16-Bit Bus Switch with 25\Omega Series Resistors in Outputs

General Description

FAIRCHILD

FST162245

SEMICONDUCTOR

The Fairchild Switch FST162245 provides 16-bits of highspeed CMOS TTL-compatible bus switching. The low On Resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

The device is organized as a 16-bit switch. There are two 8-bit switches with separate output enable inputs. When OE is LOW, the switch is ON and Port a is connected to Port B. When \overline{OE} is HIGH, the switch is OFF and a high impedance state exists between the A and B Ports. The FST162245 has an equivalent 25Ω series resistors to reduce signal-reflection noise, eliminating the need for external terminating resistors.

Features

 \blacksquare 25 Ω switch connection between two ports

April 2001

Revised April 2001

- Minimal propagation delay through the switch
- Low I_{CC}
- Zero bounce in flow-through mode
- Control inputs compatible with TTL level

Ordering Code:

Connection Diagram

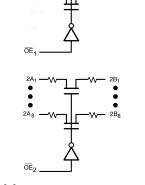
1B₂ 1 B₁

28,

2B3 284

2B₆

GND 2B-


Order Number	Package Number	Package Description				
FST162245MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide				
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.						

Pin Descriptions

Pin Name	Description					
OEn	Output Enable Input (Active LOW)					
1A _n , 2A _n , 3A _n , 4A _n	Bus A					
1B _n , 2B _n , 3B _n , 4B _n	Bus B					
NC	No Internal Connection					

· 2A

2 A-2A8 24

1B-.

1B

Truth Table

Logic Diagram

Inputs	Outputs					
OEx	А, В					
L	A Port = B Port					
Н	Z					
I = HIGH Voltage Level L = LOW Voltage Level Z = High Impedance						

© 2001 Fairchild Semiconductor Corporation DS500431

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _C	c)	-0.5V to +7.0	V
DC Switch Voltage	(V _S) (Note 2)	-0.5V to +7.0	V
DC Input Voltage (V	(Note 3)	-0.5V to +7.0	V
DC Input Diode Cur	rrent (I _{IK}) V _{IN} < 0V	–50 m	A
DC Output Current	(I _{OUT})	128 m	A
DC V _{CC} /GND Curre	ent (I _{CC} /I _{GND})	±100 m	A
Storage Temperatu	re Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}$	С

Recommended Operating Conditions (Note 4)

Power Supply Operating (V _{CC)}	4.0V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to 5.5V
Input Rise and Fall Time (t_r, t_f)	
Switch Control Input	0 ns/V to 5 ns/V
Switch I/O	0 ns/V to DC
Free Air Operating Temperature (T _A)	-40 °C to +85 °C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: V_S is the voltage observed/applied at either the A or B Ports across the switch.

Note 3: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 4: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

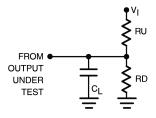
			TA	=-40°C to +8	S°C	Units	Conditions
Symbol	Parameter	V _{cc}	Min	Тур	Max		
		(V)		(Note 5)			
V _{IK}	Clamp Diode Voltage	4.5			-1.2	V	I _{IN} = -18 mA
V _{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
V _{IL}	LOW Level Input Voltage	4.0-5.5			0.8	V	
l _l	Input Leakage Current	5.5			±1.0	μΑ	$0 \le V_{IN} \le 5.5V$
		0			±10	μΑ	V _{IN} = 5.5V
I _{OZ}	OFF-STATE Leakage Current	5.5			±1.0	μΑ	$0 \le A, B \le V_{CC}$
R _{ON}	Switch On Resistance	4.5	20	26	38	Ω	$V_{IN} = 0V, I_{IN} = 64 \text{ mA}$
	(Note 6)	4.5	20	27	40	Ω	$V_{IN} = 0V, I_{IN} = 30 \text{ mA}$
		4.5	20	28	48	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$
		4.0	20	30	48	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$
I _{CC}	Quiescent Supply Current	5.5			3	μΑ	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$
ΔI_{CC}	Increase in I _{CC} per Input	5.5			2.5	mA	One Input at 3.4V
							Other Inputs at V _{CC} or GND

