National Semiconductor

54ABT273 Octal D-Type Flip-Flop

General Description

The 'ABT273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset ($\overline{\text{MR}}$) inputs load and reset (clear) all flip-flops simultaneously.

The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output.

All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the $\overline{\text{MR}}$ input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

Buffered common clock

- Buffered, asynchronous Master Reset
- See 'ABT377 for clock enable version
- See 'ABT373 for transparent latch version
- See 'ABT374 for TRI-STATE® version

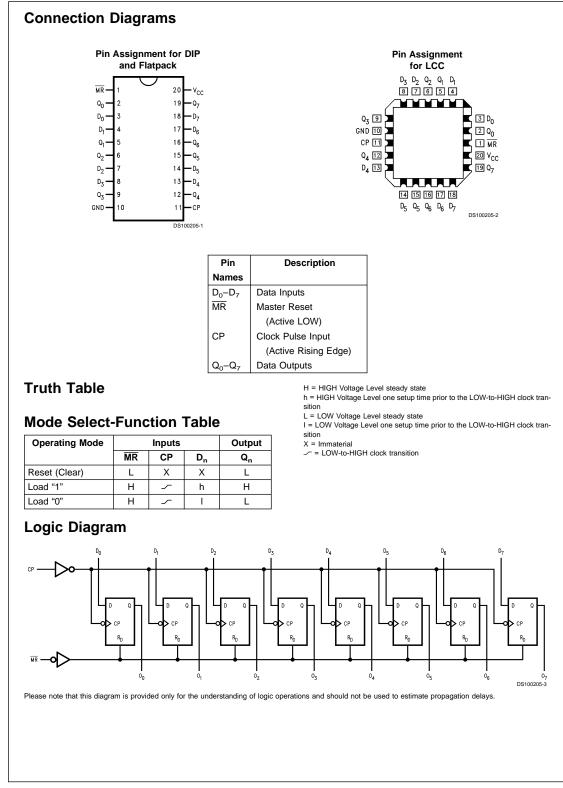
Output sink capability of 48 mA, source capability of 24 mA

- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability
- Disable time less than enable time to avoid bus contention
- Standard Microcircuit Drawing (SMD) 5962-9321701

Features

Eight edge-triggered D flip-flops

Ordering Code


Military	Package	Package Description		
	Number			
54ABT273J-QML	J20A	20-Lead Ceramic Dual-In-Line		
54ABT273W-QML	W20A	20-Lead Cerpack		
54ABT273E-QML	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C		

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1998 National Semiconductor Corporation DS100205

www.national.com

July 1998

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature	–65°C to +150°C –55°C to +125°C
Ambient Temperature under Bias Junction Temperature under Bias	-55 C 10 +125 C
Ceramic	–55°C to +175°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to +4.75V
in the HIGH State	–0.5V to $V_{\rm CC}$
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)

DC Latchup Source Current (Across Comm Operating Range)

Over Voltage Latchup

Recommended Operating Conditions

Free Air Ambient Temperature					
Military	-55°C to +125°C				
Supply Voltage					
Military	+4.5V to +5.5V				
Minimum Input Edge Rate	$(\Delta V/\Delta t)$				
Data Input	50 mV/ns				
Enable Input	20 mV/ns				
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.					

–500 mA

 V_{CC} + 4.5V

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		ABT273		Units	V _{cc}	Conditions	
			Min	Тур	Max	1		
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Volta	ge			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	54ABT	2.5					I _{OH} = -3 mA
		54ABT	2.0			V	Min	I _{OH} = -24 mA
V _{OL}	Output LOW Voltage	54ABT			0.55	V	Min	I _{OL} = 48 mA
IIH	Input HIGH Current				5	μA	Max	V _{IN} = 2.7V (Note 4)
					5			$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current				7	μA	Max	V _{IN} = 7.0V
	Breakdown Test							
I _{IL}	Input LOW Current				-5	μA	Max	V _{IN} = 0.5V (Note 4)
					-5			$V_{IN} = 0.0V$
V_{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
Ios	Output Short-Circuit Curr	rent	-100		-275	mA	Max	$V_{OUT} = 0.0V$
I_{CEX}	Output High Leakage Cu	ırrent			50	μA	Max	$V_{OUT} = V_{CC}$
I _{CCH}	Power Supply Current				50	μA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW
I _{CCT}	Maximum I _{CC} /Input	Outputs Enabled						$V_{1} = V_{CC} - 2.1V$
					1.5	mA	Max	Data Input V _I = V _{CC} – 2.1V
								All Others at V_{CC} or GND
I _{CCD}	Dynamic I _{CC}	No Load			0.3	mA/	Max	Outputs Open (Note 3)
						MHz		One Bit Toggling, 50% Duty Cycle

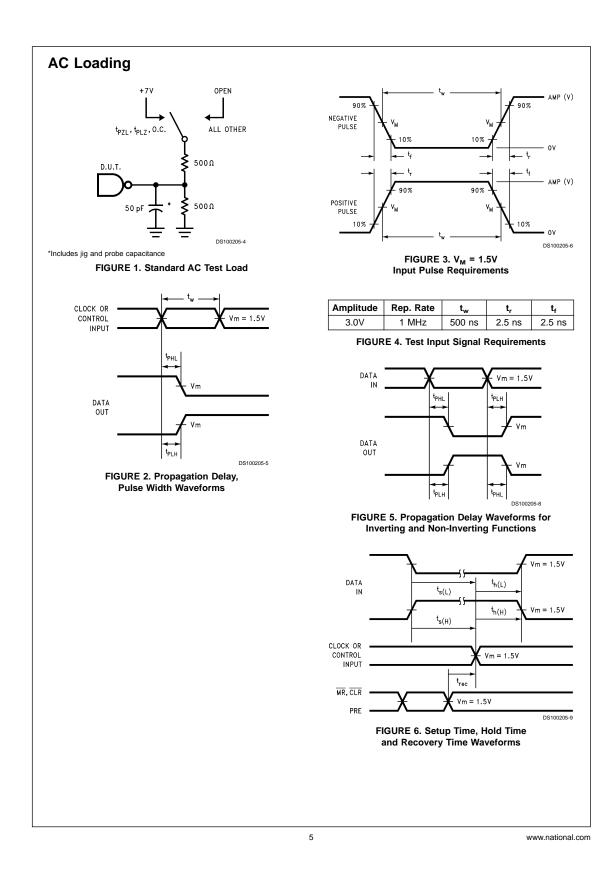
Note 3: For 8 bits toggling, $\rm I_{CCD}$ < 0.5 mA/MHz.

