INCH-POUND MIL-M-38510/306E <u>17 June 2003</u> SUPERSEDING MIL-M-38510/306D 16 NOVEMBER 1987

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, LOW-POWER SCHOTTKY TTL, SHIFT REGISTERS, CASCADABLE, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, TTL, low power, shift register microcircuits. Two product assurance classes and a choice of case outlines and lead finishes and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).

1.2 Part number. The part number should be in accordance with MIL-PRF-38535, and as specified herein.

1.2.1 <u>Device types.</u> The device types should be as follows:

Device type	<u>Circuit</u>
01	4 bit bi-directional shift register
02	4 bit parallel-access shift register
03	4 bit parallel-access shift register
04	5 bit shift register
05	8 bit parallel-out shift register
06	4 bit right-shift, left-shift register, 3-state outputs
07	4 bit cascadable shift register, 3-state outputs
08	8 bit parallel-in shift register with clock inhibit
09	8 bit parallel-in shift register with clear

1.2.2 <u>Device class</u>. The device class should be the product assurance level as defined in MIL-PRF-38535.

Beneficial comments (recommendations, additions deletions) and any pertinent data which may be used in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P.O. Box 3990, Columbus OH 43216-5000, by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

AMSC N/A <u>DISTRIBUTION STATEMENT A.</u> Approved for public release; distribution is unlimited.

FSC 5962

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
٨		4.4	
A B	GDFP5-F14 or CDFP6-F14	14	Flat pack
	GDFP4-14 GDIP1-T14 or CDIP2-T14	14	Flat pack Dual-in-line
С		14	
DE	GDFP1-F14 or CDFP2-F14	14	Flat pack Dual-in-line
F	GDIP1-T16 or CDIP2-T16 GDFP2-F16 or CDFP3-F16	16 16	
К	CQCC2-N20	20	Flat pack
2	CQCC1-N20	20	Square leadless chip carrier Square leadless chip carrier
2	CQCC1-N20	20	Square readiess chip carrier
1.3 Absolute maximu	um ratings.		
Supply voltage ra	nge		0.5 V dc to 7.0 V dc
Input voltage rang	ge	1	.5 V dc at -18 mA to 5.5 V dc
Storage temperat	ure range	6	5° to +150°C
Maximum power	dissipation per register, (P_D) <u>1</u> /:		
Device type 0	1	12	27 mW dc
Device type 0	2, 03	1 [.]	16 mW dc
Device type 0	4	1 [.]	10 mW dc
Device type 0	5	14	19 mW dc
	6, 07		
	8		
	9		
-	e (soldering, 10 seconds)		0°C
Thermal resistance	ce, junction to case (θ_{JC}):		
Cases A, B, C, I	D, E, F, 2, and X	(See MIL-STI	D-1835)
Junction tempera	Ο, Ε, F, 2, and X ture (Тј) <u>2</u> /	17	75°C
1.4 Recommended of	pperating conditions.		
		Δ	5 V de minimum to 5 5 V de maximum
Supply voltage (V	/cc)		5 V dc minimum to 5.5 V dc maximum
Supply voltage (V Minimum high lev	/ _{CC}) el input voltage (V _{IH})	2.	0 V dc
Supply voltage (\ Minimum high lev Maximum low lev	/ _{cc}) /el input voltage (V _{IH}) el input voltage (V _{IL})		0 V dc 7 V dc
Supply voltage (\ Minimum high lev Maximum low lev Case operating te	/cc) rel input voltage (V _{IH}) el input voltage (V _{IL}) emperature range (T _C)		0 V dc 7 V dc
Supply voltage (\ Minimum high lev Maximum low lev Case operating te Minimum clock pu	V_{CC}) rel input voltage (V _{IH}) el input voltage (V _{IL}) emperature range (T _C) ulse width:		0 V dc 7 V dc 5° to +125°C
Supply voltage (V Minimum high lev Maximum low lev Case operating te Minimum clock pu Device type 0	V_{CC} rel input voltage (V _{IH}) el input voltage (V _{IL}) emperature range (T _C) Ilse width: 1, 03, 05, 07, 09		0 V dc 7 V dc 5° to +125°C 0 ns
Supply voltage (V Minimum high lev Maximum low lev Case operating te Minimum clock pu Device type 0 Device type 0	V_{CC}) rel input voltage (V _{IH}) el input voltage (V _{IL}) emperature range (T _C) Ilse width: 1, 03, 05, 07, 09 2		0 V dc 7 V dc ;5° to +125°C 0 ns 3 ns
Supply voltage (V Minimum high lev Maximum low lev Case operating te Minimum clock pu Device type 0 Device type 0 Device type 0	V_{CC}) rel input voltage (V _{IH}) en input voltage (V _{IL}) emperature range (T _C) Ilse width: 1, 03, 05, 07, 09 2 4, 06, 08		0 V dc 7 V dc ;5° to +125°C 0 ns 3 ns
Supply voltage (V Minimum high lev Maximum low lev Case operating te Minimum clock pu Device type 0 Device type 0 Device type 0 Minimum clear pu	V_{CC}) rel input voltage (V _{IH}) el input voltage (V _{IL}) emperature range (T _C) ulse width: 1, 03, 05, 07, 09 2 4, 06, 08 ulse width:	22	0 V dc 7 V dc 55° to +125°C 0 ns 3 ns 5 ns
Supply voltage (V Minimum high lev Maximum low lev Case operating te Minimum clock pu Device type 0 Device type 0 Device type 0 Minimum clear pu Device type 0	V_{CC}) rel input voltage (V _{IH}) en input voltage (V _{IL}) emperature range (T _C) Ilse width: 1, 03, 05, 07, 09 2 4, 06, 08	20 0. -5 20 10 11 21 21 21 21 21 21 21	0 V dc 7 V dc 5° to +125°C 0 ns 5 ns 0 ns
Supply voltage (V Minimum high lev Maximum low lev Case operating te Minimum clock pu Device type 0 Device type 0 Minimum clear pu Device type 0 Device type 0	V_{CC}) el input voltage (V _{IH}) el input voltage (V _{IL}) emperature range (T _C) ulse width: 1, 03, 05, 07, 09 2 4, 06, 08 ulse width: 1, 09 2	20 0	0 V dc 7 V dc 5° to +125°C 0 ns 5 ns 5 ns 5 ns
Supply voltage (V Minimum high lev Maximum low lev Case operating te Minimum clock pu Device type 0 Device type 0 Minimum clear pu Device type 0 Device type 0 Device type 0	V_{CC}) rel input voltage (V _{IH}) el input voltage (V _{IL}) emperature range (T _C) ulse width: 1, 03, 05, 07, 09 2 4, 06, 08 ulse width: 1, 09 2 4	20 0 -5 20 11 20 12 20 20 20 21 21 20 11 30	0 V dc 7 V dc 5° to +125°C 0 ns 5 ns 5 ns 0 ns 5 ns 0 ns
Supply voltage (V Minimum high lev Maximum low lev Case operating te Minimum clock pu Device type 0 Device type 0 Minimum clear pu Device type 0 Device type 0 Device type 0 Device type 0	V_{CC}) rel input voltage (V _{IH}) el input voltage (V _{IL}) emperature range (T _C) ulse width: 1, 03, 05, 07, 09 2 4, 06, 08 ulse width: 1, 09 2 4 5, 07	20 0 -5 20 11 20 12 20 20 20 21 21 20 11 30	0 V dc 7 V dc 5° to +125°C 0 ns 5 ns 5 ns 0 ns 5 ns 0 ns
Supply voltage (V Minimum high lev Maximum low lev Case operating te Minimum clock pu Device type 0 Device type 0 Minimum clear pu Device type 0 Device type 0 Device type 0 Device type 0 Minimum load pu	V_{CC}) rel input voltage (V _{IH}) el input voltage (V _{IL}) emperature range (T _C) ulse width: 1, 03, 05, 07, 09 2 4, 06, 08 ulse width: 1, 09 2 4 5, 07 Ise width:	20 0 -5 20 11 20 11 20 20 11 21 20 11 30 22 21	0 V dc 7 V dc 5° to +125°C 0 ns 5 ns 0 ns 5 ns 0 ns 5 ns 0 ns 5 ns
Supply voltage (V Minimum high lev Maximum low lev Case operating te Minimum clock pu Device type 0 Device type 0 Minimum clear pu Device type 0 Device type 0 Device type 0 Minimum load pu Device type 0	V_{CC}) rel input voltage (V _{IH}) el input voltage (V _{IL}) emperature range (T _C) ulse width: 1, 03, 05, 07, 09 2 4, 06, 08 ulse width: 1, 09 2 4 5, 07	20 0 -5 20 11 20 11 20 20 11 21 20 11 30 22 21	0 V dc 7 V dc 5° to +125°C 0 ns 5 ns 0 ns 5 ns 0 ns 5 ns 0 ns 5 ns
Supply voltage (V Minimum high lev Maximum low lev Case operating te Minimum clock pu Device type 0 Device type 0 Minimum clear pu Device type 0 Device type 0 Device type 0 Minimum load pu Device type 0 Minimum load pu	V_{CC}) rel input voltage (V _{IH}) el input voltage (V _{IL}) emperature range (T _C) ulse width: 1, 03, 05, 07, 09 2 4, 06, 08 ulse width: 1, 09 2 4 5, 07 lse width: 8	2 0 -5 20 11 21 21 21 21 21 21 21 21 31 31 31 31 31 31	0 V dc 7 V dc 55° to +125°C 0 ns 5 ns 0 ns 5 ns 0 ns 5 ns 0 ns 5 ns
Supply voltage (V Minimum high lev Maximum low lev Case operating te Minimum clock pu Device type 0 Device type 0 Minimum clear pu Device type 0 Device type 0 Device type 0 Minimum load pu Device type 0 Minimum setup ti Device type 0	V_{CC}) rel input voltage (V _{IH}) el input voltage (V _{IL}) emperature range (T _C) ulse width: 1, 03, 05, 07, 09 2 4, 06, 08 ulse width: 1, 09 2 4 5, 07 lse width: 8 me at mode control:	2 0 -5 20 11 21 21 21 21 21 21 21 30 21 31 31 31 31 31 31 31 31 31 3	0 V dc 7 V dc 55° to +125°C 0 ns 5 ns 5 ns 0 ns 5 ns 0 ns 5 ns 0 ns

1.2.3 <u>Case outlines.</u> The case outlines should be as designated in MIL-STD-1835 and as follows:

^{1/} Must withstand the added P_D due to short-circuit test (e.g., I_{OS}). 2/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535.

Minimum setup time at shift/load:

Device type 02	25 ns
Device type 07	20 ns
Device type 08	42 ns
Device type 09	
Minimum setup time at serial data:	
Device type 08	10 ns
Minimum setup time at serial or parallel data:	
Device type 01, 02, 03, 05, 06, 07	
Device type 04	
Device type 09	
Minimum setup time at preset:	
Device type 04	30 ns
Minimum setup time at inhibit:	
Device type 08	30 ns
Minimum hold time:	
Device type 01, 02, 03, 04, 05, 07	10 ns
Device type 01, 02, 03, 04, 03, 07	20 ns
Device type 08	3 nc
Device type 08	
Minimum enable or inhibit time of clock:	
	20
Device type 03	20 ns
Maximum release time shift/load:	10
Device type 02	10 ns

2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 <u>Specifications and Standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Departments of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883	-	Test Method Standard for Microelectronics.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines

(Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).

3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.

3.3.1 <u>Terminal connections and logic diagrams</u>. The terminal connections and logic diagrams shall be as specified on figure 1.

3.3.2 <u>Truth tables.</u> The truth tables and timing diagrams shall be as specified on figure 2.

3.3.3 Logic diagrams. The logic diagrams shall be as specified on figure 3.

3.3.4 <u>Schematic circuits</u>. The schematic circuits shall be _maintained by the manufacturer and made available to the qualifying activity and the preparing activity (DSCC-VAS) upon request.

3.3.5 <u>Case outlines.</u> The case outlines shall be as specified in 1.2.3.

3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).

3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.

3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.

3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.

3.8 <u>Microcircuit group assignment</u>. The devices covered by this specification shall be in microcircuit group number 12 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.

4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:

- a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
- c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.

Test	Symbol		Conditions <u>1</u> /	Device	Limits		Unit
			$i^{\circ}C \leq T_{C} \leq +125^{\circ}C$ s otherwise specified	types	Min	Max	
High-level output voltage	V _{OH}	V _{CC} = 4.5 V V _{IN} = 2.0 V	I _{OH} = -1.0 mA	06,07	2.4		V
			I _{OH} = -400 μA	01,02,03 04,05, 07 (QD'), 08,09	2.5		V
Low-level output voltage	V _{OL}	$V_{CC} = 4.5 \text{ V},$ $V_{IN} = 0.7 \text{ V}$	I _{OL} = 4 mA	01,02,03 04,05, 07 (QD'), 08,09		0.4	V
			I _{OL} = 12 mA	06,07			
Input clamp voltage	V _{IC}	$V_{CC} = 4.5 \text{ V}, I_{II}$	_N = -18 mA, T _C = 25°C	All		-1.5	V
High-level input current for all	I _{IH1}	$V_{\rm CC} = 5.5 \ V, \ I_{\rm H}$	_N = 2.7 V	01,02,05, 06,07,08,		20	μA
inputs except S/L for type 08	I _{IH2}	$V_{CC} = 5.5 \text{ V}, \text{ Int}$	_N = 5.5 V	09		100	
High-level input current at any	I _{IH3}	$V_{CC} = 5.5 \text{ V}, I_{II}$	_N = 2.7 V	03		20	μA
input except mode	I _{IH4}	$V_{CC} = 5.5 \text{ V}, I_{H}$	_N = 5.5 V			100	
High-level input current at any	I _{IH5}	$V_{CC} = 5.5 \text{ V}, I_{II}$	_N = 2.7 V	04		20	μA
input except preset enable	I _{IH6}	$V_{CC} = 5.5 \text{ V}, I_{H}$	_N = 5.5 V			100	
High-level input current at mode	I _{IH7}	$V_{CC} = 5.5 \text{ V}, I_{II}$	_N = 2.7 V	03		40	μA
	I _{IH8}	$V_{CC} = 5.5 \text{ V}, I_{II}$	_N = 5.5 V			200	
High-level input current at preset	I _{IH9}	$V_{CC} = 5.5 \text{ V}, I_{II}$	_N = 2.7 V	04		100	μA
enable	I _{IH10}	$V_{CC} = 5.5 \text{ V}, \text{ Int}$	_N = 5.5 V			500	
High-level input current at S/L	I _{IH11}	$V_{CC} = 5.5 \text{ V}, \text{ Int}$	_N = 2.7 V	08		60	μA
	I _{IH12}	$V_{\rm CC} = 5.5 \text{ V}, I_{\rm H}$	_N = 5.5 V			300	

TABLE I.	Electrical	performance	characteristics.
	-		

Test	Symbol	Conditions <u>1</u> /	Device	Lim	nits	Unit
		$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ unless otherwise specified	types	Min	Max	
Off-state output current, high level voltage applied	I _{OZH}	$V_{CC} = 5.5 \text{ V}, V_0 = 2.7 \text{ V}$	06,07		20	μA
Off-state output current, low level voltage applied	l _{oz∟}	$V_{CC}=5.5~V,~V_{IN}=0.4~V$	06,07		-20	μΑ
Low-level input	I _{IL1}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 0.4 \text{ V}$	01,02,06	03	44	mA
current (for all inputs except S/L,			05	10	44	
serial in & data			07	03	40	
for types 08 and 09)			08,09	001	72	
Low-level input current at any input except clock	I _{IL2}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$	03	06	76	mA
Low-level input current at any input except preset enable	I _{IL3}		04	16	4	mA
Low-level input current at clock	I _{IL4}		03	03	44	mA
Low-level input current at preset enable	I _{IL5}		04	6	-2.0	mA
Low-level input current at data	I _{IL6}		08	100	380	mA
and serial in			09	100	340	mA
Low-level input current at S/L	I _{IL7}		08	001	-1.14	mA
			09	001	380	mA
Short-circuit output current	l _{os}	V _{CC} = 5.5 V <u>2</u> /	01,02,03, 04,05,08, 09	-15	-100	mA
			06,07	-15	-130	

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions <u>1</u> /	Device	Lin	nits	Unit
		$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ unless otherwise specified	types	Min	Max	
Supply current	I _{CC}	I_{CC} $V_{CC} = 5.5 V$	04		20	mA
			02,03		21	
			01		23	
			05		27	
			06		29	
			07		34	
			08		36	
			09		38	
Maximum shift	f _{MAX}	$V_{CC} = 5.0 \text{ V}$	04	17		MHz
frequency			06	18		
		01,03, 05,07	20			
			02	25		
			08	20	-	
			09	20		
Propagation delay time, low-to-high level from clock	t _{PLH1}	$V_{CC} = 5.0 \text{ V}, \text{ C}_{L} = 50 \text{ pF} \pm 10\%$ $R_{L} = 2 \text{ k}\Omega \text{ for types 01 thru 05, 08 and}$	01,02	5	41	ns
level nom clock		09. See figures 9 and 10 for R_L for types 06 and 07	03,05		48	
			07		56	
			04		68	
			06		46	
			08		58	
			09		40	

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions <u>1</u> /	Device	Lim	nits	Unit
		$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ unless otherwise specified	types	Min	Max	
Propagation delay time, low-to-high	t _{PLH2}	V_{CC} = 5.0, C_L = 50 pF $\pm 10\%$ R_L = 2 $k\Omega$ for types 01 thru 05, 08 and	02	5	53	ns
level form preset or preset enable		09. See figures 9 and 10 for R∟ types 06 and 07	04		60	
Propagation delay time, high-to-low	t _{PLH1}		01,02	5	47	ns
level from clock			03,05,07		56	
			04		68	
			06		52	
			08		58	
			09		46	
Propagation delay time, high-to-low	t _{PLH2}		01,02	05	53	ns
level from clear			07		56	
			05		62	
			04		90	
Propagation delay time, low to high level from S/L	t _{PLH5}		08,09	5	52	ns
Propagation delay time, high to low level from S/L or clear	t _{PHL5}		08,09	5	52	ns
Propagation delay time, high to low level from data	t _{PHL3}		08	5	46	ns
Propagation delay time, low to high level from data	t _{PLH3}		08	5	39	ns

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions <u>1</u> /	Device	Lim	nits	Unit
		$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ unless otherwise specified	types	Min	Max	
Propagation delay time, low to high level from data	t _{PLH4}	V_{CC} = 5.0 V, C_L = 50 pF $\pm 10\%$ R_L = 2k Ω for types 01 thru 05, 08 and 09. See figures 9 and 10 for R_L types 06 and 07	08	5	46	ns
Propagation delay time, high to low level from data	t _{PHL4}		08	5	39	ns
Output enable time to low level	t _{ZL}	See figures 9 and 10 for conditions	06	5	45	ns
			07	5	53	ns
Output enable time to high level	t _{zн}		06	5	39	ns
			07		53	
Output disable time from low level	t _{LZ}		07	5	53	ns
			06		71	
Output disable time from high level	t _{HZ}		07	5	53	ns
			06		84	

TABLE I. Electrical performance characteristics - Continued.

 $\underline{1}$ / Complete terminal condition shall be as specified in table III. $\underline{2}$ / Not more than one output should be shorted at a time.

	Subgroups	(see table III)
MIL-PRF-38535 test requirements	Class S	Class B
	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 7, 9,	1*, 2, 3, 9
	10, 11	
Group A test requirements	1, 2, 3, 7, 8,	1, 2, 3, 7, 8,
	9, 10, 11	9, 10, 11
Group B test when using the method 5005	1, 2, 3	N1/A
QCI option.	9, 10, 11	N/A
Group C end-point electrical	1, 2, 3,	1, 2, 3
parameters	9, 10, 11	
Group D end-point electrical parameters	1, 2, 3	1, 2, 3

TABLE II. Electrical test requirements.

*PDA applies to subgroup 1.

4.3 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-PRF-38535.

4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, and 6 shall be omitted.
- 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.

4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:

- a. End-point electrical parameters shall be as specified in table II herein.
- b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.4 <u>Group D inspection</u>. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.

4.5 <u>Methods of inspection</u>. Methods of inspection shall be specified and as follows:

4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

MIL-	M-3851	0/306E
------	--------	--------

	Device	type 01	Device ty	/pe 02	Device	type 03	Device	type 04
		* •		CAS	ES	*•	•	
Pin number	2, X	E,F	2, X	E,F	2, X	A,B,C, and D	2, X	E,F
1	NC	CLEAR	NC	CLR	NC	SER INP	NC	CLK
2	CLEAR	SHF RHT SER INP	CLR	J	SER INP	А	CLK	A
3	SHF RHT SER INP	A	J	ĸ	А	В	A	В
4	А	В	ĸ	А	В	С	В	С
5	В	С	А	В	NC	D	С	V _{CC}
6	NC	D	NC	С	С	MODE CONT	NC	D
7	С	SHF LEFT SER INP	В	D	NC	GND	V _{CC}	E
8	D	GND	С	GND	D	CLK 2 L SHF LOAD	D	PRESET ENABLE
9	SHF LEFT SER INP	SO	D	SHF/ LOAD	MODE CONT	CLK1 R SHF	E	SER INP
10	GND	S1	GND	CLK	GND	QD	PRESET ENABLE	QE
11	NC	CLOCK	NC	Q D	NC	QC	NC	QD
12	SO	QD	SHF/LOAD	Q D	CLK 2 L SHF/LOAD	QB	SER INP	GND
13	S1	QC	CLK	QC	CLK1 R SHF	QA	QE	QC
14	CLK	QB	Q D	QB	QD	V _{CC}	QD	QB
15	QD	QA	QD	QA	NC		GND	QA
16	NC	Vcc	NC	Vcc	QC		NC	CLR
17	QC		QC		NC		QC	
18	QB		QB		QB		QB	ļ
19	QA		QA		QA		QA	
20	V _{CC}		V _{CC}		V _{CC}		CLR	

FIGURE 1. Terminal connections.

MIL	M-	3851	0/306	δE
-----	----	------	-------	----

	Device	e type 05	Device	type 06	Device	type 07	Device	type 08
Pin number	2, X	A,B,C, and D	2, X	A,B,C and D	2, X	E,F	2, X	E, F
1	NC	А	NC	SER INP	NC	CLR	NC	SHF LOAD
2	A	В	SER INP	A	CLR	SER INP	SHF LOAD	CLOCK
3	В	QA	А	В	SER INP	А	CLOCK	E
4	QA	QB	В	С	А	В	Е	F
5	NC	QC	NC	D	В	С	F	G
6	QB	QD	С	MODE CONT	NC	D	NC	Н
7	NC	GND	NC	GND	С	LOAD SHF	G	QН
8	QC	CLK	D	OUTPUT CONT	D	GND	Н	GND
9	QD	CLR	MODE CONT	CLK	LOAD SHF	OUTPUT CONT	Qн	QH
10	GND	QE	GND	QD	GND	CLK	GND	SER INP
11	NC	QF	NC	QC	NC	QD'	NC	А
12	CLK	QG	OUTPUT CONT	QB	OUTPUT CONT	QD	QH	В
13	CLR	QH	CLK	QA	CLK	QC	SER INP	С
14	QE	Vcc	QD	Vcc	QD'	QB	А	D
15	NC		NC		QD	QA	В	CLOCK INHIBIT
16	QF		QC		NC	CC	NC	V _{CC}
17	NC		NC		QC		С	
18	QG		QB		QB		D	
19	QH		QA		QA		CLOCK INHIBIT	
20	V _{CC}		V _{cc}		V _{CC}		V _{CC}	

FIGURE 1. <u>Terminal connections</u> - Continued.

