADC is converting.
The AD 8401 is configured for an input range of +3.0 volts Full Scale. The nominal transfer characteristic for this range is plotted in Figure 23. The output coding is natural binary with one LSB equal to 11.72 millivolts. N ote that the first code transition between 0 LSB and 1 LSB occurs at 5.8 mV , one half of the 11.72 mV LSB step size. T he last code transition occurs at Full Scale minus 1.5 LSBs , which is a 2.982 V input.
The AD 8401 is easily interfaced to most microprocessors by usingeither address bits or address decode to select the appropriat myltiplexer channel. Figure 24 shows how easily the AD 8401 interfaces to the AD899 No additional hardware is required.

Figure 23. ADC 0 V to +3 V Input Transfer Characteristic

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: Specifications subject to change without notice.

[^2]: Specifications subject to change without notice.