Note 4: Guaranteed but not tested.

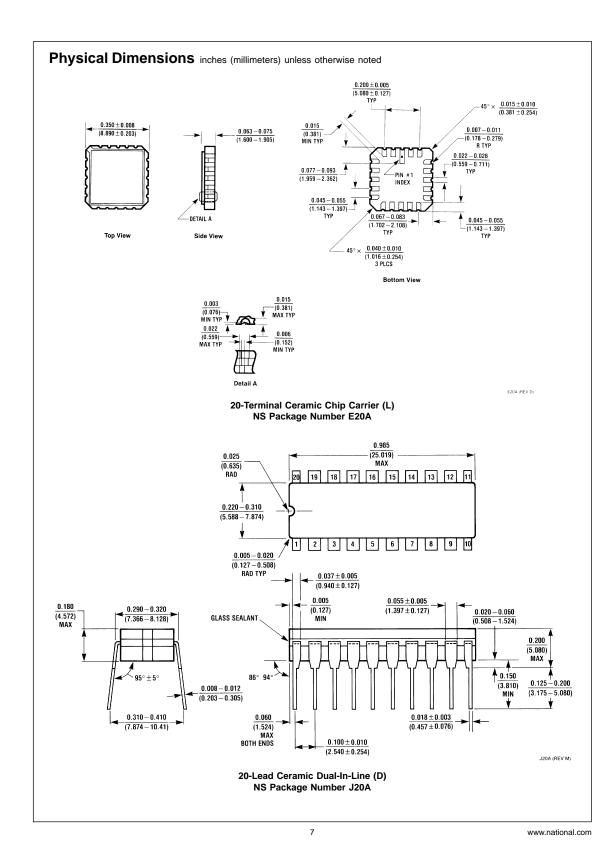
3

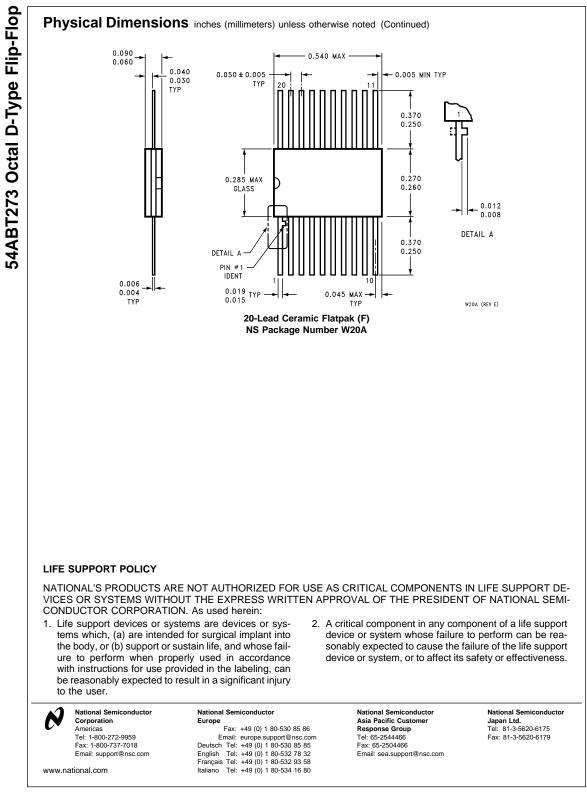
Symbol	Parameter	$T_{A} = -55^{\circ}C$ $V_{CC} = 4.5$	Units	
	-	C _L =		
,	M. OL I	Min	Max	
t _{max}	Max Clock	150		MHz
	Frequency			
t _{PLH}	Propagation Delay	1.0	7.0	ns
t _{PHL}	CP to O _n	1.0	7.5	
t _{PHL}	Propagation Delay	1.0	8.2	ns
THE	$\overline{\text{MR}}$ to O_n			

AC Operating Requirements


Symbol	Parameter	$54ABT$ $T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_{L} = 50 \text{ pF}$		Units	
		Min	Мах		
t _s (H)	Setup Time, HIGH	2.0		ns	
t _s (L)	or LOW D _n to CP	2.5			
t _h (H)	Hold Time, HIGH	1.4		ns	
t _h (L)	or LOW D _n to CP	1.4			
t _w (H)	Pulse Width, CP,	3.3		ns	
t _w (L)	HIGH or LOW	3.3			
t _w (L)	Master Reset Pulse	3.3		ns	
	Width, LOW				
t _{REC}	Recovery Time	2.0		ns	
	MR to CP				

Capacitance


Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5	pF	$V_{\rm CC} = 0V$
C _{OUT} (Note 5)	Output Capacitance	9	pF	$V_{CC} = 5.0V$


Note 5: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-833B, Method 3012.

www.national.com

Downloaded from Elcodis.com electronic components distributor

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.