	Devi	ce type 09
Pin	2, X	E,F
number		
1	NC	SERIAL INPUT
2	SERIAL INPUT	A
3	A	В
4	В	С
5	С	D
6	NC	CLOCK INHIBIT
7	D	CLOCK
8	CLOCK INHIBIT	GND
9	CLK	CLEAR
10	GND	E
11	NC	F
12	CLR	G
13	E	OUTPUT QH
14	F	INPUT H
15	G	SHIFT LOAD
16	NC	V _{CC}
17	QH	
18	INPUT H	
19	SHIFT LOAD	
20	V _{CC}	

FIGURE 1. <u>Terminal connections</u> - Continued.

Device type 01

				INPU	TS						OUTF	PUTS	
CLEAR	MO	DE	CLOCK	SEI	RIAL		PARA	LLEL		0.	Q _B	Q _C	Q _D
GLEAR	S1	S0	GLOCK	LEFT	RIGHT	А	В	С	D	Q _A	Y B	QC	QD
L	Х	Х	Х	Х	Х	Х	Х	Х	Х	L	L	L	L
Н	Х	Х	L'	Х	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}
Н	Η	Н	1	Х	Х	а	b	с	d	а	b	с	d
Н	L	Н	1	Х	Н	Х	Х	Х	Х	Н	Q _{An}	Q _{Bn}	Q _{Cn}
Н	L	Н	1	Х	L	Х	Х	Х	Х	L	Q _{An}	Q _{Bn}	Q _{Cn}
Н	Н	L	1	Н	Х	Х	Х	Х	Х	Q _{Bn}	Q _{Cn}	Q _{Dn}	Н
Н	Н	L	1	L	Х	Х	Х	Х	Х	Q _{Bn}	Q _{Cn}	Q _{Dn}	L
Н	L	L	Х	Х	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q _{D0}

H = high level (steady state)

L = low level (steady state)

X = irrelevant (any input, including transitions)

 \uparrow = transition from low to high level

a, b, c, d = the level of steady state input at inputs A, B, C, or D, respectively.

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = level of Q_A , Q_B , Q_C , or Q_D , respectively, before the

indicated steady state input conditions were established. Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C or Q_D , respectively, before the most

recent ↑ transition of the clock.

Typical clear, load, right-shift, left shift, inhibit, and clear sequences.

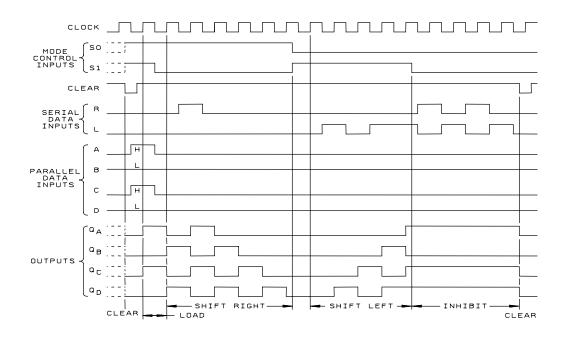


FIGURE 2. Truth tables and timing diagrams.

Device type 02

			INPL	JTS						С	UTPUT	S	
	SHIFT/		SEF	RIAL		PARA	LLEL		~	0	0	0	Q _D
CLEAR	LOAD	CLOCK	J	ĸ	A	В	С	D	Q _A	Q _B	Qc	Q_D	
L	Х	Х	Х	Х	Х	Х	Х	Х	L	L	L	L	Н
Н	L	↑	Х	Х	а	b	С	d	а	b	С	d	d
Н	Н	L	Х	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q_{D0}	\overline{Q}_{D0}
Н	Н	1	L	Н	Х	Х	Х	Х	Q _{A0}	Q _{A0}	Q _{Bn}	Q _{Cn}	\overline{Q}_{Cn}
Н	Н	↑	L	L	Х	Х	Х	Х	L	Q _{An}	Q _{Bn}	Q _{Cn}	\overline{Q}_{Cn}
Н	Н	1	Н	Н	Х	Х	Х	Х	Н	Q _{An}	Q _{Bn}	Q _{Cn}	\overline{Q}_{Cn}
Н	Н	↑ (Н	L	Х	Х	Х	Х	\overline{Q}_{An}	Q _{An}	Q _{Bn}	Q _{Cn}	\overline{Q}_{Cn}

H = high level (steady state)

L = low level (steady state)

X = irrelevant (any input, including transitions)

 \uparrow = transition from low to high level

a, b, c, d = the level of steady state input at inputs A, B, C, or D, respectively.

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = level of Q_A , Q_B , Q_C , or Q_D , respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Bn} , Q_{Cn} , = the level of Q_A , Q_B , or Q_C , respectively, before the most recent transition of the clock.

Typical clear, shift, and load sequences.

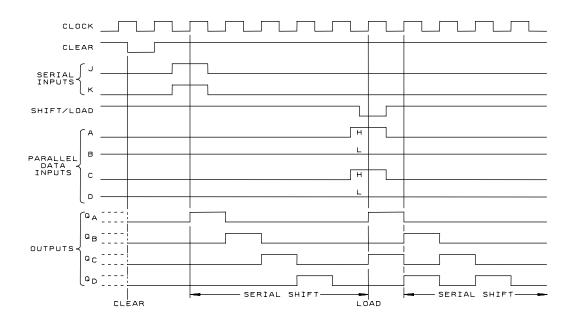


FIGURE 2. <u>Truth tables and timing diagrams</u> - Continued.

MODE	CLO	CKS	SERIAL		PARA	LLEL		0.	Q _B	0.	0-
CONTROL	2 (L)	1 (R)	SERIAL	Α	В	С	D	Q _A	QB	Q _C	Q_D
Н	Н	Х	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}
Н	Ļ	Х	Х	а	b	С	d	а	b	С	d
Н	Ļ	Х	Х	Q _B ↑	Q _C ↑	Q_D \uparrow	d	Q_{Bn}	Q _{Cn}	Q_{Dn}	d
L	L	Н	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}
L	Х	Ļ	Н	Х	Х	Х	Х	Н	Q _{An}	Q_{Bn}	Q _{Cn}
L	Х	Ļ	L	Х	Х	Х	Х	L	Q _{An}	Q_{Bn}	Q _{Cn}
1	L	L	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q_{D0}
Ļ	L	L	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}
Ļ	L	Н	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}
1	Н	L	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q_{C0}	Q_{D0}
↑	Н	Н	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q_{D0}

Device type 03

⁺Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered to input D.

- H = High level (steady state), L = Low level (steady state),
- X = Irrelevant (any input, including transitions)
- \downarrow = Transition from high to low level, \uparrow = Transition from low to high level a, b, c,
- d = the level of steady state input at inputs A, B, C, or D, respectively.
- Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = level of Q_A , Q_B , Q_C , or Q_D , respectively,

before the indicated steady state input conditions were established. Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C , or Q_D , respectively,

most recent \downarrow transition of the clock.

FIGURE 2. Truth tables and timing diagrams - Continued.

Device type 04

			INPL	JTS									
CLEAR	PRESET			PRESE	Т		CLOCK	SERIAL	Q _A	Q _B	Q _C	Q _D	QE
OLLAN	ENABLE	Α	В	С	D	E	CLOCK	SERIAL	G A	Y B	QC	V D	QE
L	L	Х	Х	Х	Х	Х	Х	Х	L	L	L	L	L
L	Х	L	L	L	L	L	Х	Х	L	L	L	L	L
Н	Н	Н	Η	Н	Н	Н	Х	Х	Н	Н	Н	Н	Н
Н	Н	L	L	L	L	L	L	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}	Q _{E0}
Н	Н	Н	L	Н	L	Н	L	Х	Н	Q _{B0}	Н	Q _{D0}	Н
Н	L	Х	Х	Х	Х	Х	L	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q_{D0}	Q _{E0}
Н	L	Х	Х	Х	Х	Х	↑	Н	Н	Q _{An}	Q _{Bn}	Q _{Cn}	Q _{Dn}
Н	L	Х	Х	Х	Х	Х	1	L	L	Q _{An}	Q _{Bn}	Q_{Cn}	Q _{Dn}

H = high level (steady state), L = low level (steady state)

X = irrelevant (any input, including transitions)

 \uparrow = transition from low to high level

 Q_{A0} , Q_{B0} , etc. = the level of Q_A , Q_B , etc., respectively before the indicated steady state input conditions were established.

 Q_{An} , Q_{Bn} , etc. = the level of Q_A , Q_B , etc., respectively before the most recent \uparrow transition of the clock.

Typical clear, shift, preset and shift sequences

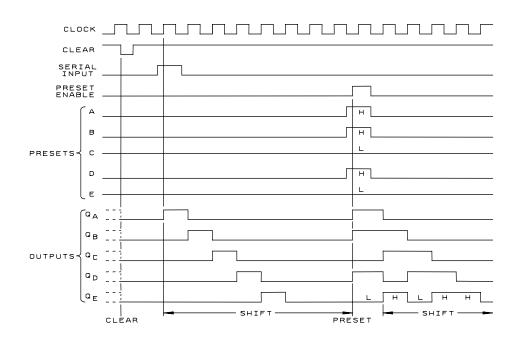


FIGURE 2. Truth tables and timing diagrams - Continued.

Device type 05

	INPUT	S		OUTPUTS				
CLEAR	CLOCK	Α	В	Q _A	Q _B	. Q _H		
L	Х	Х	Х	L	L	L		
Н	L	Х	Х	Q _{A0}	Q _{B0}	Q _{H0}		
Н	1	Н	Н	Н	Q _{An}	Q_{Gn}		
Н	1	L	Х	L	Q _{An}	Q_{Gn}		
Н	1	Х	L	L	Q _{An}	Q_{Gn}		

H = high level (steady state), L = low level (steady state)

X = irrelevant (any input, including transitions)

↑ = transition from low to high level

 Q_{A0} , Q_{B0} , Q_{H0} = the level of Q_A , Q_B , or Q_H , respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Gn} = the level of Q_A , or Q_G before the most recent \uparrow transition of the clock; indicates a one-bit shift.

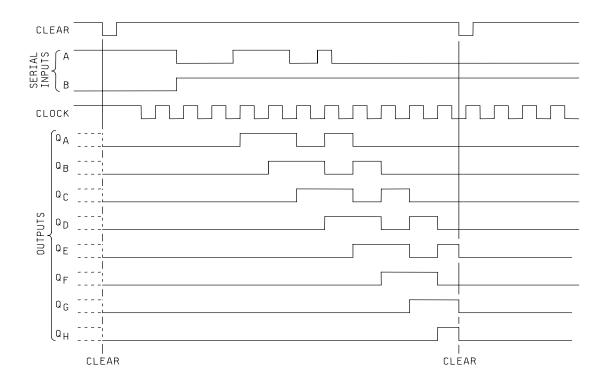


FIGURE 2. Truth tables and timing diagrams - Continued.

Device type 06

		INPUT	S					OUTF	PUTS		
MODE	CLOCK	SERIAL		PARA	LLEL		Q _A	QB	Q _C	Q_{D}	
CONTROL	OLOOK		Α	В	G A	Y B	G	QD			
Н	Н	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q _{D0}	
Н	Ļ	Х	а	b	С	d	а	b	С	d	
Н	Ļ	Х	Q _B ↑	Qc ↑	Q _D ↑	d	Q_{Bn}	Q _{Cn}	Q _{Dn}	d	
L	Н	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q _{D0}	
L	Ļ	Н	Х	Х	Х	Х	Н	Q _{An}	Q_{Bn}	Q _{Cn}	
L	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
	When the output control is low, the outputs are disabled to high impedance state. however, sequential operation of the registers is not affected.										

⁺Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered to input D.

- H = high level (steady state), L = low level (steady state)
- X = irrelevant (any input, including transitions)
- \downarrow = transition from high to low level.
- a, b, c,d = the level of steady state input at inputs A, B, C, or D, respectively.
- Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , \dot{Q}_B , Q_C , or Q_D , respectively, before the indicated steady state input conditions were established.
- Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the most recent \downarrow transition of the clock.

Device type 07

		INPU	TS					3 S	TATE	OUTP	UTS	CASCADE
CLEAR	LOAD/SHIFT	CLOCK	SERIAL		PARA	\LLEL		QA	QB	Qc	QD	OUTPUT
OLLAN	CONTROL	SLIVIAL	А	В	С	D	QA	3 B		30	$Q_{D'}$	
L	Х	Х	Х	Х	Х	Х	Х	L	L	L	L	L
Н	Н	Н	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q_{D0}	Q _{D0}
Н	Н	Ļ	Х	а	b	С	d	а	b	С	d	d
Н	L	Н	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q_{D0}	Q _{D0}
Н	L	Ļ	Н	Х	Х	Х	Х	Н	\mathbf{Q}_{An}	Q_{Bn}	Q _{Cn}	Q _{Cn}
Н	L	Ļ	L	Х	Х	Х	Х	L	Q_{An}	Q_{Bn}	Q _{Cn}	Q _{Cn}
When the	When the output control is low, the outputs are disabled to high impedance state.											
however,	nowever, sequential operation of the registers is not affected.											

H = high level (steady state), L = low level (steady state),

X = irrelevant (any input, including transitions)

 \downarrow = transition from high to low level.

- Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the indicated steady state input conditions were established.
- $\label{eq:QAn} Q_{An}, \, Q_{Bn}, \, Q_{Cn}, \, Q_{Dn} = \text{the level of } Q_A, \, Q_B, \, Q_C, \, \text{or } Q_{D_i} \text{ respectively, before the} \\ \text{most recent } \downarrow \text{ transition of the clock.}$

FIGURE 2. Truth tables and timing diagrams - Continued.

Device type 08

		Input	S		Inter		Output
Shift/	Clock	Clock	Serial	Parallel	Outp	outs	Output Q _H
load	inhibit	CIUCK	Senai	AH	Q _A	Q _B	QH
L	Х	Х	Х	ah	а	b	h
Н	L	L	Х	Х	Q _{A0}	Q _{B0}	Q _{H0}
Н	L	↑	Н	Х	Н	Q _{An}	Q_{Gn}
Н	L	1	L	Х	L	Q _{An}	Q_{Gn}
Н	Н	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{H0}

H = High level (steady state), L = Low level (steady state)

X = Irrelevant (any input, including transitions)

↑ = Transition from low to high level

 Q_{A0} , Q_{B0} , Q_{H0} = the level of Q_A , Q_B , or Q_H , respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Gn} = The level of Q_A or Q_G before the most recent transition of the clock; indicates a one-bit shift.

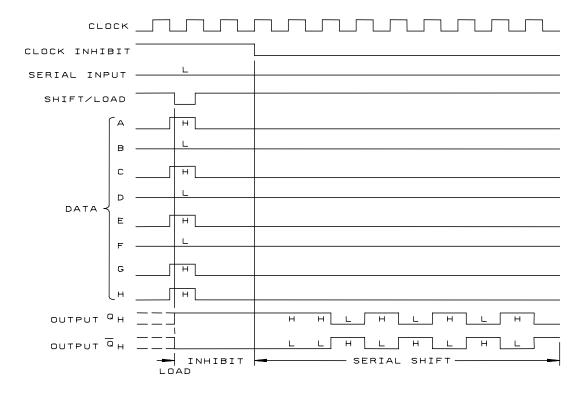


FIGURE 2. Truth tables and timing diagrams - Continued.

Device type 09

01	Shift/	Clock	Olash	Quidal	Parallel	Internal Outputs		Output
Clear	load	inhibit	Clock	Serial	AH	Q _A	Q _B	Q _H
L	Х	Х	Х	Х	Х	L	L	L
Н	Х	L	L	Х	Х	Q _{A0}	Q _{B0}	Q _{H0}
Н	L	L	1	Х	ah	а	b	h
Н	Н	L	1	Н	Х	Н	Q_{An}	Q _{Gn}
Н	Н	L	1	L	Х	L	Q_{An}	Q _{Gn}
Н	Х	Н	↑	Х	Х	Q _{A0}	Q_{B0}	Q _{H0}

H = High level (steady state), L = Low level (steady state)

X = Irrelevant (any input, including transitions)

 \uparrow = Transition from low to high level

 Q_{A0} , Q_{B0} , Q_{H0} = the level of Q_A , Q_B , or Q_H respectively, before the indicated steady state input conditions were established.

Q_{An}, Q_{Gn} = The level of Q_A or Q_G before the most recent ↑ transition of the clock; indicates a one-bit shift.

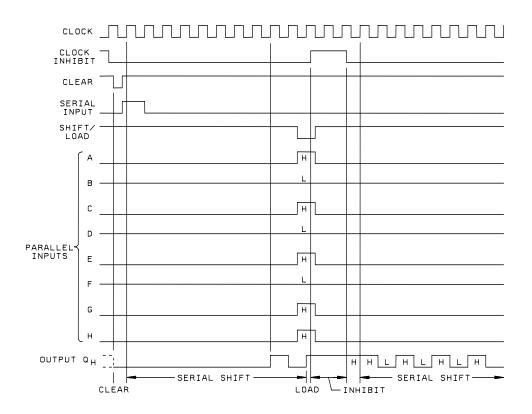


FIGURE 2. Truth tables and timing diagrams - Continued.

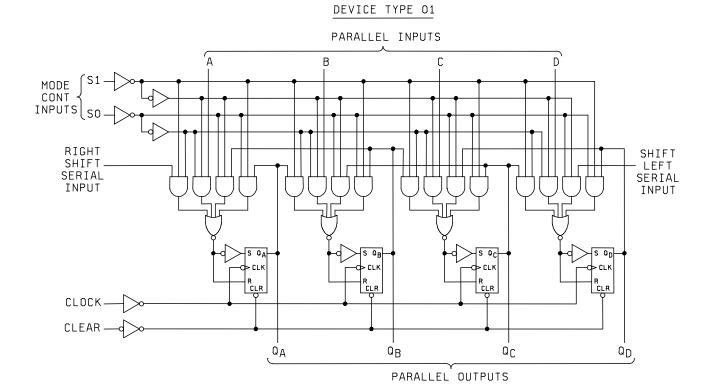
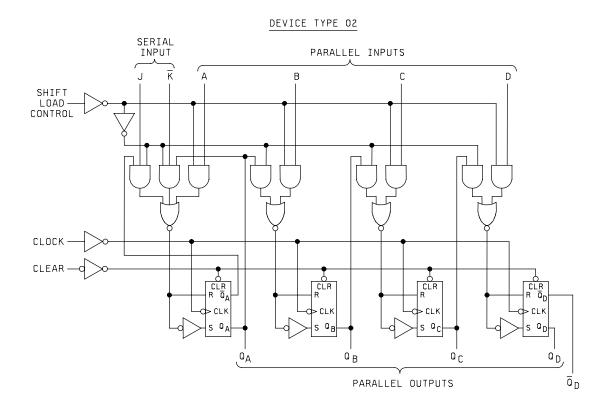
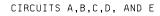




FIGURE 3. Logic diagrams.

-0 ... dynamic input activated from a high level to a low level

DEVICE TYPE 03

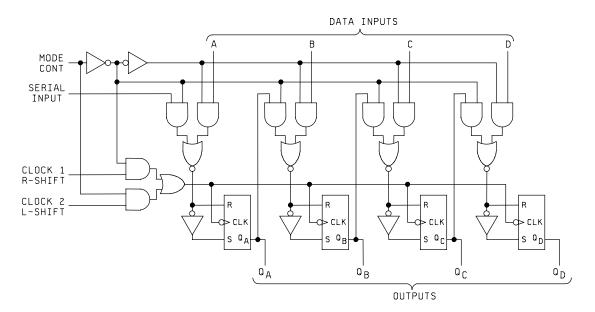


FIGURE 3. Logic diagrams - Continued.

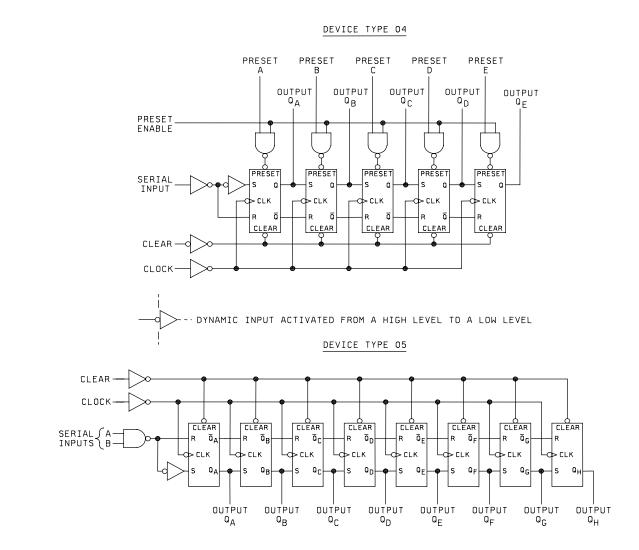
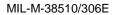



FIGURE 3. Logic diagram - Continued.

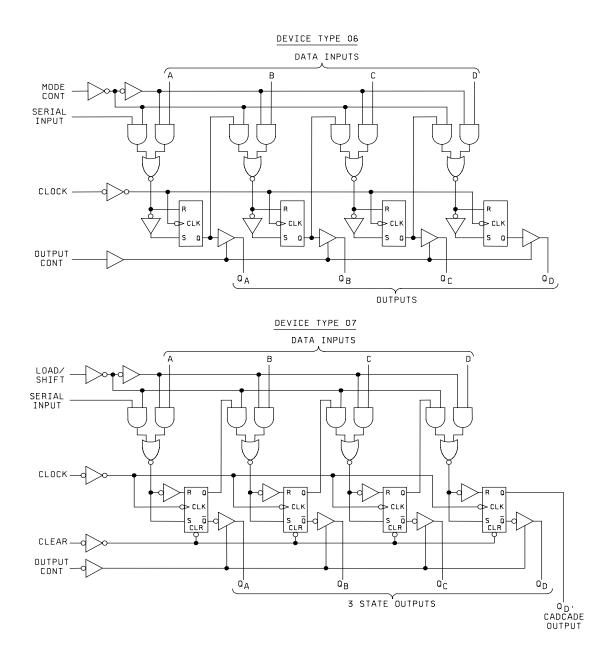
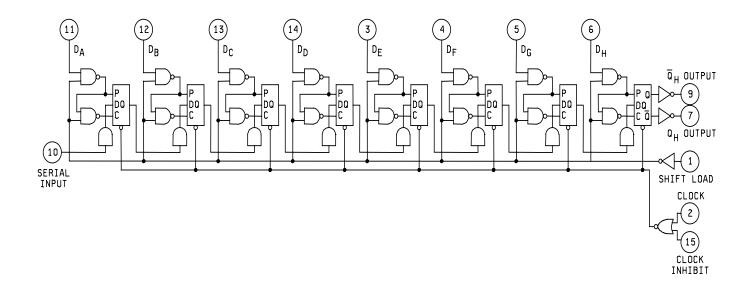
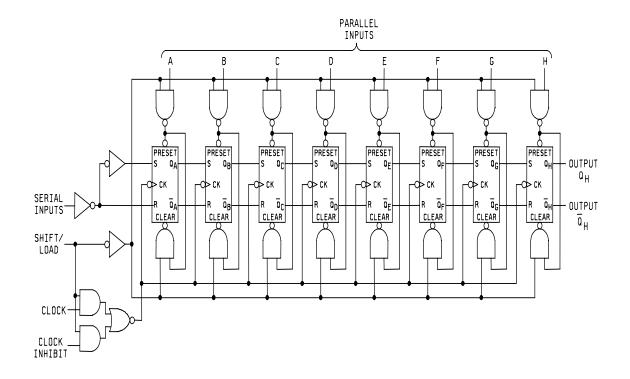
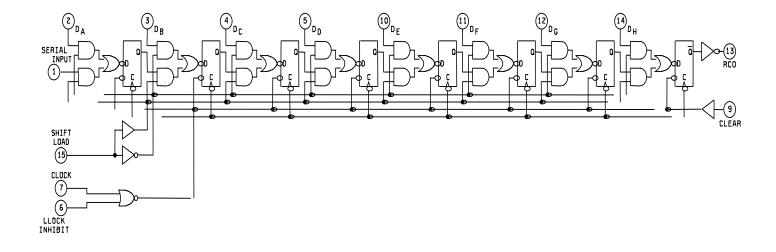
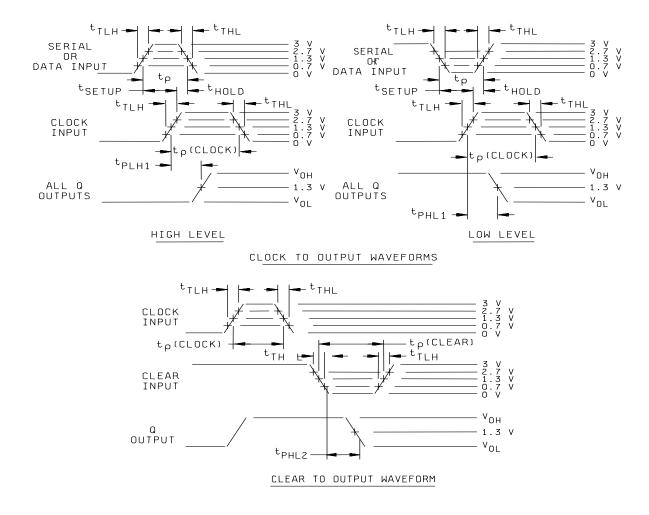



FIGURE 3. Logic diagrams - Continued.