Note 5: Typical values are at V_{CC} = 5.0V and T_A = +25 ^{\circ}C

Note 6: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

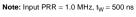
AC Electrical	Characteristics
---------------	-----------------

			$T_A = -40 \ ^{\circ}C$	C to +85 °C					
Symbol	Parameter	$C_L = 50 pF, RU = RD = 500 \Omega$				Units	Conditions	Figure	
		$V_{CC}=4.5-5.5V$		$V_{CC} = 4.0V$				Number	
		Min	Max	Min	Max	1			
t _{PHL} , t _{PLH}	Propagation Delay Bus-to-Bus (Note 7)		1.25		1.25	ns	V _I = OPEN	Figures 1, 2	
t _{PZH} , t _{PZL}	Output Enable Time	1.0	6.1		6.9	ns	$V_I = 7V$ for t_{PZL}	Figures 1, 2	
							$V_I = OPEN$ for t_{PZH}		
t _{PHZ} , t _{PLZ}	Output Disable Time	1.0	6.1		6.5	ns	$V_I = 7V$ for t_{PLZ} $V_I = OPEN$ for t_{PHZ}	Figures	
							$V_I = OPEN$ for t_{PHZ}	1, 2	

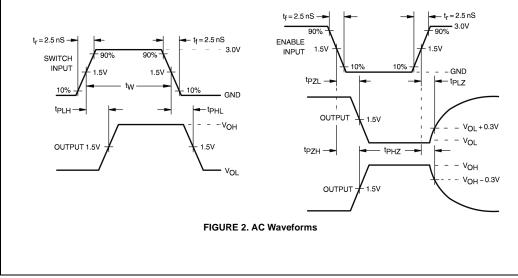

Note 7: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

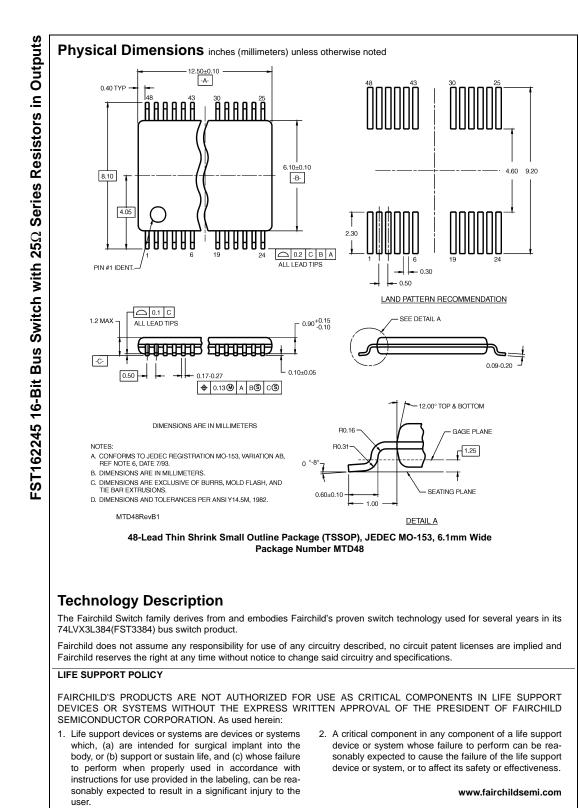
Capacitance (Note 8)

Symbol Parameter		Тур	Max	Units	Conditions
C _{IN}	Control Pin Input Capacitance	3		pF	$V_{CC} = 5.0V, V_{IN} = 0V$
C _{I/O}	Input/Output Capacitance "OFF State"	6		pF	$V_{CC}, \overline{OE} = 5.0V, V_{IN} = 0V$


Note 8: $T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized but not tested.

AC Loading and Waveforms




Note: Input driven by 50Ω source terminated in 50Ω

Note: CL includes load and stray capacitance

FIGURE 1. AC Test Circuit