DEVICE TYPE 08


Pin numbers are for cases E and F only.

CIRCUIT C AND F



Pin numbers are for cases E and F only.

FIGURE 4. Switching test circuit and waveforms for device type 01.

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 Mhz, $t_{TLH} \leq$ 15 ns, $t_{THL} \leq$ 6 ns, t_p (clock) \geq 20 ns.
- 2. Serial or data pulse characteristics: $t_{THL} \le 15$ ns, $t_{THL} \le 6$ ns, $t_{SETUP} = 20$ ns, $t_{HOLD} = 10$ ns, t_p (serial) or t_p (data) = 30 ns.
- 3. Clear pulse characteristics: $t_{THL} \le 15$ ns, $t_{THL} \le 6$ ns; t_p (clear) = 20 ns.
- 4. $C_L = 50 \text{ pF} \pm 10 \text{ percent}$ incliding scope, probe, wiring and stray capacitance without package in test fixture.
- 5. All diodes are 1N3064, 1N916 or equivalent.
- 6. $R_L = 2.0 \text{ k}\Omega \pm 5 \text{ percent.}$
- 7. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 4. Switching test circuit and waveforms for device type 01 - Continued.

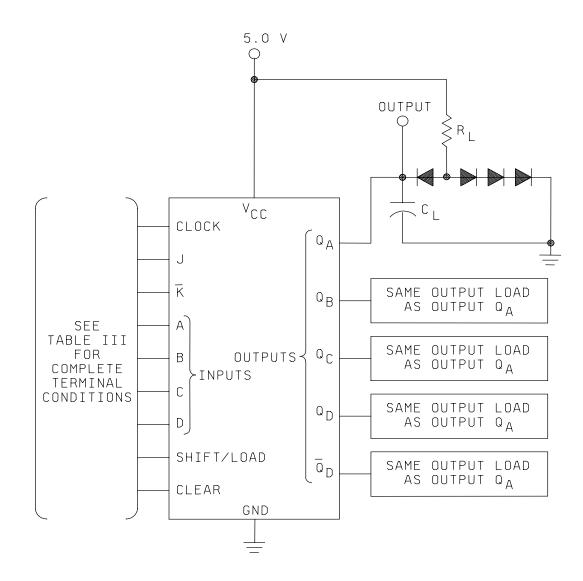


FIGURE 5. Switching test circuit and waveforms for device type 02.

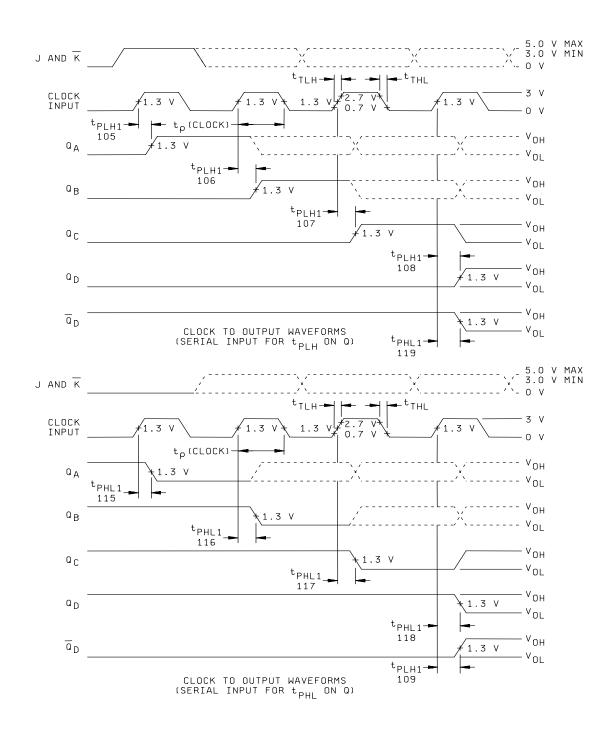
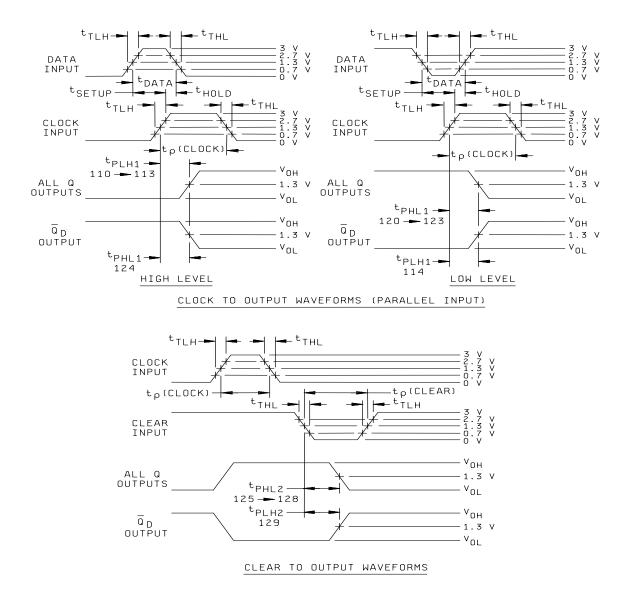



FIGURE 5. Switching test circuit and waveforms for device type 02 - Continued.

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, t_{TLH} \leq 15 ns, t_{TLH} \leq 6 ns, t_p (clock) \geq 18 ns.
- 2. Data pulse characteristics: $t_{TLH} \le 20$ ns, $t_{THL} \le 6$ ns, $t_{SETUP} = 20$ ns, $t_{HOLD} = 10$ ns, $t_{DATA} = 30$ ns.
- 3. Clear pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns; t_p (clear) = 15 ns.
- 4. C_L = 50 pF ±10 percent including scope, probe, wiring and stray capacitance without package in test fixture.
- 5. All diodes are 1N3064, 1N916 or equivalent.
- 6. $R_L = 2.0 \text{ k}\Omega \pm 5 \text{ percent.}$
- 7. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 5. Switching test circuit and waveforms for device type 02 - Continued.

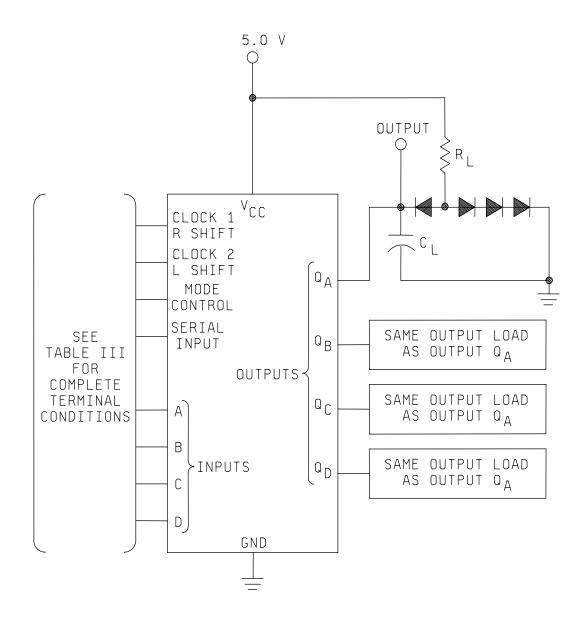
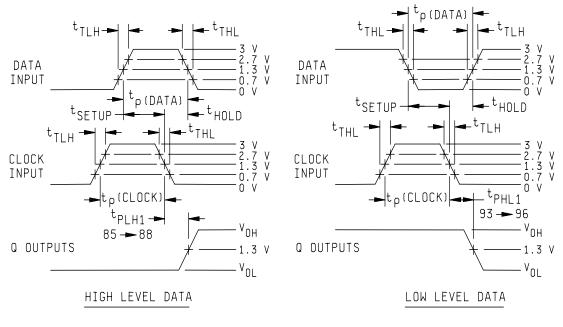
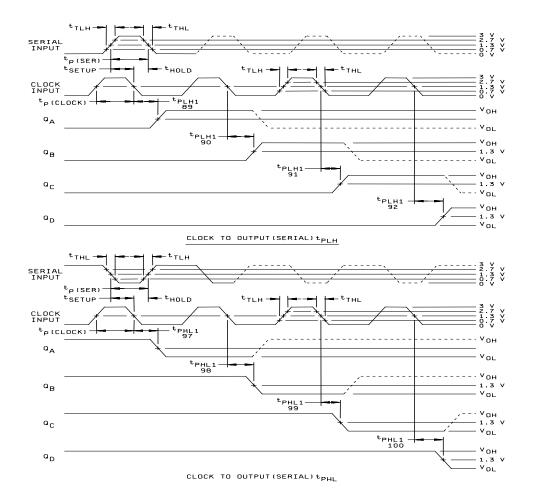




FIGURE 6. Switching test circuit and waveforms for device type 03.

CLOCK TO OUTPUT (PARALLEL)

FIGURE 6. Switching test circuit and waveforms for device type 03 - Continued.

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, t_{TLH} \leq 15 ns, t_{THL} \leq 6 ns, t_p (clock) \geq 20 ns.
- 2. Serial data pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (SER) or t_p (DATA) = 30 ns, t_{SETUP} = 20 ns, t_{HOLD} = 10 ns.
- 3. C_L = 50 pF ±10 percent including scope, probe, wiring and stray capacitance without package in test fixture.
- 4. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 5. All diodes are 1N3064, 1N916 or equivalent.
- 6. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 6. Switching test circuit and waveforms for device type 03 - Continued.

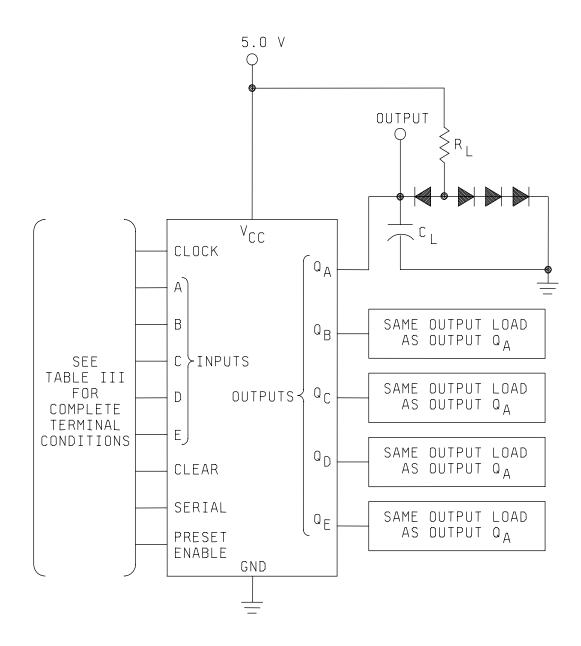


FIGURE 7. Switching test circuit and waveforms for device type 04.

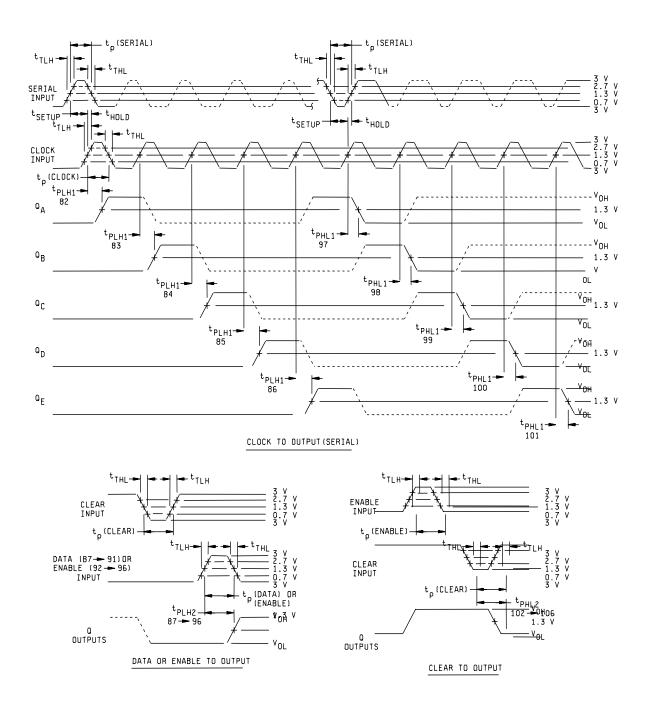


FIGURE 7. Switching test circuit and waveforms for device type 04 - Continued.

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, t_{TLH} \leq 15 ns, t_{THL} \leq 6 ns, t_p (clock) \geq 25 ns.
- 2. Serial data pulse characteristics: $t_{TLH} \leq 15$ ns, $t_{THL} \leq 6$ ns, $t_p = 30$ ns.
- 3. Clear, data, and enable pulse characteristics: $t_{TLH} \leq$ 15 ns, $t_{THL} \leq$ 6 ns, t_p = 30 ns.
- 4. $C_L = 50 \text{ pF} \pm 10$ percent including scope, probe, wiring and stray capacitance without package in test fixture.
- 4. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 5. All diodes are 1N3064, 1N916 or equivalent.
- 6. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 7. Switching test circuit and waveforms for device type 04 - Continued.

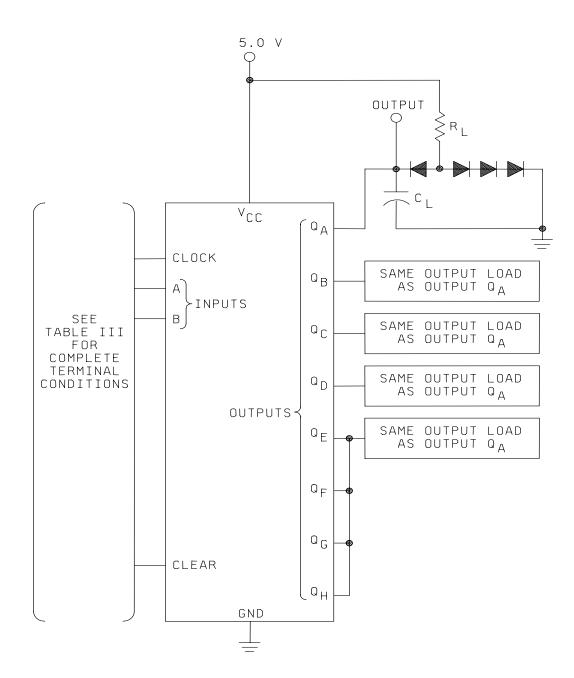


FIGURE 8. Switching test circuit and waveforms for device type 05.

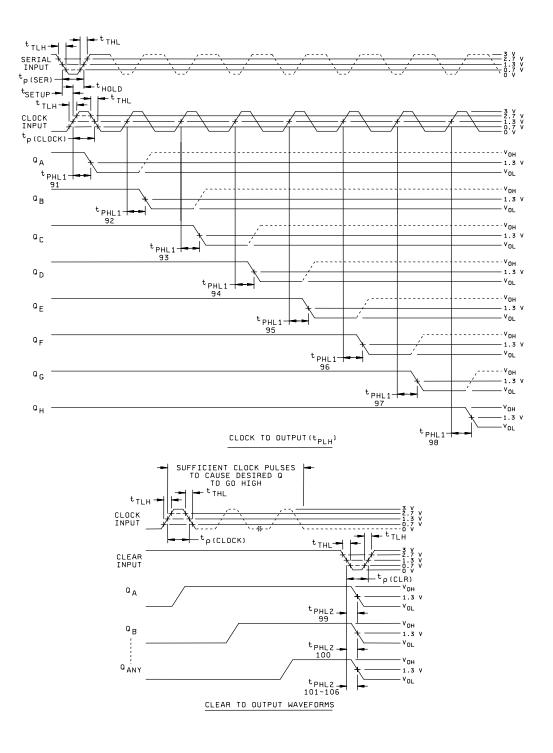
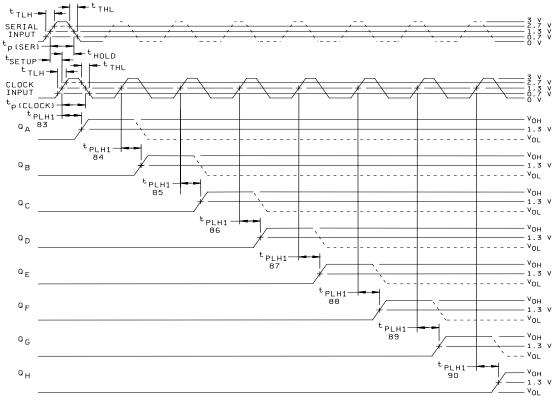



FIGURE 8. Switching test circuit and waveforms for device type 05 - Continued.

CLOCK TO OUTPUT(t_{PLH})

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, $t_{TLH} \leq$ 15 ns, $t_{THL} \leq$ 6 ns, t_p (clock) \geq 20 ns.
- 2. Clear pulse characteristics: $t_{TLH} \le 15 \text{ ns}, t_{THL} \le 6 \text{ ns}, t_p$ (clear) = 30 ns.
- 3. Serial pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (serial) = 30 ns, t_{SETUP} = 20 ns, t_{HOLD} = 10 ns.
- 4. $C_L = 50 \text{ pF} \pm 10$ percent including scope, probe, wiring and stray capacitance without package in test fixture.
- 5. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 6. All diodes are 1N3064, 1N916 or equivalent.
- 7. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 8. Switching test circuit and waveforms for device type 05 - Continued.

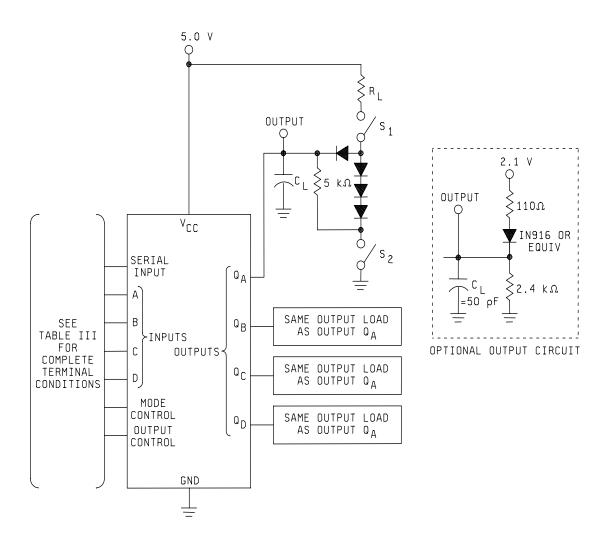


FIGURE 9. Switching test circuit and waveforms for device type 06.

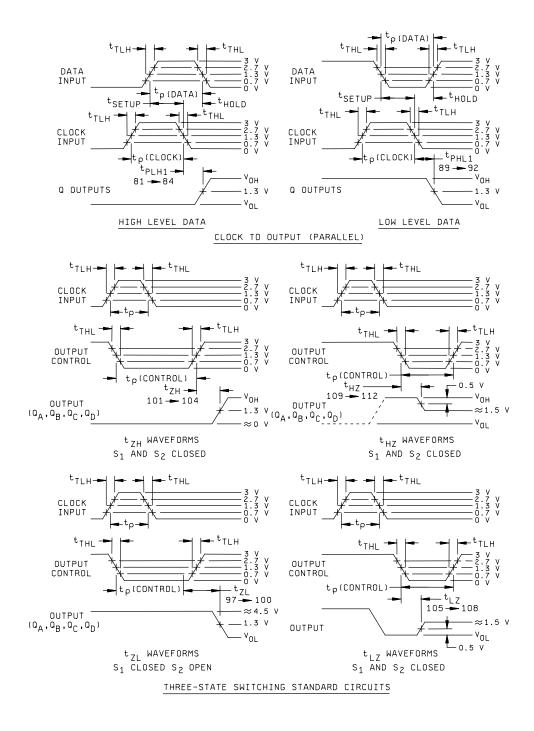


FIGURE 9. Switching test circuit and waveforms for device type 06 - Continued.

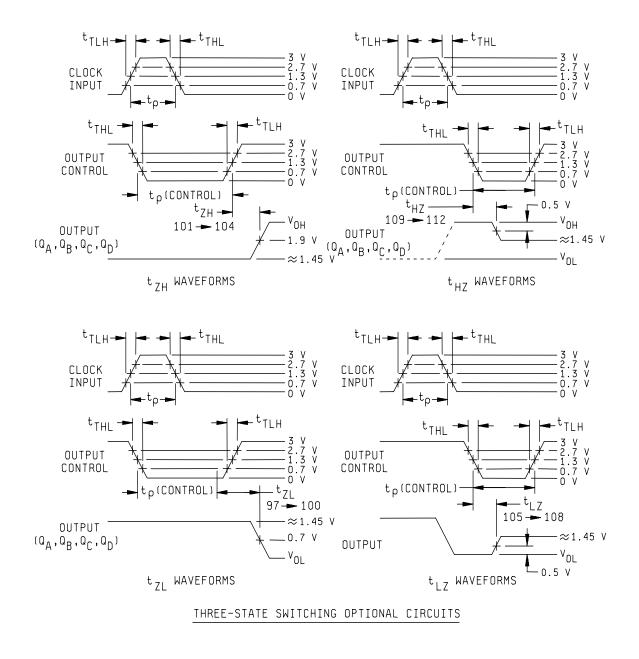


FIGURE 9. Switching test circuit and waveforms for device type 06 - Continued.

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, t_{TLH} \leq 15 ns, t_{THL} \leq 6 ns, t_p (clock) \geq 25 ns.
- 2. Data or serial pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (serial) or t_p (data) = 40 ns, t_{SETUP} = 20 ns, t_{HOLD} = 20 ns.
- 3. Output control characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (control) ≥ 100 ns, except when optional load is used, $C_L = 50$ pF $\pm 10\%$ for all tests.
- 4. $C_L = 50 \text{ pF} \pm 10\%$ for propagation delay, t_{ZL} , t_{ZH} , and $C_L = 15\text{pF}$ minimum for t_{HZ} , t_{LZ} except when optional load is used, $C_L = \text{pF} \pm 10\%$ for all tests. C_L includes scope probe, wiring, and stray capacitance without package in test fixture. All diodes are 1N3064, 1N916, or equivalent.
- 6. $R_L = 680 \ \Omega \pm 5\%$.
- 7. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 9. Switching test circuit and waveforms for device type 06 - Continued.

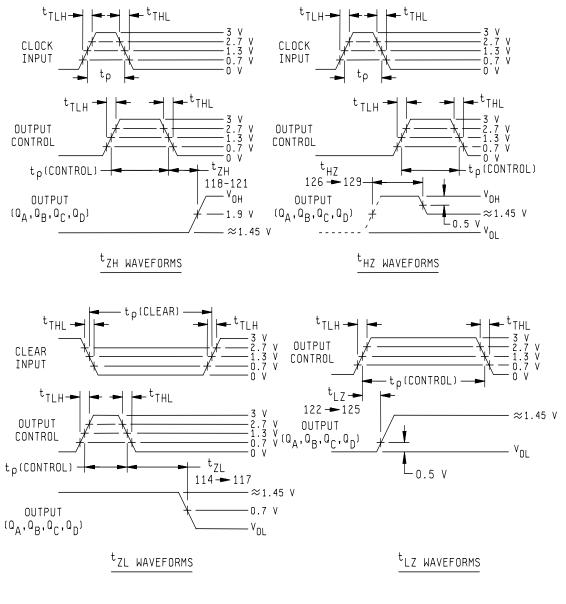
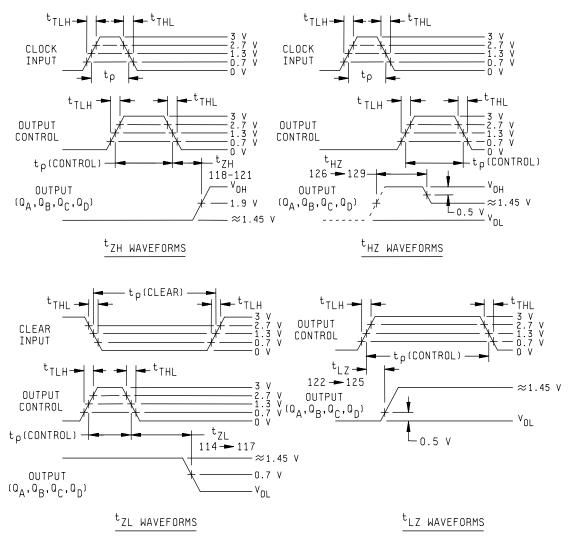




FIGURE 10. Switching test circuit and waveforms for device type 07.

THREE-STATE OPTIONAL CIRCUITS

FIGURE 10. Switching test circuit and waveforms for device type 07 - Continued.

THREE-STATE OPTIONAL CIRCUITS

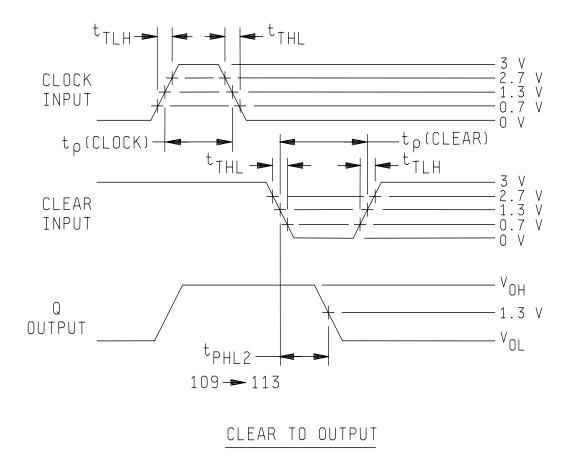
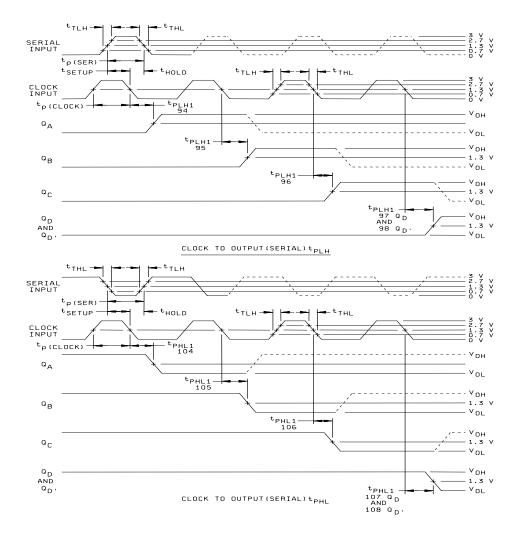



FIGURE 10. Switching test circuit and waveforms for device type 07 - Continued.

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, t_{TLH} \leq 15 ns, t_{THL} \leq 6 ns, t_p (clock) \geq 20 ns.
- 2. Data or serial pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (serial) or t_p (data) = 30 ns, t_{SETUP} = 20 ns, t_{HOLD} = 10 ns.
- 3. Clear pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (clear) = 25 ns, except ≥ 200 ns for t_{ZL} test.
- 4. Output control pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (control) ≥ 100 ns.
- 5. $C_L = 50 \text{ pF} \pm 10\%$ for propagation delay, t_{ZH} , t_{ZL} test, and $C_L = 15 \text{ pF}$ minimum (all except Q_D ,) for t_{HZ} , t_{LZ} tests except when optional load is used, $C_L = 50 \text{ pF} \pm 10\%$ for all tests. C_L includes scope probe, wiring, and stray capacitance without package in test fixture.
- 6. All diodes are 1N3064, 1N916, or equivalent.
- 7. $R_L = 680 \ \Omega \pm 5\%$ except for Q_D , $R_L = 2 \ k\Omega \pm 5\%$.
- 8. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 10. Switching test circuit and waveforms for device type 07 - Continued.

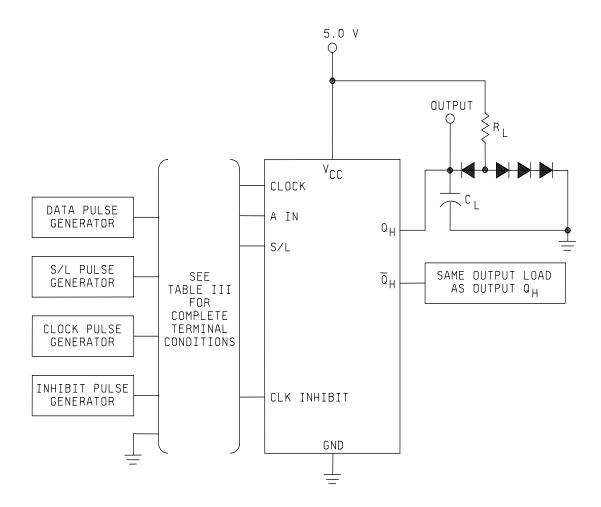
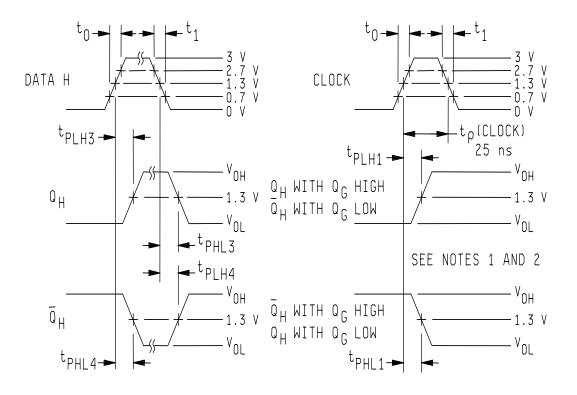
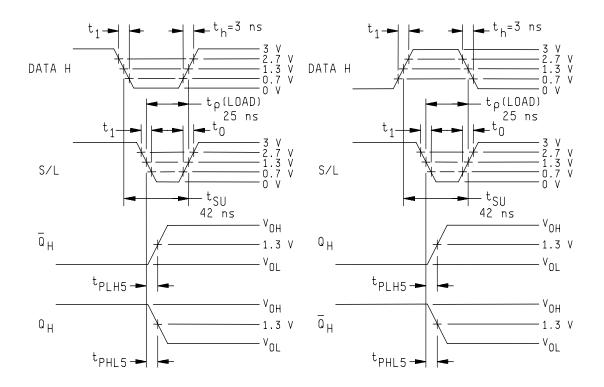




FIGURE 11. Switching test circuit and waveforms for device type 08.

FIGURE 11. Switching test circuit and waveforms for device type 08 - Continued.

NOTES:

- For t_{PHL2} measurements, internal output G must be set to a low and Q_H to a high prior to tests.
- 2. For t_{PHL2} measurements, internal output G must be set to a high and Q_{H} to a low prior to test.
- 3. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 4. $C_L = 50 \text{ pF} \pm 10\%$, which includes probe, and jug capacitance.
- 5. All pulse generators have the following characteristics: $Z_{OUT} \approx 50\Omega$, $t_0 \le 15$ ns, $t_1 \le 6$ ns and PRR ≤ 1 MHz.
- 6. All diodes 1N3064 or equivalent.

FIGURE 11. Switching test circuit and waveforms for device type 08 - Continued.

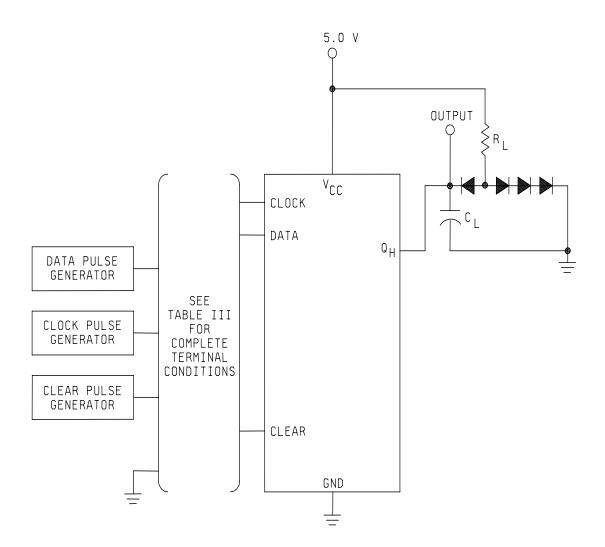
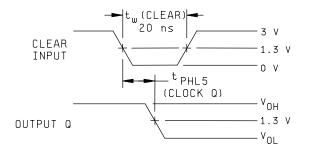
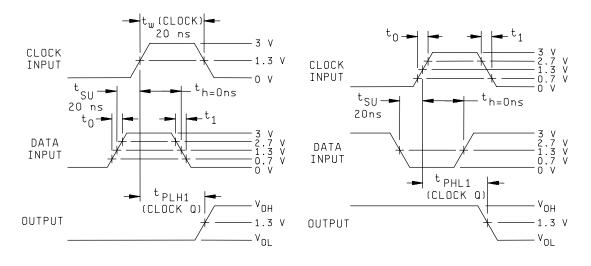




FIGURE 12. Switching test circuit and waveforms for device type 09.

CLEAR TO OUTPUT WAVEFORM

NOTES:

- 1. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 2. $C_L = 50 \text{ pF} \pm 10\%$, which includes probe, and jug capacitance.
- 3. All pulse generators have the following characteristics: $Z_{OUT} \approx 50\Omega$, $t_0 \le 15$ ns, $t_1 \le 6$ ns and PRR ≤ 1 MHz.
- 4. All diodes 1N3064 or equivalent.

FIGURE 12. Switching test circuit and waveforms for device type 09 - Continued.

Subgroup		MIL-																					
0.			Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Te		
- 1	Symbol	STD- 883	Cases 2,X Test no.	2 CLR	3 S/R	4 A _{IN}	5 B _{IN}	7 C _{IN}	8 D _{IN}	9 S/L	10 GND	12 S ₀	13 S ₁	14 CLK	15 QD	17 QC	18 QB	19 QA	20 V _{CC}	Measured terminal	Lim	Max	Unit
		method			Serial					Serial	0.110												
	V _{OH}	3006	1 2	A	GND	2.0 V	GND	GND GND	GND GND	GND	GND	4.5 V	4.5 V	A <u>1</u> /			4 4	4 mA	4.5 V	QA QB	2.5		V
c = 25°C						GND	2.0 V		-								4 mA						
			3				GND	2.0 V	GND							4 mA				QC QD			
			4		2.0 V			GND GND	2.0 V GND				0.7 V		4 mA			4 4		QD QA			
			5		GND			GND	GND	2.0 V		0.7 V	0.7 V 4.5 V		4 mA			4 mA		QA QD			
			7		2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V 2.0 V		4.5 V	4.5 V GND		4 MA			4		QD			
	Vol	3007	8		2.0 V 4.5 V	2.0 V 0.7 V	2.0 V 4.5 V	4.5 V	2.0 V 4.5 V	2.0 V 4.5 V		4.5 V	4.5 V					4 mA 4 mA		QA		0.4	
	VOL	3007	9		4.5 V	4.5 V	4.5 V 0.7 V	4.5 V 4.5 V	4.5 V 4.5 V	4.5 V			4.5 V				4 mA	4 MA		QA		0.4	
			9 10			4.5 V	4.5 V	4.5 V 0.7 V	4.5 V 4.5 V							4mA	4 MA			QD			
			10				4.5 V	4.5 V	4.5 V 0.7 V						4 mA	4MA				QD			
			12		0.7 V			4.5 V	4.5 V				0.7 V		4 111/4			4 mA		QD			
			13		4.5 V			4.5 V	4.5 V	0.7 V		0.7 V	4.5 V		4 mA			4 1117		QD			
-	VIC		14	-18 mA				4.3 V	4.3 V	0.7 V		0.7 V	4.3 V		4 111/					CLR		-1.5	
	* IG		15	10 11/1	-18 mA															S/R		"	
			16		1011/1	-18 mA														Ain			
			17			1011/1	-18 mA													BIN			
			18				101101	-18 mA												C _{IN}			
			19					10111/1	-18 mA											D _{IN}			
			20							-18 mA										S/L			
			21									-18 mA								S ₀			
			22										-18 mA							S ₁			
			23											-18 mA						CLK			
-	I _{IH1}	3010	24	2.7 V															5.5 V	CLR		20	μ
			25		2.7 V							GND	4.5 V							S/R			
			26			2.7 V							GND							A _{IN}			
			27				2.7 V													BIN			
			28					2.7 V												CIN			
			29						2.7 V											D _{IN}			
			30							2.7 V	-	4.5 V	-						-	S/L			
			31									2.7 V							-	S ₀			
			32										2.7 V						-	S ₁			
			33	GND										2.7 V						CLK			1
	I _{IH2}		34	5.5 V									5.5 V							CLR		100	
			35		5.5 V							GND	4.5 V							S/R			
			36		1	5.5 V						GND	GND							A _{IN}			
			37		1		5.5 V													BIN			
			38					5.5 V												CIN			<u> </u>
			39						5.5 V			:"	"							D _{IN}			
			40							5.5 V		4.5 V								S/L			
			41									5.5 V								S ₀			
			42 43	GND	1								5.5 V	5.5 V						S ₁ CLK			<u> </u>

See footnotes at end of device types 01.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	* 2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	CLR	S/R Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	S/L Serial	GND	S ₀	S ₁	CLK	QD	QC	QB	QA	V _{CC}		Min	Max	
1	I _{IL1}	3009	44	0.4 V							GND								5.5 V	CLR	<u>2</u> /	2/	mA
rc = 25°C	I _{IL2}		45		0.4 V							4.5 V	GND							S/R			"
			46			0.4 V							4.5 V							A _{IN}			
			47				0.4 V					-	"							BIN			
			48					0.4 V				-	"							CIN			
			49						0.4 V			-								DIN		-	
			50							0.4 V		GND								S/L		-	
	I _{IL3}		51									0.4 V								S ₀		-	
	I _{IL3}		52										0.4 V							S ₁			
	I _{IL4}		53	4.5 V										0.4 V						CLK			
	los	3011	54	A		4.5 V	GND	GND	GND			4.5 V	4.5 V	A <u>1</u> /				GND		QA	-15	-100	
			55			GND	4.5 V	GND	GND			"					GND			QB			
			56				GND	4.5 V	GND			"				GND			"	QC			
			57				GND	GND	4.5 V						GND					QD			
	Icc	3005	58	5.5 V	5.5 V		GND	GND	GND	5.5 V		5.5 V	5.5 V							V _{CC}		23	
2	Same tes	sts, terminal c	conditions and	limits as	subgrou	p 1, exc	ept T _C = 12	25°C, and	V _{IC} tests a	are omitte	ed.												
3	Same tes	sts, terminal c	conditions and	limits as	subgrou	p 1, exc	ept T _C = -5	5°C, and	V _{IC} tests a	re omitte	d.												

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 ; or low ≤ 0.7 V; or open).

See footnotes at end of device type 01.

		LUL OTO													0.7 V, O				1 10				-1
		MIL-STD- 883	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Test	Limits	
bgroup	Symbol	method	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			U
		method	Test no.	CLR	S/R Serial	A _{IN}	B _N	CN	D _{IN}	S/L Serial	GND	S ₀	S ₁	CLK	QD	QC	QB	QA	Vcc	terminal	Min	Max	-
7	Truth	3014	59	C	B	B	B	B	B	B	GND	C C	C	C	L		L		5.0V	All	IVIIII	IVIAX	-
7		3014	59	Ļ.	В	в	в	в	в	B	GND	c	c	B	÷	Ŀ		Ļ	5.0V				
= 25°C	table																			outputs			
	test		61		В					В		С	С	С									
			62	•	С					С	•	В	В	С	•	•	-						
			63	•		-	•			•			•	В	•		-	-	•	•			
			64								•		•	С	•								
			65	В							•		•	С									
			66								•		•	В	Н	н	н	н					
			67						-		•		•	С	Н	н	н	н					
			68		В	С	С	С	C	В				C	н	н	н	н					
			69				1	ĩ	1	•	•		•	B	L	Ĺ	Ĺ	Ľ			1		
			70											c				Ē					
			71										С	č				Ľ					
			72										ř	B				H					
	1	1	73											C							1	1	1
	1	1	73											B			н				1	1	1
	1	1																			4	1	
	1	1	75		+									C			н	-			-		1
	1	1	76										-	В		Н	H				Se	e B, C, D,	and E
	1	1	77	-				-	-	-				С		Н				-	1	1	
			78	•	•	-			-	•	•	•	•	В	Н	•	-	-		•			
			79	•		-	•			•	•		•	С	•	•	-		•				
			80	•	С	В	В	В	В	С	•		•	С									
			81	•			•			•	•		•	B	•			L			1		
			82								•		•	С									
			83	•					-		•		•	В	•		L						
			84							•	•		•	С	•								
			85										•	В		L							
			86											c									
			87											B	L								
			88											c	L								
			89		В	С	С	С	С	В		С	В	c	L								
			90		- B	U.	Č.	Č.	C.	B	•	, i		B	H								
			90											C									
-			92											B		н							
			93	-	-									С				-					
			94				•							В			Н			•			
			95			-	•			•		•	•	С	•	•	-						
	1	1	96							•				B	•	•		Н	•	•	1	1	
	1		97				•			•	•			С	•				•]		
	1	1	97A	•			•			•			С	С					•	•		1	1
	1	1	97B								•		С	В								1	
	1	1	97C	•			•			•	•		С	С	•						1	1	
	1	1	98		С	В	В	В	В	С			В	С	•				•		1	1	1
	1	1	99							•	•		•	В	L				•		1	1	
			100				•			•	•		•	С							1		
	1	1	101								•		•	B		L					1	1	
	1	1	102											č	•						1	1	
	1	1	102											B			L				1	1	
	1	1	103											C			-				1	1	1
	1	1	104						<u> </u>	<u> </u>											1	1	1
	1	1												B				L.			1	1	
	1	1	106				· · · ·			<u> </u>			0	c						· · · ·	1	1	1
	1	1	107								-		С	С	-	-		-			1	1	1
	1		108											В									
	1		109				•			•			•	С	•	•							
	1	1	110		-	С	С	С	С		•		•	С	•					•]	1	1
	1	1	111			С	С	С	С					В							1	1	1

TABLE III. <u>Group A inspection for device type 01</u> - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 ; or low ≤ 0.7 V; or open).

See footnotes at end of device type 01.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9 be high ≥	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal	10001	Linno	01111
0.		method	Test no.	CLR	S/R Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	S/L Serial	GND	S ₀	S ₁	CLK	QD	QC	QB	QA	V _{CC}		Min	Max	
8	Same te	sts, terminal	conditions, ar	nd limits	as subg	oup 7, e	except T _C	= 125°C	and -55°	С													
9 F _C = 25°C	f _{MAX} See F and J	(Fig. 4)	112	G		IN					GND	G	G	IN				OUT	5.0 V	CLK to QA	22		МН
	t _{PHL1}	3003	113			IN					"	"						OUT		CLK TO QA	5	27	ns
		(Fig. 4)	114				IN				"	"					OUT		"	CLK TO QB		"	
		,	115					IN				"				OUT			-	CLK TO QC		"	
			116						IN			"			OUT				-	CLK TO QD		"	
			117		IN							"	GND					OUT	-	CLK TO QA		"	
			118							IN	"	GND	G		OUT					CLK TO QD			
	t _{PHL1}		119			IN					"	G						OUT		CLK TO QA		31	
			120				IN				"	"					OUT			CLK TO QB		"	
			121					IN			"	"				OUT				CLK TO QC		"	
			122						IN		-				OUT				-	CLK TO QD			
			123		IN								GND					OUT		CLK TO QA			
			124							IN	-	GND	G		OUT				-	CLK TO QD			
	t _{PHL2}		125	IN		G					"	G						OUT		CLK TO QA		35	
			126				G				"						OUT			CLK TO QB			
			127					G				"				OUT			-	CLK TO QC		"	
			128						G		"	"			OUT					CLK TO QD			
10 T _C = 25°C	f _{MAX} See F and J	3003 (Fig. 4)	129											é							20		МН
	t _{PHL1}		130 to 135						5	ame test	s and terr	ninal cond	illions as	ioi subgr	oup a						5	41	ns
	t _{PHL1}		136 to 141																		5	47	ns
	t _{PHL2}		142 to 145																		5	53	ns

Downloaded from $\underline{Elcodis.com}$ electronic components distributor

FOOTNOTES:

_____ 2.5 V minimum/5.5 V maximum A. Apply input pulse:

B. V_{IN} = 2.5 V.

C. $V_{IN} = 0.4 V.$

D. Test numbers 59 through 111 shall be run in sequence.

- E. Output voltages shall be either: (1) H \ge 2.5 V minimum and L \le 0.4 V maximum when using a high speed checker double comparator: (2) H \ge 1.5 V and L \le 1.5 V when using a high speed checker single comparator.
- F. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the clock input frequency. The input frequency on the AIN data shall be one-half of the clock input frequency and the A_{IN} shall be shifted such that the A_{IN} 1 and \downarrow are coincident with the clock \downarrow . Rise and fall times \leq 6 ns. Input peak voltage 3 to 5 volts.
- G. 3.0 V minimum/5.0 V maximum.
- J. At the manufacturer's option, the following alternate procedure may be used to guarantee f_{MAX}. Serial mode f_{MAX} for the serial mode shall be guaranteed by clocking the device four times (after reset) at f_{MAX} and looking for the Q_D output to toggle within three periods (3 x 1/ f_{MAX}) plus allowed propagation delay. Two tests are performed, depending on the state of the data input, to guarantee both LH and HL transition of the output pulse.

 $\underline{1}/$ This pulse must occur after the clear pulse.

2/ IIL limits (mA) min/max values for circuits shown:

Parameter	Terminal	A	В	С	D	E	F	G
I _{IL1}	CLR	16/4	11/35	16/4	12/35	12/36	12/36	16/4
I _{IL2}	S/R, A _{IN} , B _{IN}	-	11/35		16/4	105/345	"	-
	C _{IN} , D _{IN} , S/L							
I _{IL3}	S ₀ , S ₁	-	03/3		12/36	12/36	"	-
I _{IL4}	CLK		03/3	20/44	12/36	12/36	"	15/38

			Cases E,F		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Te		
Subgroup	Symbol		Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured	Lim		Unit
		method	Test no.	CLR	J	x	A _{IN}	B _{IN}	CIN	D _{IN}	GND	Shift Load	CLK	QD	QD	QC	QB	QA	V _{cc}	terminal	Min	Max	
1 Tc = 25°C	V _{он}	3005	1	В	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	0.7 V	GND	0.7 V	В <u>1</u> /	4 mA					4.5 V	Q D	2.5		V
10 - 23 0			2				"			2.0 V					4 mA					QD			"
			3				"			"						4 mA				QC			"
			4				"										4 mA			QB			"
		1	5				"		"									4 mA		QA			"
	V _{OL}	3007	6	-			0.7	0.7	0.7				"	4 mA						Q D		0.4	"
			7	-			"		"	0.7					4 mA					QD		"	"
			8				"	"	"				"			4 mA				QC		"	"
			9	-			"	-			-						4 mA			QB		"	
			10	-			"		"									4 mA		QA		"	
	VIC		11	-18 mA																CLR		-1.5	
			12		-18 mA															J		"	
			13			-18 mA														ĸ			
			14				-18 mA													A _{IN}		"	"
			15					-18 mA												BIN		"	
			16						-18 mA											CIN		"	
			17							-18 mA										D _{IN}		"	
			18									-18 mA								Shift load		"	
			19										-18 mA							CLK		"	
	I _{IH1}	3010	20	2.7 V															5.5 V	CLR		20	μΑ
			21		2.7 V	0.71/						GND	A							J			
			22			2.7 V	0.714					GND								ĸ			
			23 24				2.7 V	2.7 V				4.5 V								A _{IN} B _{IN}			
			24					2.1 V	2.7 V											CIN			
		1	25						2.1 V	2.7 V										D _{IN}			"
		'	20							2.1 4		2.7 V								Shift load		"	
		1	28										2.7 V							CLK			"
	I _{IH2}		29	5.5 V																CLR		100	
		1	30		5.5 V		İ		ĺ			GND	Α							J			"
			31			5.5 V						GND								ĸ		"	"
		1	32				5.5 V					4.5 V								A _{IN}		"	"
		1	33					5.5 V												BIN		"	"
		1	34						5.5 V											CIN		"	"
		1	35							5.5 V										DIN		"	
		1	36									5.5 V								Shift load		"	"
1]	37										5.5 V							CLK		"	"

TABLE III. Group A inspection for device type 02. Terminal conditions (pins not designated may be high ≥ 2.0 ; or low ≤ 0.7 V; or open).

See footnotes at end of device types 02.

		MUL OTO	0 5 5							esignate		e nign ≥.			v, or ope			45	40		- .		
		MIL-STD-	Cases E, F	1	2	3	4	5	6	/	8	g	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			1
		method	Test no.	CLR	J	ĸ	A _{IN}	BIN	CIN	D _{IN}	GND	Shift Load	CLK	Q D	QD	QC	QB	QA	V _{CC}		Min	Max	ĺ
1	I _{IL1}	3009	38	0.4 V							GND	Louid							5.5 V	CLR	2/	2/	mA
Tc = 25°C			39	В	0.4 V							4.5 V								J	"		
			40	В		0.4 V						4.5 V	<u>1</u> / A or B							ĸ	"		
			41				0.4 V					GND							-	A _{IN}	"	=	
			42					0.4 V												BIN	"		
			43						0.4 V											CIN	"		
			44							0.4 V										DIN			
			45									0.4 V								Shift load			
			46										0.4 V							CLK			
	I _{0S}	3011	47	GND								4.5 V	4.5 V	GND						Q D	-15	-100	mA
			48	4.5 V			4.5 V	4.5 V	4.5 V	4.5 V		GND	В		GND					QD	"		
			49	-				-		-	=	-	"			GND			-	QC	"	-	
			50	-				-			-	-					GND		-	QB		-	
			51										"					GND		QA			
	Icc	3005	52	В					"				4.5 V							V _{cc}		21	
		3005	53	4.5 V				-	"	-	-	=	В						-	V _{cc}		21	"
2	Same te	sts, termina	al conditions a	ind limits a	as subgro	oup 1, exc	ept T _C =	125°C, a	nd V _{IC} te	sts are or	nitted.												
3	Same te	sts, termina	al conditions a	ind limits a	as subgro	oup 1, exc	ept T _C =	-55°C, ai	nd V _{IC} te	sts are on	nitted.												

TABLE III. <u>Group A inspection for device type 02</u> - Continued. Terminal conditions (pins not designated may be high \ge 2.0; or low \le 0.7 V; or open).

65

See footnotes at end of device type 02.

						-					pection f					,							
	1	MIL-STD-	Cases E,F		2		rminal c	onditior 5	ns (pins r	not desig	nated m	ay be hig	$h \ge 2.0;$	or low ≤	≤ 0.7 V; c	r open)		45	40	-		4	
		MIL-STD- 883		1		3			-		-						14	15	16			est	
Subgroup	Symbol	method	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured		nits	Unit
			Test no.	CLR	J	ĸ	A _{IN}	BiN	C _N	D _N	GND	Shift Load	CLK	Q D	QD	QC	QB	QA	Vcc	terminal	Min	Max	
7	Truth	3014	54	D	С	С	C	C	С	C	GND	D	D	Н	L	L	L	L	5.0V	All			
$T_{\rm C}=25^{\circ}C$	table		55		D	С						D								outputs	1		
	test		56 57		D	D						DC									1		
			58	С								c									+		
			59	÷	•							D			-		•				t		
			60	•	•		•	•	•		•		С	L	Н	Н	н	Н			1		
			61	•							•		D	L	Н	Н	Н	Н			1		
			62		С	С	D	D	D	D			D	L	н	н	н	н			ļ		
			63 64										C	H	L	L	L ·	L			ł		
			65				•	•				С	D	•			•	L			ł		
			66	•	•		•	•		-			c	•	-	•	•	H			t		
			67	•	•		•	•					D	•		•	•				1		
			68										С				H.						
			69 70										D C			н					ł		
			70										D			-					Se	e C, D, E, a	and F
			72	•									č	L	н						- n	0, 0, 2, 2,	
			73	•							•		D								1		
			74	•	D	D	С	С	С	С		-	D		-		•				1		
			75										С					L			1		
			76 77										D								ł		
			78										D				-				ł		
			79	•	•		•	•		-			č	•	-	L	•				t		
			80	•	•		•	•					D	•		•	•				1		
			81										С	Н	L]		
			82										D	н.							4		
			83 84		C .		D -	D -	D	D .			D					н			ł		
			85										D					н			ł		
			86	•	•								С				н	L			1		
			87	•			•	•			•		D	•			Н	L			1		
			88										С			н	L	тт			1		
			89 90										D	L	н	H	L H	L			ł		
		1	91	•	•		•	•			•	•	D	L	Н	Ĺ	н	L			+		
			92	•	•								С	н	L	н	L	н			1		
			93	•							•		D	Н	L	Н	L	Н			1		
			94 95		D	С	C	C	C	C			D	н	L	н	L				1		
			95										D	L	Н	L	H.				ł		
			97				•	•					č	H	L	H	•				ł		
			98	•	•		•	•	•		•	•	D	H	Ĺ	H	•				ł		
			99	•			•	•					С	L	Н	Н	•						
8			ditions, and limits	-	up 7 except	T _c = 125°C			1	1	01/2	0110			1		1	0.17	5.61/				
9 T 0500	f _{MAX} See G	(Fig. 5)	100	J			IN	IN			GND	GND	IN				OUT	OUT	5.0 V	QA QB	27		MHz
$T_{\rm C}=25^{\circ}C$	See G		101		-			IIN	IN							OUT	001			QC			+
			102	•						IN	•	•			OUT	001				QD			•
	1	1	104	•						IN	•			OUT						Q D			
	1				1	I			1		1								1	ųр	1	1	L

TABLE III. Group A inspection for device type 02 - Continued.

See footnotes at end of device type 02.

			Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	CLR	J	ĸ	A _{IN}	B _{IN}	CIN	D _{IN}	GND	Shift Ioad	CLK	Q D	QD	QC	QB	QA	V _{CC}		Min	Max	
	t _{PHL1}	3003	105	J	J	J					GND	J	IN					OUT	5.0 V	CLK to QA	5	27	ns
$T_C = 25^{\circ}C$		(Fig. 5)	106		See Fig. 5	See Fig. 5											OUT			CLK TO QB	"		
			107			"										OUT				CLK TO QC			"
			108												OUT					CLK TO QD	"		"
			109			"								OUT						CLK TO Q D	"		"
			110	-			IN					GND						OUT		CLK TO QA	"		"
			111	-				IN			-						OUT		-	CLK TO QB	"		
			112						IN							OUT				CLK TO QC	"		"
			113							IN					OUT					CLK TO QD	"		"
			114							IN				OUT						CLK TO QD			"
	t _{PHL1}		115		GND	GND						J						OUT		CLK TO QA	"	31	"
			116		See Fig. 5	See Fig. 5											OUT			CLK TO QB			
			117		"	"										OUT				CLK TO QC	"		"
			118			"									OUT					CLK TO QD	"		"
			119	-										OUT						CLK TO Q D	"		"
			120				IN					GND						OUT		CLK TO QA	"		"
			121					IN									OUT		-	CLK TO QB	"		
			122						IN							OUT				CLK TO QC	"		"
			123							IN					OUT					CLK TO QD			"
			124							IN				OUT						CLK TO Q D	"		"
	t _{PHL2}		125	IN			J											OUT		CLK TO QA		35	"
			126					J									OUT			CLK TO QB	"		
			127						J						OUT	OUT				CLK TO QC			
	t _{PHL2}		128 129							J				OUT	OUT					CLK TO QD			
10 T _C = 125°C	f _{MAX} See G		130 to 134		1	1	1	1	<u> </u>				1	<u> </u>	1	1	1				25		мн
10 - 125 0	t _{PLH1}		135 to 144	Same te	ests and	terminal o	condition	is as for :	subarour	9											5	41	ns
	t _{PHL1}		145 to 154	ouno u		torrinia	, or raidon		sasgroup													47	
	t _{PHL2}		155 to 158																			53	
			155 10 158																			53	
	t _{PHL2}		109																		1	00	1

TABLE III. <u>Group A inspection for device type 02</u> - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; or low \leq 0.7 V; or open).

See footnotes at end of device type 02.

FOOTNOTES:

C. $V_{IN} = 2.5 V.$

D. $V_{IN} = 0.4 V.$

68

- E. Test numbers 54 through 99 shall be run in sequence.
- F. Output voltages shall be either: (1) H≥2.5 V minimum and L≤0.4 V maximum when using a high speed checker double comparator; (2) H≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
- G. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the parallel input shall be one-half of the clock input frequency and the parallel input shall be shifted such that the parallel input \uparrow and \downarrow are coincident with the clock \downarrow . Rise and fall times \leq 6 ns. Input peak voltage 3 to 5 volts.

J. 3.0 V minimum/5.0 V maximum.

1/ This pulse must occur after the clear pulse.

 $\underline{2}$ / I_{IL} limits (mA) min/max values for circuits shown:

Parameter	Terminal	A	В	С	D	E	F	G
I _{IL1}	CLR	16/4	11/35	16/4	12/35	12/36	12/36	16/4
	J, K, A _{IN} ,		16/4		16/4	105/345	-	"
	B _{IN} , C _{IN} , D _{IN}							
	Shift load		08/3		12/36	12/36	-	"
1	CLK	"	03/3	20/44	12/36	12/36	"	15/38

							ABLE III														
							ditions (p														
		MIL- STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Lin	nits	I
Subgroup	Symbol	883	Cases 2,X	2	3	4	5	8	9	10	12	13	14	16	18	19	20	Measured			Unit
	-	method	Test no.	Serial	A _{IN}	B _{IN}	CIN	D _{IN}	Mode	GND	CLK ₂	CLK ₁	QD	QC	QB	QA	V _{cc}	terminal	Min	Max	I
1	VoH	3006	1	2.0 V	GND	GND	GND	GND	0.7 V	GND	GND	A				4 mA	4.5 V	QA	2.5		V
гс = 25°С	VOH	3000	2	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	GIND "	A	GND				4 mA	4.5 V	QA	2.0		v "
0 = 25 0			3		2.0 V	2.0 V	2.0 V	2.0 V	2.0 V		"	"			4 mA	4 ША		QB			
			4				"				"			4 mA	.4 110 (QC			
			5				"				"		4 mA					QD			
	Vol	3007	6	0.7 V	4.5 V	4.5 V	4.5 V	4.5 V	0.7 V		GND	Α				4 mA	"	QA		0.4	
			7		0.7 V	0.7 V	0.7 V	0.7	2.0 V		Α	GND				4 mA	"	QA			
			8		"		"				"				4 mA		"	QB			
			9		"		"				"			4 mA			"	QC			
			10				"		"		"		4 mA				"	QD		"	
	VIC		11	-18 mA						-							"	Serial		-1.5	
			12		-18 mA					-								A _{IN}			
			13			-18 mA												B _{IN}			
			14				-18 mA										"	CIN		-	
			15					-18 mA										D _{IN}			
			16						-18 mA									Mode			
			17								-18 mA							CLK ₂			
		0040	18	0714					4 = 14			-18 mA						CLK ₁			
	I _{IH3}	3010	19	2.7 V					4.5 V								5.5 V	Serial		20	μA "
			20		2.7 V	0.714			GND									A _{IN}			
			21			2.7 V	2.7 V											B _{IN}			
			22 23				2.7 V	2.7 V										C _{IN}			
			23					2.7 V	4.5 V		2.7 V							D _{IN} CLK ₂			
			24						4.5 V		2.7 V	2.7 V						CLK ₂ CLK ₁			
	I _{IH4}		26	5.5 V					4.5 V			2.1 V						Serial		100	
	1114		27	0.0 V	5.5 V				GND									A _{IN}		"	
			28		0.0 V	5.5 V			"									BIN			
			29			0.0 1	5.5 V											CIN			
			30					5.5 V										DIN			
			31						4.5 V		5.5 V							CLK ₂			
			32					ĺ	4.5 V			5.5 V					"	CLK ₁			
	I _{IH7}		33						2.7 V	-	GND							Mode		40	
	I _{IH8}		34						5.5 V		GND							Mode		200	

TABLE III. <u>Group A inspection for device type 03</u> - Continued.

See footnotes at end of device types 03.

			Cases	1	2	3	4	5	6	7	8	9	≤ 0.7 V or 10	11	12	13	14	Measured	Test	Limits	Unit
		MIL-STD-	A,B,C,D		-	0	-	Ŭ	Ŭ	'	0	5	10		12	10	.4	terminal	1050	Linno	01110
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	Serial	A _{IN}	BIN	CIN	DIN	Mode	GND	CLK ₂	CLK ₁	QD	QC	QB	QA	Vcc		Min	Max	1
1	I _{IL2}	3009	35	0.4 V					GND	GND							5.5 V	Serial	1/	1/	mA
Tc = 25°C			36		0.4 V				4.5 V	"							-	A			"
			37			0.4 V			"	"								В			
			38				0.4 V			"								С			"
			39					0.4 V		"								D			"
			40						0.4 V	"	4.5 V							Mode			"
	I _{IL4}		41						4.5 V	"	0.4 V							CLK ₂			
			42						GND	"		0.4 V						CLK ₁			
	I _{0S}	3011	43		4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	"	A	GND				GND		QA	-15	-100	
			44							"	"				GND		-	QB			"
			45				"			"				GND				QC			"
			46			-	=	-		"		-	GND				-	QD			"
	Icc	3005	47		GND	GND	GND	GND	5.5 V			А						V _{cc}		21	
~			onunions anu	limits as s	ubgroup 1	, except I	c = 125°C	and V _{IC} t	ests are o	nitted.											
3	Same te	sts, terminal c	onditions and																		
3	Same te Truth	sts, terminal c 3014									В	С	X	X	X	X	5.0 V	All			
7	Truth		onditions and	limits as s	ubgroup 1	, except T	_c = -55°C	and VIC te	ests are or	nitted.	B C	C "	X H	X H	X	X	5.0 V	All			
	Truth		onditions and 48	limits as s B	ubgroup 1 B	, except T B	_c = -55°C B	and V _{IC} te	ests are or B	nitted. GND									-		
7	Truth table		onditions and 48 49	limits as s B B	ubgroup 1 B B	, except T B B	_c = -55°C B B	and V _{IC} te	ests are or B	nitted. GND	С		Н	Н	Н	Н			-		
7	Truth table		conditions and 48 49 50	limits as s B B "	ubgroup 1 B B B	, except T B B B	_c = -55°C B B B	and V _{IC} te B B B	ests are or B	nitted. GND "	C B		H	H H	H H	H H		outputs "	-		
7	Truth table		anditions and 48 49 50 51 52 53	limits as s B B "	ubgroup 1 B B B C	, except T B B B C	c = -55°C B B B C	and V _{IC} to B B C	ests are or B	nitted. GND "	C B B		H H H -	H H	H H	H H	•	outputs " "	See	B,C,D,	and E
7	Truth table		anditions and 48 49 50 51 52 53 53 54	limits as s B " "	ubgroup 1 B B C C C B C	, except T B B C C B C	B B C C B C C C	and V _{IC} te B B C C B C	ests are or B " "	nitted. GND " "	C B B C		H H H L	H H H L	H H H	H H		outputs "	See	B,C,D,	and E
7	Truth table		anditions and 48 49 50 51 52 53	limits as s B " " "	ubgroup 1 B B C C B	, except T B B C C B C B C	B B C C B C B C "	and V _{IC} te B B C C B C "	ests are or B " "	nitted. GND " " "	C B C "	" " " B	H H L "	H H L "	H H L "	H H		outputs " "	See	B,C,D,	and E
7	Truth table		48 49 50 51 52 53 54 55 56 56	limits as s B " " " " " "	ubgroup 1 B B C C C B C	, except T B B C C C B C C "	B B C C B C C C	and V _{IC} te B B C C B C C "	B B I I C I I	nitted. GND " " " " " " "	C B C "	" " B B C B	H H L "	H H L "	H H L "	H H L L	* * *	outputs " " " " " "	See	B,C,D,	and E
7	Truth table		48 49 50 51 52 53 54 55 56 57	limits as s B B " " " " " " " " " " " " " " " " "	ubgroup 1 B B C C B C B C	, except T B B C C C B C C " "	C = -55°C B B C C C B C C "	and V _{IC} te B B C C C B C C "	B B I I C I I I I I I I I I I I I I	nitted. GND " " " " " " " " "	C B C " "	" " B B C B C	H H L " "	H H L " "	H H L "	H H L L	8 8 8 8 8	outputs " " " " " " " " " " " " " " " " " " "	See	B,C,D,	and E
7	Truth table		onditions and 48 49 50 51 52 53 54 55 56 57 58	limits as s B B " " " " " " " " " " " " " " " " "	ubgroup 1 B B C C C B C C " "	, except T B B C C C B C C " " "	C = -55°C B B C C C B C C " "	and V _{IC} to B C C C B C " "	ests are or B n n r C C n n r r r	nitted. GND " " " " " " " " " " "	C B C " " "	" " B B C B C B C B	H H 	H H T T T T T T T T	H H L " " " "	H H L L H "	8 8 8 8 8 8 8	outputs " " " " " " " " " " " " " " " " " " "	See	B,C,D,	and E
7	Truth table		A8 49 50 51 52 53 54 55 56 57 58 59	limits as s B B	ubgroup 1 B B C C C B C C " " " "	, except T B B C C B C C " " " "	C = -55°C B B C C C B C C " " " " "	and V _{IC} te B B C C B C C B · · · ·	B B I I C I I I I I I I I I I I I I	nitted. GND " " " " " " " " " " " " "	C B C " " " " " "	" " B B C B C B C	H H 	H H 	H H L " " " "	H H L L	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	outputs " " " " " " " " " " " " " " " " " " "	See	B,C,D,	and E
7	Truth table		onditions and 48 49 50 51 52 53 54 55 56 57 58	limits as s B B " " " " " " " " " " " " " " " " "	ubgroup 1 B B C C C B C C " "	, except T B B C C C B C C " " "	C = -55°C B B C C C B C C " "	and V _{IC} to B C C C B C " "	ests are or B n n r C C n n r r r	nitted. GND " " " " " " " " " " "	C B C " " "	" " B B C B C B C B	H H 	H H T T T T T T T T	H H L " " " "	H H L L H "	8 8 8 8 8 8 8	outputs " " " " " " " " " " " " " " " " " " "	See	B,C,D,	and E

TABLE III. <u>Group A inspection for device type 03</u> - Continued onditions (pins not designated may be high ≥ 2.0 V or low ≤ 0.7 V or open).

See footnotes at end of device type 03.

	1		<u> </u>		Termina										10	10					
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lin	nits	Ur
	Symbol		Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20	terminai			
Subgroup	Symbol				-		-	-				-		-		-					1
		method	Test no.	Serial	A _{IN}	BIN	CIN	DIN	Mode	GND	CLK ₂	CLK ₁	QD	QC	QB	QA	V _{CC}		Min	Max	
7	Truth	3014	62	В	С	С	С	С	С	GND	С	В	H	Н	Н	Н	5.0 V	All			
= 25°C	table		63	С	В	В	В	В			В	В				Н		outputs			
	tests		64					"				С				L					
			65					"				В									
			66					"				С			L						
			67					"				В									L
			68					"				С		L					See E	3,C,D,	, and
			69					"				В									
			70					"		-		С	L								
		l	71								С		"								
			72					"	В		С	"									
			73					"	С		С										
			74						С		В										
		I	75						В		В										
			76					"	В		С	В	Н	Н	Н	Н					
			77					"	С		С										
			78						С		В										
			78 79						C B		B										
8	Same te	sts, terminal c							В			"									
8		sts, terminal c (Fig. 6)	79						В			"					" 5.0 V		22		
9	f _{MAX}	(Fig. 6)	79 onditions, and		" subgroup				B C.		В	"			" " OUT		5.0 V	n	22		
9		(Fig. 6)	79 onditions, and 80 81		" subgroup	" 7 except 1	" F _C = 125°C		B C. G		B	"			OUT		" 5.0 V "	" QA QB			
9	f _{MAX}	(Fig. 6)	79 onditions, and 80 81 82		" subgroup	" 7 except 1			B C. G	" GND "	B IN "	"			" " OUT			" QA			
9	f _{MAX}	(Fig. 6)	79 onditions, and 80 81 82 83	" I limits as :	" subgroup	" 7 except 1	" F _C = 125°C	" and -55°	B C. " "	" GND "	B IN "		8		" OUT	" OUT		" QA QB QC QD			
9	f _{MAX} See F,J	(Fig. 6)	79 onditions, and 80 81 82 83 83 84		" subgroup 7 IN	" 7 except 1	" F _C = 125°C	" and -55°	B C.	" GND "	B IN "	" " 	8		" OUT	" OUT		" QA QB QC QD QA		32	
9	f _{MAX}	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85	" I limits as :	" subgroup	" 7 except 1	" F _C = 125°C	" and -55°	B C. " "	n GND n n n	B IN "		8			" OUT		" QA QB QC QD QA CLK to QA		32	
9	f _{MAX} See F,J	(Fig. 6)	79 onditions, and 80 81 82 83 83 84	" I limits as :	" subgroup 7 IN	" 7 except 1 IN	" F _C = 125°C	" and -55°	B C.	n GND n n n	B IN "		8		OUT	" OUT		" QA QB QC QD QA CLK to QA CLK to QB		32 "	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 86 87	" I limits as :	" subgroup 7 IN	" 7 except 1 IN	" F _c = 125°C	" and -55° IN	B C. " " GND G	" GND " " " "	B IN " " " "		OUT	" OUT		" OUT		" QA QB QC QD QA CLK to QA CLK to QB CLK to QC		32 " "	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 85 86	" I limits as :	" subgroup 7 IN	" 7 except 1 IN	" F _c = 125°C	" and -55°	B C. " " GND G	" GND " " " "	B IN " " " "		8	" OUT		" OUT		" QA QB QC QD QA CLK to QA CLK to QA CLK to QC CLK to QD		32 " "	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 88 89	" I limits as s	" subgroup 7 IN	" 7 except 1 IN	" F _c = 125°C	" and -55° IN	B C. " " " GND G " "	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	B IN " " " "	IN	OUT	" OUT	OUT	" OUT OUT OUT		" QA QB QC QD QA CLK to QA CLK to QB CLK to QC CLK to QD CLK to QA		32 " " "	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 88 88 89 90	" I limits as s IN IN	" subgroup 7 IN	" 7 except 1 IN	" F _c = 125°C	" and -55° IN	B C. " " " GND G " "	" GND " " " " " " " " " " " " "	B IN " " " "	IN	OUT	OUT		" OUT OUT OUT	8 8 8 8 8 8 8 8 8	, QB QC QD QA CLK to QA CLK to QB CLK to QC CLK to QC CLK to QA CLK to QA		32 " " " "	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 87 88 89 90 91	" I limits as s IN IN IN IN IN	" subgroup 7 IN	" 7 except 1 IN	" F _c = 125°C	" and -55° IN	B C. " " " GND G " "	" GND " " " " " " " " " " " " "	B IN " " " "	IN	OUT	" OUT	OUT	" OUT OUT OUT	8 8 8 8 8 8 8 8 8	QA QB QC QD QA CLK to QA CLK to QC		32 " " " " "	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 88 88 89 90	" I limits as s I I I I I I I I I I I I I I I I I I	" subgroup 7 IN	" 7 except 1 IN	" F _c = 125°C	" and -55° IN	B C. " " " GND G " "	" GND " " " " " " " " " " " " " " " " " " "	B IN " " " "	IN	OUT	OUT	OUT	" OUT OUT OUT	8 8 8 8 8 8 8 8 8	QA QB QC QD QA CLK to QA CLK to QB CLK to QC CLK to QD CLK to QC CLK to QC CLK to QC CLK to QC CLK to QC		32 " " " " " " " "	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 87 88 88 89 90 91 92	" I limits as s I I I I I I I I I I I I I I I I I I	" subgroup ' IN IN IN	" 7 except 1 IN	" F _c = 125°C	" and -55° IN	B C. G GND G ND G ND S GND " " "	8 6ND 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	B " " " " "	IN	OUT	OUT	OUT	OUT OUT OUT OUT	8 8 8 8 8 8 8 8 8	• QA QB QC QD QA CLK to QA CLK to QC CLK to QA			
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	" I limits as s I I I I I I I I I I I I I I I I I I	" subgroup ' IN IN IN	" 7 except 1 IN IN IN	" " " " " " " " " " " " " " " " " " "	" and -55° IN	B C. G GND G ND G ND S GND " " "	8 6ND 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	B " " " " "	IN	OUT	UUT OUT OUT	OUT	OUT OUT OUT OUT	8 8 8 8 8 8 8 8 8	- QA QB QC QD QA CLK to QA CLK to QA CLK to QD CLK to QA CLK to QC CLK to QC CLK to QC CLK to QC CLK to QC CLK to QC CLK to QC			
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 87 88 89 90 91 91 92 93 94 95	" I limits as s I I I I I I I I I I I I I I I I I I	" subgroup ' IN IN IN	" 7 except 1 IN IN IN	" F _c = 125°C	" and -55° IN IN IN	B C. G G G G G G G G G G G	* GND * * * * * * * * * * * * * * * * * * *	B IN " " " " " " " " "	IN	" OUT OUT OUT	OUT	OUT	OUT OUT OUT OUT	8 8 8 8 8 8 8 8 8	QA QB QC QD QA CLK to QA CLK to QB CLK to QC CLK to QC CLK to QC CLK to QC CLK to QC CLK to QC CLK to QA CLK to QC CLK to QA CLK to QA			
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 88 89 90 91 91 92 93 94 95 96	" I limits as s IN	" subgroup ' IN IN IN	" 7 except 1 IN IN IN	" " " " " " " " " " " " " " " " " " "	" and -55° IN	B C. G G ND G G MD G MD G MD G G G G G	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	B IN * * * * * * * * * * * * *	IN ""	OUT	UUT OUT OUT	OUT	OUT OUT OUT OUT	8 8 8 8 8 8 8 8 8	- QA QB QC QD QA CLK to QA CLK to QA CLK to QC CLK to QC			
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	" I limits as s I I I I I I I I I I I I I I I I I I	" subgroup ' IN IN IN	" 7 except 1 IN IN IN	" " " " " " " " " " " " " " " " " " "	" and -55° IN IN IN	B C. G G G G G G G G G G G	8 6ND 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	B IN * * * * * * * * * * * * *	IN	" OUT OUT OUT	UUT OUT OUT	OUT	OUT OUT OUT OUT	8 8 8 8 8 8 8 8 8	- QA QB QC QD QA CLK to QA CLK to QA CLK to QA CLK to QC CLK to QC CLK to QC CLK to QB CLK to QC CLK to QC CLK to QB CLK to QC CLK to QC			
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 88 89 90 91 91 92 93 94 95 96	" I limits as s IN IN IN IN IN IN IN IN	" subgroup ' IN IN IN	" 7 except 1 IN IN IN	" " " " " " " " " " " " " " " " " " "	" and -55° IN IN IN	B C. G G ND G G MD G MD G MD G G G G G	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	B IN * * * * * * * * * * * * *	IN " " "	" OUT OUT OUT	UUT OUT OUT	OUT	OUT OUT OUT OUT		- QA QB QC QD QA CLK to QA CLK to QA CLK to QC CLK to QC		" " " " " " " " " " " " " " " " " " "	

TABLE III. <u>Group A inspection for device type 03</u> - Continued.

See footnotes at end of device type 03.

TABLE III. <u>Group A inspection for device type 03</u> - Continued.

Subgroup	Symbol	MIL-STD- 883 method	Cases A,B,C,D	1 2	2	3	4	5 8	6 9	7 10	8 12	9 13	10	11	12 18	13 19	14	Measured terminal	Limits		Unit
			Cases 2, X			4	6						14	16			20				
			Test no.	Serial	A _{IN}	B _{IN}	CIN	D _{IN}	Mode	GND	CLK ₂	CLK ₁	QD	QC	QB	QA	V _{CC}		Min	1in Max	
	f _{MAX} See F,J	3003 (Fig. 6)	101 to 105																20		MHz
1	t _{PLH1}	3003 (Fig. 6)	106 to 113	Same tes	ts and terr	minal cond	ditions as f	for subgro	up 9.										5	48	ns
1	t _{PHL1}	3003 (Fig. 6)	114 to 121																5	56	ns

Notes:

72

A. Apply input pulse: _____ 2.5 V minimum/5.5 V maximum 0 V

B. V_{IN} = 2.5 V.

= 2.5 V.

C. $V_{IN} = 0.4 V.$

- D. Tests numbers 48 through 79 shall be run in sequence.
- E. Output voltages shall be either: (1) H ≥2.5 minimum and L ≤0.4 V maximum when using a high speed checker double comparator; (2) H ≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
- F. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the serial input shall be one-half of the clock input frequency and the input shall be shifted such that the input ↑ and ↓ are coincident with the clock ↑. Rise and fall times ≤ 6 ns. Input peak voltage 3 to 5 volts.
- G. 3.0 V minimum/5.0 V maximum.
- J. At the manufacturer's option, the following alternate procedures may be used to guarantee f_{MAX}:
 - a. Parallel mode. f_{MAX} for the parallel mode shall be guaranteed by performing propagation delay measurements with the clock pulse width at 1/2 x 1/f_{MAX}. In addition to the constraints on the clock pulse, the inputs are set to the worst-case condition for the t_{setup} and t_{hold} requirements. Both positive and negative clock pulse widths shall be tested. The five tests to justify each JAN f_{MAX} requirement shall be used to test all possible input/output combinations. A failing limit or nontoggle will indicate that the device fails to function at f_{MAX} and/or the propagation delay from input to output has exceeded the allowed limit.
 - b. Serial mode. f_{MAX} for the serial mode shall be guaranteed by clocking the device four times (after reset) at f_{MAX} and looking for the Q_D output to toggle within three periods (3 \times $1/f_{MAX}$) plus allowed propagation delay. Two tests are performed, depending on the state of data input, to guarantee both LH and HL transition of the output pulse.

<u>1/</u>	I _L limits	(mA)	min/max	values for	or circuits	shown:
-----------	-----------------------	------	---------	------------	-------------	--------

Parameter	Terminal	Α	В	С	D	E
I _{IL2}	Serial A,	16/4	11/35	16/4	105/345	12/35
	B, C, D					
I _{IL4}	Mode	"	06/6	30/75	24/72	"
	CLK _{2,} CLK ₁	"	03/3	20/44	12/36	
	CLK ₁					

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Lir	nits	T
Subgroup	Symbol		Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Uni
		method	Test no.	CLK	A _{IN}	BIN	CIN	V _{CC}	DIN	EIN	Enable		QE	QD	GND	QC	QB	QA	CLR	terminal	Min	Max	
1	V _{OH}	3006	1	2.0 V	2.0 V	2.0 V	2.0 V	4.5 V	2.0 V	2.0 V	2.0 V	2.0 V			GND			4 mA	2.0 V	QA	2.5	L	V
c = 25°C			2						"								4 mA			QB			
			3				"		"							4 mA				QC		<u> </u>	
			4			"	"		"					4 mA						QD			
			5				"		"				4 mA							QE	-	L	
	Vol	3007	6				-				0.7 V							4 mA	0.7 V	QA		0.4	
			7				"		"								4 mA			QB			
			8	"		"	-		"							4 mA				QC			
			9	"		"	"		"					4 mA						QD		"	
			10			"	"		"				4 mA							QE			
	VIC		11	-18 mA																CLK		-1.5	
			12		-18 mA															A _{IN}			
			13			-18 mA														BIN			
			14				-18 mA													CIN			
			15						-18 mA											DIN		"	
			16							-18 mA										EIN			
			17								-18 mA									Enable		"	
			18									-18 mA								Serial			
			19																-18 mA				
	I _{IH5}		20	2.7 V	GND	GND	GND	5.5 V	GND	GND	GND	GND							GND	CLK		20	μ
			21	GND	2.7 V	GND	GND		"											A _{IN}		"	
			22		GND	2.7 V	GND												-	BIN			
			23			GND	2.7 V		"											CIN			
			24	"			GND		2.7 V	-									-	DIN			
			25				"		GND	2.7 V		-							-	EIN			
			26				"		"	GND		2.7 V								Serial			
			27				"					GND							2.7 V	CLR			
	I _{IH6}		28	5.5 V			-		"										GND	CLK		100	
			29	GND	5.5 V		-			-									-	A _{IN}		"	
			30		GND	5.5 V	-												-	BIN			
			31			GND	5.5 V												-	CIN			
			32				GND		5.5 V										-	DIN			
			33				"		GND	5.5 V									-	EIN			
			34			-	-		"	GND		5.5 V							=	Serial		-	
			35	"			-		"	-		GND							5.5 V	CLR			
	I _{IH9}		36	"							2.7 V	GND							GND	Enable			
	I _{IH10}		37	"			"		"		5.5 V	GND							GND	Enable		500	
	IIL3	3009	38	0.4 V	4.5 V	4.5 V	4.5 V		4.5 V	4.5 V	4.5 V	4.5 V							4.5 V	CLK	1/	1/	n
			39	4.5 V	0.4 V	4.5 V	"	"	"	"		"								A _{IN}	-	"	1
			40		4.5 V	0.4 V	"	"	"	"		"								B _{IN}		"	1
			41	"		4.5 V	0.4 V		"	"						1	1		"	CIN		"	
			42			4.5 V	4.5 V		0.4 V							1	1			DIN			

TABLE III. Group A inspection for device type 04.

See footnotes at end of device types 04.

						Termin					<u>n for dev</u> may be h				or oper	n).							
		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test I	imits	Ur
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	CLK	A _{IN}	BIN	CIN	V _{CC}	DIN	EIN	Enable	Serial	QE	QD	GND	QC	QB	QA	CLR	1	Min	Max	
1	I _{IL3}	3009	43	4.5 V	4.5 V	4.5 V	4.5 V	5.5 V	4.5 V	0.4 V	4.5 V	4.5 V			GND				4.5 V	EIN	1/	1/	m
[c = 25°C			44	"					"	4.5 V	"	0.4 V							4.5 V	Serial		"	
			45	"			"		"		"	4.5 V							0.4 V	CLR		"	
	I _{IL5}		46	"					"		0.4 V								4.5 V	Enable		"	
	los	3011	47	"							4.5 V							GND		QA	-15	-100)
	00		48	"			"		"		"						GND			QB		"	
			49	"			"		"		"					GND				QC		"	
			50	"							"			GND						QD		"	
			51	"			"		"		"		GND							QE		"	
	Icc	3005	52																GND	Vcc		20	
2		sts, termina	l conditions, a	and limits	as subg	roup 1, ex	cept T _c =	125°C and	d V _{IC} tests	are omitt	ed.										1	1	
3	Same te	sts. termina	l conditions, a	und limits	as subo	roup 1. ex	cept T _C =	-55°C and	V _{IC} tests	are omitte	ed.												
7	Truth	3014	53	В	A	Α	A	5.0 V	A	A	В	В	1	L	GND	L	L	1	В	All	1		
, T _C = 25°C		3014	54	A	- A	А "	А "	5.0 V	А "	- A	B	A	L	L	GIND "	L	L	L	B	outputs			
$1_{\rm C} = 25^{\circ}{\rm C}$	test		55	B							B	B	L	L		L	L	L	B	Uuipuis "			
	lesi		56	 							A	<u>В</u>	H	H		H	H	H	A				
			57		В	В	В		В	В	- A 		Н	Н		Н	Н	Н	A				
			58		В "	В "	В "		B "	B	"		L	L		L	L	L	B				
			59								В		L "			-		L	A				
			60								"	A	"					L					
			61	A							"	-						Н					
			62	B							"		"								See A	BC	1 and
			63	A							"		"				н				0007	ц, D, C,	
			64	В							"		"										
			65	A							"					Н							
			66	B							"		"										
			67	A							"		"	н									
			68	B							"		"										
			69	A							"		Н										
			70	B							"		"								1		
			71	B	Α	Α	Α		Α	Α	"	В	"			"					1		
			72	A	"	"	"		"	"	"		"			"		1					
			73	B							"		"			"					1		
			74	A							"		"				L				1		
			75	В							"		"			"					1		
			76	A									"			L					1		
			77	B							"		"								1		
			78	A							"		"	L				"			1		
																					4	1	
			79	В		"								L									

TABLE III. Group A inspection for device type 04 - Continued

See footnotes at end of device type 04.

75

Downloaded from $\underline{\text{Elcodis.com}}$ electronic components distributor

						Termina	al condi	tions (pi	ns not d	lesignat	ed may b	e high ≥∶	2.0; or lo										
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			1
I		method	Test no.	CLK	A _{IN}	BIN	CIN	Vcc	DIN	EIN	Enable	Serial	QE	QD	GND	QC	QB	QA	CLR		Min	Max	[
8	Same te	sts, terminal	conditions, ar	nd limits a	is subgro	up 7, exc	ept T _C =	125°C an	d -55°C														
9 T _C = 25°C	f _{MAX} see note E	(Fig. 7)	81	IN				5.0 V			GND	IN			GND			OUT	F	QA	20		MHz
1	t _{PLH1}	3003	82									IN						OUT		CLK TO QA	5	45	ns
		(Fig. 7)	83									See figure 7					OUT			CLK TO QB			
I			84	-											"	OUT			-	CLK TO QC			
1			85	-										OUT						CLK TO QD			
I			86										OUT							CLK TO QE			
1	t _{PLH2}		87	GND	IN			-			F				"			OUT	IN	A _{IN} TO QA	-	40	
1			88	-		IN					"						OUT			B _{IN} TO QB			
1			89				IN									OUT				CIN TO QC			
I			90						IN					OUT					-	D _{IN} TO QD			
1			91							IN			OUT							E _{IN} TO QE			
1			92		F						IN							OUT		Enable to QA			
			93			F											OUT			Enable to QB			
			94	-			F									OUT				Enable to QC		"	
			95	-					F					OUT						Enable to QD			
			96	-						F			OUT							Enable to QE		"	
I	t _{PHL1}		97	IN							GND	IN						OUT	F	CLK TO QA		45	
1			98														OUT			CLK TO QB			
I			99	-							"				"	OUT				CLK TO QC			Ĺ
1			100								"			OUT						CLK TO QD			
I			101										OUT							CLK to QE			
1	t _{PHL2}		102	GND	F						IN							OUT	IN	CLR to QA		60	<u> </u>
I			103			F	_										OUT			CLR to QB			L
			104				F									OUT				CLR to QC			L
1			105						F	-				OUT						CLR to QD			
ι			106							F			OUT							CLR to QE			L

TABLE III. Group A inspection for device type 04 - Continued.

See footnotes at end of device type 04.

TABLE III. <u>Group A inspection for device type 04</u> - Continued singl conditions (nins not designated may be high > 2.0 V or $low \le 0.7$ V or open)

					Te	rminai c	conditio	ns (pins	not de	signated	i may be	nign ≥ ∠	2.0 V OF 10	$5W \le 0.7$	V OF O	pen).							
		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test L	imits.	Un
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	CLK	A _{IN}	BIN	CIN	V _{CC}	D _{IN}	EIN	Enable	Serial	QE	QD	GND	QC	QB	QA	CLR		Min	Max	Ī.
10 Tc = 25°C	f _{max} See E	(Fig. 7)	107																		17		MHz
	t _{PLH1}	3003 (Fig, 7)	108 to 112	Same te	sts and f	terminal	conditio	ns as for	subgrou	p 9.											5	68	ns
	t _{PLH2}		113 to 122																		"	60	
	t _{PHL1}		123 to 127																		"	68	
	t _{PHL2}		128 to 132																		"	90	
11	Same te	sts, terminal	conditions, ar	nd limits a	s subgr	oup 10, e	except T	c = -55°C).														

Notes:

7

A. $V_{IN} = 2.5 V.$

 $B. \ V_{IN}=0.4 \ V.$

- C. Tests numbers 53 through 80 shall be run in sequence.
 - D. Output voltages shall be either: (1) H ≥2.5 V minimum and L ≤0.4 V maximum when using a high speed checker double double comparator; (2) H ≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
 - E. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the serial data shall be one-half of the clock input frequency and the serial shall be shifted such that the serial ↑ and ↓ are coincident with the clock ↓. Rise and fall times ≤ 6 ns. Input peak voltage 3 to 5 volts.

1/ IIL limits (mA) min/max values for circuits shown:

Parameter	Terminal	А	В
I _{IL3}	CLK	16/40	16/40
	A _{IN} , B _{IN} , C _{IN}	16/40	12/36
	D _{IN} , E _{IN} , CLR		
	Serial	10/34	10/34
I _{IL5}	Enable	8/-2.0	6/-1.8

F. 3.0 V minimum/5.0 V maximum.

		MIL-STD- 883	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Te	st	ĺ
Subgroup	Symbol	method	Cases 2,X	2	3	4	5	8	9	10	12	13	14	16	18	19	20	Measured	Lim	nits	Unit
	-		Test no.	A _{IN}	BIN	QA	QB	QC	QD	GND	CLK	CLR	QE	QF	QG	QH	Vcc	terminal	Min	Max	1
1	V _{OH}	3006	1	2.0 V	2.0 V	4 mA				GND	J <u>1</u> /	2.0 V					4.5 V	QA	2.5		V
c = 25°C			2				4 mA				" <u>2</u> /							QB			
			3	"				4 mA		"	" <u>3</u> /	"						QC			
			4						4 mA		" <u>4</u> /							QD			
			5								" <u>5</u> /		4 mA					QE			
			6								" <u>6</u> /	"		4 mA				QF			
			7								" <u>7</u> /	"			4 mA			QG			
			8							"	" <u>8</u> /	"				4 mA		QH			
	Vol	3007	9			4 mA						0.7 V						QA		0.4	
			10				4 mA											QB		"	
			11					4 mA				"						QC		"	"
			12						4 mA			"						QD			
			13										4 mA					QE			
			14											4 mA				QF			
			15												4 mA			QG			
			16													4 mA		QH			
	VIC		17	-18 mA														A _{IN}		-1.5	
			18		-18 mA						40.0							BIN			
			19								-18 mA	40.4						CLK			
		3010	20 21	2.7 V	GND							-18 mA					5.5 V	CLR		20	
	I _{IH1}	3010															5.5 V	A _{IN}		20	μΑ
			22 23	GND	2.7 V						2.7 V							B _{IN} CLK			
			23								2.7 V	2.7 V						CLR			
			24	5.5 V	GND							2.7 V						AIN		100	
	I _{IH2}		26	GND	5.5 V													BIN		100	
			20	GND	0.0 V						5.5 V							CLK			
			28		1			1			5.5 V	5.5 V	1	1				CLR			
	I _{IL1}	3009	20	0.4 V	4.5 V							0.0 V						AIN	10/	10/	mA
	111	0000	30	4.5 V	0.4 V													BIN		"	"
	1		31	4.5 V	0.4 V						0.4 V							CLK			
	1		32								0.4 V	0.4 V						CLR			

TABLE III. Group A inspection for device type 05. Terminal conditions (pins not designated may be high ≥ 2.0 ; or low ≤ 0.7 V;

See footnotes at end of device type 05.

78

Downloaded from $\underline{Elcodis.com}$ electronic components distributor

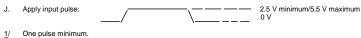
			Cases	1	2	3		5	6	1 ay De Til	8	9	≤ 0.7 V or 10	0pen). 11	12	13	14	Measured	Test	imits	Un
		MIL-STD-	A,B,C,D	•				-	-									terminal	restr		01
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	A _{IN}	BIN	QA	QB	QC	QD	GND	CLK	CLR	QE	QF	QG	QH	V _{CC}		Min	Max	1
1	los	3011	33 <u>9</u> /	4.5 V	4.5 V	GND					A <u>1</u> /	4.5 V					5.5 V	QA	-15	-100	ſ
c = 25°C			34 "				GND				" 2/							QB			1
			35 "		"			GND			" 3/							QC		"	T
			36 "						GND		" <u>4</u> /							QD			
			37 "								" <u>5</u> /	-	GND					QE			
			38 "		"						" <u>6</u> /			GND				QF			
			39 "								<u>7/</u>				GND			QG			_
			40 "								" <u>8</u> /					GND		QH			_
	Icc	3005	41	GND	GND						5.5 V	J						V _{CC}		27	
2			ditions and limit			-															
7	Truth	3014	42	B	В	L			L	GND	С	С	L	L	L	Ĺ	5.0 V	All		1	Т
T _C = 25°C	table		43				-		-		B	č				1		outputs			
0	test		44								С	C							1		
			45				•		•			В		•		•			1		
			46	С	С																
			47	В	В							-									
			48			Н					В			•							
			49						•		С										
			50				Н				В								-		1.
			51								С								See	B,C,D a	and
			52 53					н			B								-		
			53						н		B								-		
			55								C								1		
			56								B		н						1		
			57		"						C								1		
			58								В			н					1		
			59								С								1		
			60								В			•	Н				1		
			61								С										
			62						•		В					Н					
			63								С										
			64	C							С										
			65			L					В										
			66								C B								-		
			67 68				Ļ				C								-		
			69		С						c								1		
			70		"			L			B								1		
			71					-			c								1		
			72						L		B								1		1
			73								c								1		1
			74	В							С			•					1		1
			75								В		L						1		
			76						•		С							•			
			77								В			L					1		
			78								С								1		
	1		79	-							В			-	L					1	1
			80 81								C B				L	•					

TABLE III. <u>Group A inspection for device type 05</u> - Continued

See footnotes at end of device type 05.

		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lin	nits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	A _{IN}	BIN	QA	QB	QC	QD	GND	CLK	CLR	QE	QF	QG	QH	V _{CC}		Min	Max	
8	Same te	ests, terminal c	onditions, and	limits as	subgrou	up 7 exce	pt T _C = 1	25°C and	-55°C.												
9	f _{MAX}	(Fig. 8)	82	IN	G	OUT				GND	IN	G					5.0 V	QA	22		MHz
$T_C = 25^{\circ}C$	See note F																			1	
	t _{PLH1}	3003	83	IN	G	OUT				"								CLK TO QA	5	32	ns
		(Fig. 8)	84	See fig. 8	See fig. 8		OUT											CLK TO QB		"	
			85	,	"			OUT		"								CLK TO QC		"	"
			86						OUT	"								CLK TO QD		"	"
			87							"			OUT					CLK TO QE			"
			88							"				OUT				CLK TO QF		"	"
			89							"					OUT			CLK TO QG		"	"
			90							"						OUT		CLK TO QH		"	"
	t _{PHL1}		91			OUT				-								CLK TO QA		37	ns
			92				OUT					-					-	CLK TO QB	-		"
			93					OUT		"								CLK TO QC			
			94						OUT	"		-						CLK TO QD		"	"
			95							"		-	OUT					CLK TO QE			
			96											OUT				CLK TO QF			
			97							"					OUT			CLK TO QG			"
			98							"						OUT		CLK TO QH		"	"
	t _{PHL2}		99	G	G	OUT						IN						CLK TO QA		41	"
			100				OUT			"								CLK TO QB			"
			101					OUT										CLK TO QC			"
			102						OUT	"								CLK TO QD			"
			103							"			OUT					CLK TO QE		"	"
			104							"				OUT				CLK TO QF		"	"
			105												OUT			CLK TO QG			
			106							"						OUT		CLK TO QH		- "	"
10 T _C = 125°C	f _{MAX} See F	(Fig. 8)	107																20		MHz
	t _{PLH1}	3003 (Fig. 8)	108 to 115																5	48	ns
	t _{PHL1}	3003 (Fig. 8)	116 to 123																5	66	ns
	t _{PHL2}	3003 (Fig. 8)	124 to 131																5	62	ns

TABLE III. <u>Group A inspection for device type 05</u> - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).


See footnotes at end of device type 05.

FOOTNOTES:

C. V_{IN} = 0.4 V.

- D. Test numbers 42 through 81 shall be run in sequence.
- Ε. Output voltages shall be either: (1) H ≥2.5 V minimum and L ≤0.4 V maximum when using a high speed checker double comparator; (2) H ≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
- F. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the A_{IIN} data shall be one-half of the clock input frequency and the A_{IN} shall be shifted such that the A_{IN} and are coincident with the clock. Rise and fall times ≤ 6 ns. Input peak voltage 3 to 5 volts.
- G. 3.0 V minimum/5.0 V maximum.

- <u>2</u>/ Two pulses minimum.
- <u>3</u>/ Three pulses minimum.
- 4/ Four pulses minimum.

<u>∞</u>

- <u>5</u>/ Five pulses minimum.
- <u>6</u>/ Six pulses minimum.
- <u>7</u>/ Seven pulses minimum.
- <u>8</u>/ Eight pulses minimum.
- At the manufacturer's option, I_{OS} tests 33 through 40, the following alternate procedure may be used; apply 2.75 volts @; test 33, QA, test 34, QB, test 35, QC, test 36, QD, test 37, QE, test 38, QF, test 39, QG, test 40, QH, and min/max limits of -7.5/-50 mA. <u>9</u>/

10/ IIL limits (mA) min/max values for circuits shown:

Parameter	Terminal	А	В	С	D	E	F	G
I _{IL1}	A _{IN} , B _{IN}	0/34	10/34	16/40	16/40	135/370	12/36	16/40
	CLK	0/4	16/4	12/36	20/44		n	
	CLR	0/4	16/4	12/36	16/40	H	"	

		MIL-STD-	Cases	4	2	nal cond	4	5	esignat	eu may 7	8	≥ 2.0 v, 9	10 10 v	<u>≤ 0.7 v, t</u>	12 12	13	14		1.5	mits	
		883	A,B,C,D	1								-				-			LI	mits	
Subgroup	Symbol	method	Cases 2,X	2	3	4	5	8	9	10	12	13	14	16	18	19	20	Measured			Uni
			Test no.	Serial	A _{IN}	BIN	CIN	D _{IN}	Mode	GND	CONT	CLK	QD	QC	QB	QA	V _{CC}	terminal	Min	Max	
1	V _{OH}	3006	1	2.0 V					0.7 V	GND	4.5 V	A					4.5 V	QA	2.4		V
c = 25°C			2		2.0 V				2.0 V		"	=				-1.0 mA		QA	-		
			3			2.0 V			"						-1.0 mA			QB			
			4				2.0 V							-1.0 mA				QC			
			5					2.0 V					-1.0 mA					QD			
	Vol	3007	6	0.7 V					0.7 V	"	"					12 mA		QA		0.4	
			7		0.7 V				2.0 V							12 mA		QA			
			8			0.7 V			"						12 mA			QB			
			9				0.7 V		"		"			12 mA				QC			
			10					0.7 V	=				12 mA					QD			
	VIC		11	-18 mA														Serial		-1.5	
			12		-18 mA													A _{IN}			
			13			-18 mA												BIN			
			14				-18 mA											CIN			
			15					-18 mA										D _{IN}			
			16						-18 mA									Mode			
			17								-18 mA							CONT			
			18	2.7 V					4.5.14			-18 mA						CLK			
	I _{IH1}	3010	19	2.7 V					4.5 V								5.5 V	Serial		20	μ
			20		2.7 V	0.714			GND									A _{IN}			-
			21 22			2.7 V	0714											BIN			
			22				2.7 V	0714										CIN			
			23					2.7 V	2.7 V									D _{IN}			
			24						2.7 V		2.7 V							Mode CONT			
											2.7 V	2.7 V						CUNT			
			26 27	5.5 V					4.5 V			2.7 V						Serial		100	
	I _{IH2}		27	5.5 V	5.5 V				4.5 V GND											100	
			28		5.5 V	5.5 V			GND "									A _{IN} B _{IN}			
			30			5.5 V	5.5 V		"												
			31				5.5 V	5.5 V										DIN			
			32					0.0 V	5.5 V									Mode			+
			33						5.5 V		5.5 V							CONT			+
			34								5.5 V	5.5 V						CLK			+
	I _{OZH}		35		0.7 V				4.5 V		0.7 V	A 8				2.7 V		QA		20	+
	10ZH		36		0.7 V	0.7 V			4.3 V "		0.7 V	- A			2.7 V	2.1 V		QA		20	
			37			0.7 V	0.7 V		"					2.7 V	2.1 V			QC			
			38				5.1 V	0.7 V	"				2.7 V	2.1 V		1		QD			+
	I _{OZL}		39		2.0 V			0.1 V	"				2.1 V			0.4 V		QD		-20	+
	'UZL		40		2.0 V	2.0 V			"						0.4 V	0.4 V		QB		20	+
			40			2.0 V	2.0 V		"					0.4 V	0.4 V			QC			
			41				2.0 V	2.0 V	"				0.4 V	0.4 V				QD			+ .

TABLE III. <u>Group A inspection for device type 06</u>. (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

See footnotes at end of device types 06.

MIL-M-38510/306E

		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	Serial	A _{IN}	BIN	CIN	DIN	Mode	GND	CONT	CLK	QD	QC	QB	QA	V _{CC}		Min	Max	
1	I _{IL1}	3009	43	0.4 V					GND	"							5.5 V	Serial	1/	1/	mA
c = 25°C			44		0.4 V				4.5 V	"							"	A _{IN}		"	
			45			0.4 V			"	"								BIN			
			46				0.4 V		"	"								CIN			
			47					0.4 V	"	"							"	DIN		"	
			48						0.4 V	"								Mode			
			49							"	0.4 V						"	CONT		"	
			50							"		0.4 V					"	CLK		"	
	los	3011	51		4.5 V				4.5 V	"	4.5 V	А				GND	"	QA	2/	2/	
			52			4.5 V			"	"		"			GND		"	QB		"	
			53				4.5 V			"		"		GND			"	QC		"	
			54					4.5 V	"	"		"	GND					QD			
	Icc	3005	55	5.5 V	GND	GND	GND	GND	5.5 V	"	5.5 V	"					"	Vcc		27	
	Icc	3005	56	5.5 V	GND	GND	GND	GND	5.5 V		GND	GND					"	Vcc		29	
2	Same tes	sts, terminal c	onditions and	limits as s	ubgroup	1 except T	_c = 125°C	and V _{IC} t	ests are or	mitted.											
3	Same te	sts, terminal of	conditions and	limits as s	subgroup	1 except -	$T_{\rm C} = -55^{\circ}C$	and V _{IC} t	ests are or	nitted.											

TABLE III. <u>Group A inspection for device type 06</u> - Continued. Terminal conditions (pins not designated may be high \geq 2.0; or low \leq 0.7 V; or open).

 $\stackrel{\infty}{\omega}$ See footnotes at end of device type 06.

			Cases	1	2	3	4	5	6	7	8	9	≤ 0.7 V; c	11	12	13	14	Measured	Lir	nits	Un
		MIL-STD-	A,B,C,D	-														terminal			
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				1
		method	Test no.	Serial	A _{IN}	BIN	CIN	DIN	Mode	GND	CONT	CLK	QD	QC	QB	QA	V _{CC}		Min	Max	
7	Truth	3014	57	B	В	В	В	В	B	GND	B	В	Х	Х	Х	Х	5.0 V	All			
c = 25°C	table		58		В	В	В	В				С	Н	Н	Н	Н		outputs			
	tests		59		В	В	В	В				В	Н	Н	Н	Н					
			60		С	С	С	С				В	Н	Н	Н	Н					
			61									С	L	L	L	L					
			62									В				L					Ι.
			63						C			В		L		L			See I	3,C,D, ;	and
			64									С				Н					
			65									В									
			66									С			Н						
			67									В									
			68	-								С		Н							
			69									В									
			70									С	Н								
			71		"			"				В									
			72	C	B	B	В	B				В									
			73									С				L					
			74									В									
			75									С			L						
			76									В									
			77									С		L							
			78									В		L							
			79		1						-	С	L	L		-		-			
8	Same tes	sts, terminal c	onditions, and	limits as s	subgroup	7 except 7	r _c = 125°C	and -55°	C.												
9 Г _с = 25°C	f _{MAX} See	(Fig. 9)	80	IN					GND	GND	G	IN				OUT	5.0 V	QA	20		M
	note F										-										
																			-		
	t _{PLH1}	3003	81		IN				G							OUT		CLK to QA	6	35	n
		3003 (Fig. 9)	82		IN	IN									OUT	OUT		CLK to QB	6		
			82 83		IN	IN	IN		G	11 11	*			OUT	OUT	OUT		CLK to QB CLK to QC	6	35	
			82 83 84		IN	IN	IN	IN		11 11 11	10 10 10		OUT	OUT	OUT			CLK to QB CLK to QC CLK to QD	6		
			82 83 84 85	IN	IN	IN	IN	IN			11 11 12	"	OUT	OUT		OUT	•	CLK to QB CLK to QC CLK to QD CLK to QA	6 " "		
			82 83 84	See	IN	IN	IN	IN		11 11 11 11 11 11	10 10 10		OUT	OUT	OUT			CLK to QB CLK to QC CLK to QD	6 " " "		
			82 83 84 85 86	See fig. 9	IN	IN	IN	IN	" " GND		8 8 8 8 8		OUT				11 11 11	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB	6 "" "" "	11 11 11	
			82 83 84 85	See fig. 9 See		IN	IN	IN			11 11 12	"	OUT	OUT			•	CLK to QB CLK to QC CLK to QD CLK to QA	6 " " " "		
			82 83 84 85 86 87	See fig. 9 See fig. 9			IN	IN	" " GND		8 8 8 8 8	11 11 11 11					1 1 1 1 1	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QC	6 " " " "	11 11 11	
			82 83 84 85 86	See fig. 9 See fig. 9 See			IN	IN	B B GND B B		8 8 8 8		OUT				11 11 11	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB	6 "" "" "	11 11 11	
	t _{PLH1}		82 83 84 85 86 87 88	See fig. 9 See fig. 9		IN	IN	IN	" GND "		8 8 8 8	11 11 11 11				OUT	9 9 9 9 9 9	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QC CLK to QD	6 "" "" ""	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
			82 83 84 85 86 87 88 88 89	See fig. 9 See fig. 9 See	IN		IN	IN	B B GND B B	8 8 8	8 8 8 8 8 8 8 8	11 11 11 11			OUT		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QC CLK to QD CLK to QA	6 "" "" "" "" "	11 11 11	
	t _{PLH1}		82 83 84 85 86 87 88 88 89 90	See fig. 9 See fig. 9 See		IN		IN	" GND "	8 8 8	8 8 8 8 8 8 8 8 8	11 11 11 11		OUT		OUT	9 9 9 9 9 9	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QC CLK to QD CLK to QA CLK to QA	6 "" "" "" "" ""	" " " " " 40	
	t _{PLH1}		82 83 84 85 86 87 88 88 89 90 91	See fig. 9 See fig. 9 See			IN		GND GND T G G T	1 1 1 1 1 1 1 1 1 1	8 8 8 8 8 8 8 8 8	11 11 11 11 11	OUT		OUT	OUT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QC CLK to QD CLK to QA CLK to QA CLK to QA	6 "" "" "" "" "" ""	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	t _{PLH1}		82 83 84 85 86 87 88 88 90 90 91 92	See fig. 9 See fig. 9 See fig. 9				IN	GND GND GND G G T T T T	11 11 11 11 11 11 11 11 11 11	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	11 13 14 14 14 14 14 14 14 14 14 14 14 14 14		OUT	OUT	OUT	* * * *	CLK to QB CLK to QC CLK to QA CLK to QA CLK to QA CLK to QD CLK to QD CLK to QA CLK to QA CLK to QC	6 "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " "	
	t _{PLH1}		82 83 84 85 86 87 88 88 90 91 91 92 93	See fig. 9 See fig. 9 See fig. 9					" " GND " " " GND " " " " G	11 11 11 11 11 11 11 11 11 11		11 13 14 14 14 14 14 14 14 14 14 14 14 14 14	OUT	OUT	OUT	OUT	* * * * *	CLK to QB CLK to QC CLK to QA CLK to QA CLK to QC CLK to QC CLK to QC CLK to QD CLK to QA CLK to QA CLK to QA CLK to QA CLK to QC CLK to QA CLK to QA CLK to QA CLK to QA CLK to QA	6 "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " "	
	t _{PLH1}		82 83 84 85 86 87 88 88 90 90 91 92	See fig. 9 See fig. 9 See fig. 9 IN See					GND GND GND G G T T T T	11 11 11 11 11 11 11 11 11 11		11 13 14 14 14 14 14 14 14 14 14 14 14 14 14	OUT	OUT	OUT	OUT	* * * *	CLK to QB CLK to QC CLK to QA CLK to QA CLK to QA CLK to QD CLK to QD CLK to QA CLK to QA CLK to QC	6 "" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " "	
	t _{PLH1}		82 83 84 85 86 87 88 88 90 91 91 92 93 94	See fig. 9 See fig. 9 See fig. 9 IN See fig. 9					GND GND GND G G T T T T	11 11 11 11 11 11 11 11 11 11		11 13 14 14 14 14 14 14 14 14 14 14 14 14 14	OUT	OUT	OUT	OUT	* * * * *	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QC CLK to QC CLK to QC CLK to QA CLK to QD CLK to QD CLK to QD CLK to QD CLK to QD	6 " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	
	t _{PLH1}		82 83 84 85 86 87 88 88 90 91 91 92 93	See fig. 9 See fig. 9 See fig. 9 IN See fig. 9 See					GND GND GND G G T T T T	11 11 11 11 11 11 11 11 11 11		11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	OUT	OUT	OUT	OUT	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	CLK to QB CLK to QC CLK to QA CLK to QA CLK to QC CLK to QC CLK to QC CLK to QD CLK to QA CLK to QA CLK to QA CLK to QA CLK to QC CLK to QA CLK to QA CLK to QA CLK to QA CLK to QA	6 "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " "	
	t _{PLH1}		82 83 84 85 86 87 88 88 90 91 91 92 93 94	See fig. 9 See fig. 9 See fig. 9 IN See fig. 9					GND GND GND G G T T T T	11 11 11 11 11 11 11 11 11 11 11		11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	OUT	OUT	OUT	OUT	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QC CLK to QC CLK to QC CLK to QA CLK to QD CLK to QD CLK to QD CLK to QD CLK to QD	6 "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " "	

TABLE III. <u>Group A inspection for device type 06</u> - Continued.

See footnotes at end of device type 06.

		MIL-STD-	Cases A,B,C,D		2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	LIF	nits	Unit
Subgroup \$	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	Serial	A _{IN}	BIN	C _N	DIN	Mode	GND	CONT	CLK	QD	QC	QB	QA	V _{CC}		Min	Max	
	tzL	(Fig. 9)	97		GND				G	GND	IN	IN				OUT	5.0 V	CONT to QA	5	35	ns
$T_C = 25^{\circ}C$			98			GND			"						OUT			CONT TO QB			
			99				GND		"					OUT				CONT TO QC			
_			100					GND	"				OUT					CONT TO QD			
t	t _{ZH}		101		G											OUT		CLK TO QA		30	
			102			G									OUT			CLK TO QB			
			103				G	-						OUT				CLK TO QC			
_			104					G					OUT					CLK TO QD			
t	t _{LZ}		105		GND											OUT		CLK TO QA		55	
			106 107			GND	GND							OUT	OUT			CLK TO QB CLK TO QC			
			107				GND	GND					OUT	001				CLK TO QC			
-			108		G			GND					001			OUT		CLK TO QD		65	
,	t _{HZ}		1109		G	G									OUT	001		CLK TO QA		65	
			110			9	G							OUT	001			CLK TO QB			
			112				0	G					OUT	001				CLK TO QD			
10 f T _C =125°C	f _{MAX} See F		113					Ū											18		MHz
t	t _{PLH1}	3003 (Fig. 9)	114 to 121																5	46	ns
t	t _{PHL1}		122 to 129																	52	
t	t _{zL}		130 to 133	Same t	est and	terminal o	conditions	as subgr	oup 9.											45	
t	t _{zH}		134 to 137																	39	
t	t _{LZ}		138 to 141																	71	
t	t _{HZ}		142 to 145																	84	

TABLE III. <u>Group A inspection for device type 06</u> - Continued. Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$; or low $\leq 0.7 \text{ V}$; or open).

See footnotes at end of device type 06.

FOOTNOTES:

86

_ 2.5 V minimum/5.5 V maximum A. Apply input pulse: 0 V

B. V_{IN} = 2.4 V.

C. $V_{IN} = 0.4 V.$

D. Test numbers 57 through 79 shall be run in sequence.

- E. Output voltages shall be either: (1) H ≥ 2.5 V minimum and L ≤ 0.4 V maximum when using a high speed checker double comparator; (2) H ≥ 1.5 V and L ≤ 1.5 V when using a high speed checker single comparator.
- F. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the serial shall be one-half of the clock input frequency and the serial shall be shifted such that the serial 1 and 1 are coincident with the clock 1. Rise and fall times < 6 ns. Input peak voltage 3 to 5 volts.
- G. 3.0 V minimum/5.0 V maximum.

1/ IIL limits (mA) min/max values for circuits shown:

Parameter	Terminal	A	В	С	D	E
I _{IL1}	Serial	075/250	16/40	16/40	105/345	12/36
	A _{IN} , B _{IN} ,	12/36	16/40	16/40	105/345	12/36
	C _{IN} , D _{IN}					
	Mode	16/40	15/38	03/3	12/36	12/36
	CONT	16/40	16/40	03/3	12/36	12/36
	CLK	16/40	20/44	03/3	12/36	12/36

2/ I_{os} limits (mA) min/max values for circuit A: -30/-130. for circuits B, C, D, E: -15/-100.

		MIL-STD-	Cases E,F	1	2	3	l conditi 4	5	6	7	8	9	10	11	12	13	14	15	16		Test L	imits	1
Subgroup	Symbol	883	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Ur
5	-,	method	Test no.	CLR	Serial	A _{IN}	BIN	CIN	DIN	Load	GND	CONT	CLK	QD'	QD	QC	QB	QA	Vcc	terminal	Min	Max	
1	V _{OH}	3006	1	2.0 V		2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	GND	0.7 V	A						4.5 V	QA	2.4		١
c = 25°C	- 011		2				"			"							1 mA			QB			1
- 20 0			3										"			1 mA				QC			
			4										"		1 mA	.1100				QD			
			5				"						"	4 mA						QD'	2.5		-
	Vol	3007	6			0.7 V	0.7 V	0.7 V	0.7 V				"	.4 110 (12 mA		QA	2.0	0.4	
	* OL	0007	7			"	"	"	"				"				12 mA	12 1103		QB		"	-
			8										"			12 mA	12 110 (QC			+
			9										"		12 mA	12 11/1				QD			-
			10											4 mA	12 1117					QD'			
	VIC		10	-18 mA										4111/1						CLR		-1.5	-
	V IC		12	-10 IIIA	-18 mA															Serial		-1.5	-
			13		- 10 IIIA	-18 mA														A _{IN}			-
			13			-10 IIIA	-18 mA													BIN			-
			14					-18 mA															
			16					-10 IIIA	10 0											D _{IN}			-
			10						-18 mA	-18 mA										Load			
			17							-18 MA		-18 mA								CONT			-
												-10 IIIA	40 4										-
		3010	19 20	2.7 V									-18 mA						5.5 V	CLK CLR		20	
	I _{IH1}	3010		2.7 V	0.7.1/					4.5.1									5.5 V			20	ļ
			21		2.7 V					4.5 V										Serial			-
			22			2.7 V				GND										A _{IN}			
			23				2.7 V													B _{IN}			
			24					2.7 V												CIN			
			25						2.7 V											D _{IN}			
			26							2.7 V										Load			
			27							GND		2.7 V								CONT			
			28							GND	-		2.7 V							CLK			
	I _{IH2}		29	5.5 V																CLR		100	
			30		5.5 V					4.5 V										Serial			
			31			5.5 V				GND	-									A _{IN}			
			32				5.5 V				-									BIN			
			33					5.5 V												CIN			
			34						5.5 V	"										D _{IN}			
			35							5.5 V										Load			
			36							GND	-	5.5 V								CONT			
			37							GND	-		5.5 V							CLK			
	I _{OZH}		38	2.0 V		0.7 V	0.7 V	0.7 V	0.7 V	2.0 V		2.0 V	A					2.7 V		QA		20	
			39				"										2.7 V			QB			
			40			-	-	=			=		=			2.7 V		-		QC			
			41				"			"			"		2.7 V					QD			1
	I _{OZL}		42			2.0 V	2.0 V	2.0 V	2.0 V	"			"					0.4 V		QA		-20	
			43				"			"			"				0.4 V			QB			
			44				"	-		"	-		-			0.4 V				QC			
			45				"	-		"					0.4 V					QD			

TABLE III. Group A inspection for device type 07 - Continued.

See footnotes at end of device types 07.

							ninal cor			t designa	ated may	U U			· · · · ·			r					
			Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Test L	_imits	1
Subgroup	Symbol	883	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Uni
		method	Test no.	CLR	Serial	AIN	BIN	CIN	DIN	Load	GND	CONT	CLK	QD'	QD	QC	QB	QA	V _{cc}	terminal	Min	Max	
1	I _{IL1}	3009	46	0.4 V							GND								5.5 V	CLR	1/	<u>1</u> /	mA
Tc = 25°C			47	В	0.4 V					GND			Α							Serial	-	"	
			48			0.4 V				4.5 V										A _{IN}	-		
			49				0.4 V												"	BIN			
			50					0.4 V		=									"	CIN	-	-	
			51						0.4 V											DIN			
			52							0.4 V									"	Load	-	-	
			53							4.5 V			0.4 V							CONT			
			54											0.4 V					"	CLK		-	
	los	3011	55	4.5 V	GND	4.5 V	4.5 V	4.5 V	4.5 V	=		GND	А					GND		Q _A	2/	2/	
			56														GND			QB			
			57										-			GND				Q _C			
			58	-				=		=			-		GND					QD	•		
			59	-				-		-				GND						Q _{D'}			
	Icc	3005	60	5.5 V	5.5 V	GND	GND	GND	GND	5.5 V		5.5 V								V _{cc}		34	
	Icc	3005	61	GND	5.5 V	GND	GND	GND	GND	5.5 V		GND	GND							Vcc		31	
2	Same te	sts, termina	al conditions	and limit	s as subį	group 1,	except T _o	c = 125°C	and V_{IC}	tests are	omitted.												
3		sts, termina	al conditions	and limit	s as subę	group 1,	except T _o	c = -55°C	and V _{IC} t	ests are c	mitted.												
7	Truth	3014	62	D	С	С	С	С	С	С	GND	D	С	L	L	L	L	L	5.0v	All	See	C,D,E,	and F
$T_C = 25^\circ C$	table		63	D	D	D	D	D	D	D			D		"				"	outputs			1
	test		64	D	С	С	С	С	С	С			С		"				"				1
			65	С									С		"				"				1
			66	С	"			-		-			D	Н	Н	Н	Н	Н	"				1
			67	С									С	Н	Н	Н	Н	Н	"				I

TABLE III. <u>Group A inspection for device type 07</u> - Continued.

-

See footnotes at end of device types 07.

RΩ

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	n ≥ 2.0 \ 9	10	11	12	13	14	15	16	Measured	Lin	nits	Un
Subgroup	Symbol		Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal	LIII	into	011
		method	Test no.	CLK	Serial	A _{IN}	BIN	CIN	DIN	Load	GND	CONT	CLK	QD'	QD	QC	QB	QA	Vcc		Min	Max	1
7	Truth	3014	68	С	С	D	D	D	D	С	GND	D	С	Н	Н	Н	H	Н	5.0 V	All			
c = 25°C	table		69		"				"	С			D	L	L	L	L	L		outputs			
	tests		70		"				"	C			С		"			L					
			71		"				"	D			C		"			L					
			72		"				"				D		"			Н					
			73		"				"				C		"								
			74		"				С		"		D		"		н		н		See (D,D,E,	and
			75		"				"				C		"								Ĩ
			76		"				"		"		D		"	н			н				
			77		"				"				c		"								
			78		"				"				D	Н	Н								
			79		"				"				C										
			80		D	С	С	С	С				č										
			81		"				"				D					L					
			82		"				"				C										
			83		"				"				D				1						
			84		"				"				C				-						
			85										D			1							
			86		"				"				C			Ē							
			87										D	1	1	-							
9 c = 25°C	f _{MAX} See G	(Fig. 10)	88	J	IN					GND	GND	GND	IN						5.0 V	QA	22		Μ
	t _{PLH1}	3003	89	"		IN				J								OUT		CLK to QA	5	37	ſ
		(Fig. 10)	90				IN										OUT			CLK to QB		"	
			91					IN								OUT				CLK to QC	-	"	
			92						IN						OUT					CLK to QD		"	
			93						IN			"		OUT						CLK to QD'		-	
			94		IN					GND								OUT		CLK to QA	-	"	
			95		See fig. 10												OUT			CLK to QB		"	
			96		"							"				OUT				CLK to QC	-	"	
			97		"										OUT					CLK to QD	-	"	
			98		"									OUT						CLK to QD'	-	"	
	t _{PHL1}		99			IN				J								OUT		CLK to QA	-	"	1
			100				IN				"						OUT			CLK to QB	"	"	1
			101					IN								OUT				CLK to QC	-	"	1
			102						IN						OUT					CLK to QD		"	1
			103						IN					OUT						CLK to QD'			
					IN					GND								OUT		CLK to QA			
			104																				
			104 105		See												OUT			CLK to QB			
			105													OUT	OUT			CLK to QB		"	_
			105 106		See										OUT	OUT	OUT			CLK to QB			
			105		See									OUT	OUT	OUT	OUT			CLK to QB			

TABLE III. Group A inspection for device type 07 - Continued. Terminal conditions (pins not designated may be high $\ge 2.0 \text{ V}$; or low $\le 0.7 \text{ V}$; or open).

See footnotes at end of device type 07.

Subgroup	Symbol	MIL-STD-		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	14	Measured	Lir	mits	Unit
	Symbol	883	Cases E, F Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal		into	0
		method	Test no.	CLK	Serial	A _{IN}	B _N	CIN	D _{IN}	Load	GND	CONT	CLK	QD'	QD	QC	QB	QA	Vcc		Min	Max	1
9	t _{PHL2}	3003	109	IN		J		- // 1		J	GND	GND	IN						5.0 V	CLR to QA	5	37	ns
T _C = 25°C		(Fig. 10)	110				J				"	"					OUT			CLR to QB			"
		-	111					J			"	"				OUT				CLR to QC		"	"
			112	"					J		"	"			OUT				-	CLR to QD		"	"
L			113	"					J			-		OUT					-	CLR to QD'			
t	t _{ZL}		114								"	IN						OUT		CONT to QA		35	"
			115	"							"	"					OUT			CONT TO QB		"	"
			116													OUT				CONT TO QC			"
L			117								"	"			OUT					CONT TO QD		"	"
t	t _{ZH}		118	J		J				J			IN					OUT		CONT TO QA		"	<u> </u>
			119				J									OUT	OUT			CONT TO QB			<u> </u>
			120					J								OUT				CONT TO QC			
F			121 122	" GND					J	-			-		OUT			OUT		CONT TO QD CONT TO QA			+
t	t _{LZ}		122	GND													OUT	001		CONT TO QA			
			123													OUT	001			CONT TO QD			
			124								"	"			OUT	001				CONT TO QD			"
f	t _{HZ}		125	J		J				1	"	"	IN		001			OUT		CONT TO QA			
,	чнz		120	"		0	J			"	"	"					OUT	001		CONT TO QB			
			128					J			"	"				OUT			"	CONT TO QC			
			129						J		"	"			OUT				"	CONT TO QD		"	"
10 f c = 125°C	f _{MAX} See G	(Fig. 10)	130																		20		MHz
	t _{PLH1}	3003 (Fig. 10)	131 to 140																		5	56	ns
t	t _{PHL1}		141 to 150																			56	"
t	t _{PHL2}		151 to 155	Same te	ests and	termina	l conditio	ons as for	r subgro	up 9.												56	
t	t _{ZL}		156 to 159																			53	
t	t _{zH}		160 to 163																			"	"
t	t _{LZ}		164 to 167																			"	"
t	t _{HZ}		168 to 171																				"

TABLE III. <u>Group A inspection for device type 07</u> - Continued.

See footnotes at end of device type 07.

FOOTNOTES:

C. $V_{IN} = 2.4V.$

 $D. \quad V_{\text{IN}} = 0.4 \ V.$

91

- E. Test numbers 62 through 87 shall be run in sequence.
- F. Output voltages shall be either: (1) H≥2.5 V minimum and L≤0.4 V maximum when using a high speed checker double comparator: (2) H≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
- G. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the parallel input shall be one-half of the clock input frequency and the parallel input shall be shifted such that the parallel input \uparrow and \downarrow are coincident with the clock \uparrow . Rise and fall times \leq 6 ns. Input peak voltage 3 to 5 volts.
- J. 3.0 V minimum/5.0 V maximum.
- 1/ IIL limits (mA) min/max values for circuits shown:

Parameter	Terminal	А	В	С	D
IIL1	Serial	075/250	16/40	105/345	12/36
	A _{IN} , B _{IN} , C _{IN}	12/36	"	105/345	12/36
	D _{IN}	16/40	"	16/40	105/345
	CLR, Load,	16/40	03/30	12/36	12/36
	CONT CLK				

 $2\!/$ I_{OS} limits for circuit A for QA through QD are -30 to -130 mA, for QD' is -20 to -100 mA, and for circuits B, C, and D are -15 to -100 mA.

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	≥ 2.0 V; 10	11	12	13	14	15	16		Test	Limits	
ubaroup	Symbol		Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	12	17	14	19	20	Measured	Test	Linnis	Unit
ubgroup	Gymbol	method	Test no.	Shift Load	CLK	E	F	G	H	Q _н	GND	Q _H	Serial	A	B	C	D	CLK	V _{cc}	terminal	Min	Max	Onit
1	Voh	3006	1	0.7 V					2.0 V		GND	4 mA							4.5 V	Q _H	2.5		V
c = 25°C		3006	2						0.7 V	4 mA	"									Q _H	2.5		"
	Vol	3007	3						0.7 V		-	4 mA								Q _H		0.4	
		3007	4						2.0 V	4 mA										Q _н		0.4	
	VIC		5	-18 mA							"									S/L		-1.5 V	"
			6		-18 mA						"									CLK			"
			7			-18 mA					"									E			"
			8				-18 mA				"									F			"
			9					-18 mA			"									G		-	"
			10						-18 mA		"									Н			
			11								"		-18 mA							S/INP		-	"
			12											-18 mA						A			
			13												-18 mA					В			
			14													-18 mA				С			
			15														-18 mA			D			
			16															-18 mA		CLK/INHB			
	l _{IL1}	3009	17		0.4 V														5.5 V	CLK	<u>1</u> /	<u>1</u> /	m/
	I _{IL6}		18	GND		0.4 V					-									E		-	
			19				0.4 V													F			
			20					0.4 V												G			
			21						0.4 V											Н			
			22										0.4 V							S/INP	"		
			23	GND										0.4 V						A	"		
		.	24												0.4 V	0.434				В			
		.	25												1	0.4 V	0.434			С			
		1	26		1									1	1	1	0.4 V			D			

TABLE III. Group A inspection for device type 08 litions (pins not designated may be high $\ge 2.0 \text{ V}$; or low $\le 0.7 \text{ V}$; or open).

See footnotes at end of device types 08.

		MIL-STD-		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test I	Limits	Uni
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	Shift Load	CLK	E	F	G	Н	Q _H	GND	Q _H	Serial INP	A	В	С	D	CLK INHB	V _{CC}	-	Min	Max	
1	I _{IL1}	3009	27								GND							0.4 V	5.5 V	CLK/INHB	<u>1</u> /	<u>1</u> /	mA
c = 25°C	I _{IL7}		28	0.4 V							-										1/	1/	mA
	l _{iH1}	3010	29		2.7 V															CLK		20	μA
			30			2.7 V					-									E		-	"
			31				2.7 V				=									F		-	"
			32					2.7 V			-									G		-	
			33						2.7 V		-									Н		-	
			34										2.7 V							S/INP		-	"
			35											2.7 V						A		"	
			36												2.7 V					В			
			37													2.7 V	0714			С			
			38														2.7 V	0714		D			
			39															2.7 V		CLK/INHB			-
	l _{iH11}		40	2.7 V																S/L		60	"
	I _{IH2}		41		5.5 V						-									CLK		0.1	m
			42			5.5 V														E			"
			43				5.5 V													F			
			44					5.5 V	5 5 1 /											G			
			45 46						5.5 V				5.5 V							H S/INP			
			40										5.5 V	5.5 V						S/INP A			
			47											0.0 V	5.5 V					B			
			40												5.5 V	5.5 V				C			
			50													0.0 V	5.5 V			D		"	
			51														0.0 1	5.5 V		CLK/INHB		"	"
	I _{IH12}		52	5.5 V																S/L		0.3	
	los	3011	53	GND					5.5 V			GND								Q _H	-15	-100	
	los	3011	54						GND	GND	-									Q _H	-15	-100	
	Icc	3005	55		4.5 V				4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	4.5 V		V _{cc}		36					
	Icc	3005	56		4.5 V	GND	GND	GND	GND				GND	GND			GND	4.5 V		V _{CC}		36	
2			al conditions,	and they be						•													

TABLE III. Group A inspection for device type 08 - Continued

See footnotes at end of device type 08.

<u>.</u>		MIL-STD-			2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Li	mits	Uni
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			_
		method	Test no.	Shift Load	CLK	E	F	G	н	Q _н	GND	Q _H	Serial INP	A	В	С	D	CLK INHB	V _{cc}		Min	Max	
7 <u>2</u> /	Truth	3014	57	В	В	В	A	В	A	L	GND	Н	A	В	A	В	A	В	5.0 V				
c = 25°C	table		58	A	В	"				L		н	A										
	tests		59		A	"				Н	"	L	A										
			60		В					н		L	В =										
			61 62		A B					L		H											
			62		A					L H													
			64		B					Н		L 											
			65		A					L	"	Н											
			66		В	"				L	"	н											
			67		A	"		"	"	Н	"	L							"		<u>3</u> /		
			68	-	В	"	-	"	"	н	"	L		-					"		_		
			69	-	Α	"	-	"	"	L	-	Н	-	=									
			70		В	"			"	L	"	Н							"				
			71		A	"				Н	"	L											
			72		В					н		L											
			73		A					L		Н											
			74 75		B					L		н											
			76		B					H	"	L	A					А					
			70		A					Н	"	L 	A					A					
8	Same te	sts, termina	l conditions, a	as subgro		ept T _C = 1	25°C and	-55°C.				_											4
9 T _C = 25°C	f _{MAX} <u>4</u> /		78	5.0 v	IN						GND	OUT	IN					GND	5.0 V	$CLK \text{ to } Q_H$	25		MH
	t _{PLH5}	3003	79	IN					IN		"	OUT								S/L to Q _H	5	40	n
	t _{PHL5}	See	80						"	OUT	"								"	S/L to \overline{Q}_{H}		"	
	t _{PLH5}	fig. 11	81						"	OUT	"								"	S/L to \overline{Q}_{H}		"	
	t _{PHL5}		82								"	OUT								S/L to $\ \overline{Q}_{\ H}$		"	
	t _{PLH1}		83	5.0 V	IN							OUT						GND		CLK to Q _H		45	
	t _{PHL1}		84		"					OUT										CLK to $\ \overline{Q}_{\ H}$		"	
	t _{PLH1}		85	-	"					OUT										CLK to $\ \overline{Q}_{\ H}$		-	
	t _{PHL1}		86									OUT								CLK to $\ \overline{Q}_{\ H}$			
	t _{PLH3}		87	GND					IN		"	OUT								H to Q _H		30	
	t _{PHL3}		88								"	OUT								H to Q _H		35	
	t _{PLH4}		89	-					"	OUT	"									H to \overline{Q}_{H}		35	
	t _{PHL4}		90						"	OUT								1		H to Q _H		30	1 '

TABLE III. <u>Group A inspection for device type 08</u> - Continued. Terminal conditions (pins not designated may be high $\ge 2.0 \text{ V}$; or low $\le 0.7 \text{ V}$; or open).

See footnotes at end of device type 08.

TABLE III. <u>Group A inspection for device type 08</u> - Continued.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Li	mits	Uni
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	Shift Load	CLK	E	F	G	Н	₹Q _H	GND	Q _H	Serial INP	A	В	С	D	CLK INHB	V _{cc}		Min	Max	
10 T _C = 125°C	f _{MAX}		91																		20		MH:
	t _{PLH5}	3003	92																		5	52	ns
	t _{PHL5}	See	93																		"		"
	t _{PLH5}	fig. 11	94																				"
	t _{PHL5}	-	95																				"
	t _{PLH1}			Same tes	sts and ter	minal cor	nditions as	subgroup	9, excep	$T_{\rm C} = 125$	5°C.										-	58	
	t _{PHL1}		97																			-	
	t _{PLH1}		98																				
	t _{PHL1}		99																			-	
	t _{PLH3}		100																			39	
	t _{PHL3}		101																			46	
	t _{PLH4}		102																			46	
	t _{PHL4}		103																		"	39	

T_c = -55°C

$\frac{9}{2}$ $\frac{2}{A} = 2.5 \text{ V} \text{ and } \text{B} = 0.4 \text{ V}.$

- 3/ Output voltages shall be either:
 - (a) H = 2.5 V minimum and L = 0.4 V maximum when using a high speed checker double comparator or, (b) H \geq 1.5 V and L \leq 1.5 V when using a high speed checker single comparator.
- $\frac{4}{f_{MAX}}$ minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the serial shall be one-half of the clock input frequency and the serial shall be shifted such that the serial \uparrow and \downarrow are coincident with the clock \downarrow , but may be offset sufficiently to assure adequate t_{SETUP} and t_{HOLD} . Rise and fall times \leq 6 ns. Input peak voltage 3 to 5 volts.

1/ IIL limits (mA) min/max values for circuit shown:

Parameter	Terminal	А	С	F
I _{IL1}	CLK, CLK/INHIB	001/150	12/38	005/72
I _{IL6}	A,B,C,D,	120/360	12/38	12/38
	E,F,G,H			
	S/IN	100/340	12/38	12/38
I _{IL7}	S/L	001/150	36/-1.08	005/72

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Test	Limits	
Subgroup	Symbol	883	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Uni
	-	method	Test no.	Ser. in	A	В	С	D	CLK INHB	CLK	GND	CLR	E	F	G	Q _H	н	Shift Ioad	V _{cc}	terminal	Min	Max	
1 Гс = 25°С	V _{OH}	3006	1						0.7 V	<u>1</u> /	GND					4 mA	2.0 V	0.7 V	4.5 V	Q _H	2.5		V
	V _{OL}	3007	2						0.7 V	<u>1</u> /						4 mA	0.7 V	0.7 V		Q _H		0.4	
	VIC		3	-18 mA															"	S/IN		-1.5	"
			4		-18 mA						-									A		-	
			5			-18 mA					-									В			1
			6				-18 mA				=									С			1
			7					-18 mA											"	D			
			8						-18 mA											CLK INHB			1
			9							-18 mA	-								"	CLK			1
			10									-18 mA							"	CLR			
			11										-18 mA						"	E			
			12											-18 mA						F			
			13												-18 mA					G			
			14														-18 mA			Н			
			15															-18 mA		Shift load			
	I _{IL6}	3009	16	0.4 V	0.434													0110	5.5 V	S/IN	100	340	m
			17		0.4 V	0.434												GND		A			
			18 19			0.4 V	0.4 V													B			
			20				0.4 V	0.4 V												D			
	1		20					0.4 V	0.4 V											CLK INHB	001	150	
	l _{IL1} I _{IL1}		21						0.4 V	0.4 V										CLK INHE	001	150	
	чіш І _{ІС1}		22							0.4 V		0.4 V								CLR	001	150	
	IL1 IIL6		23									0.4 V	0.4 V					GND		E	100	340	
	IL6		24										0.4 V	0.4 V				GND "		F	100	340	
			26											0.4 V	0.4 V					G			
			27												0.4 V		0.4 V			Ĥ			
	I _{IL7}		28														0.1.1	0.4 V		Shift load	001	150	
	I _{IH1}	3010	29	2.7 V																S/IN		20	μ
			30		2.7 V															A			- C
			31			2.7 V													"	В			-
			32				2.7 V												"	С			1
			33					2.7 V											"	D			1
			34						2.7 V										"	CLK INHB			
			35							2.7 V	-								"	CLK			
			36								-	2.7 V							"	CLR			
			37								=		2.7 V						"	E			
			38											2.7 V						F			1
			39												2.7 V				"	G			
			40														2.7 V			Н			
	1		41		1							1		1			1	2.7 V		Shift load			

TABLE III. <u>Group A inspection for device type 09</u>- Continued.

See footnotes at end of device types 09

20

Downloaded from $\underline{\text{Elcodis.com}}$ electronic components distributor

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	'; or low : 11	12	13	14	15	16		Test I	imits	
Subgroup	Symbol	883	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Uni
		method	Test no.	Ser. in	A	В	С	D	CLK INHB	CLK	GND	CLR	E	F	G	Q _H	н	Shift load	V _{cc}	terminal	Min	Max	
1	I _{IH2}	3010	42	5.5 V							GND								5.5 V	S/IN		0.1	mA
Tc = 25°C			43		5.5 V						"									A			
			44			5.5 V					"									В			
			45				5.5 V				"									С			
			46					5.5 V			"									D			
			47						5.5 V		"									CLK INHB			
			48							5.5 V	"									CLK			
			49								"	5.5 V								CLR			
			50								"		5.5 V							E			
			51											5.5 V						F			
			52												5.5 V					G			
			53														5.5 V			Н			
			54															5.5 V		Shift load			
	los	3011	55						GND	<u>1</u> /						GND	5.5 V	GND		Q _H	-15	-100	
	1	3005	56	4.5	GND	GND	GND	GND	GND	1/		GND	GND	GND	GND		GND	GND		Vcc		38	
2 3		ts, terminal	conditions, a	nd limits a	as subgro	oup 1, e	xcept T	_c = 125°	C and V	_{IC} tests a	re omitte	d.	GND	GND	OND		GND	GND		VCC			
3	Same tes	ts, terminal	conditions, a conditions, a	nd limits a	as subgro	oup 1, e	except T	_c = 125° _c = -55°	C and V C and V _I	_{IC} tests a _C tests ar	re omitte e omitteo	d. 1.						-	5.01	Vcc			
3 7 <u>2</u> /	Same tes Same tes Truth	ts, terminal	conditions, a conditions, a 57	nd limits a	as subgro	oup 1, e	xcept T	_c = 125°	C and V	_{ic} tests a _c tests ar B	re omitte	d. 1. B	A	B	A	L	A "	В	5.0 V	Vcc			
3	Same tes Same tes Truth table	ts, terminal	conditions, a conditions, a 57 58	nd limits a nd limits a B	as subgro as subgro A	oup 1, e oup 1, e B	except T	_c = 125° _c = -55° B	C and V C and V B	_{IC} tests a _c tests ar B B	re omitte e omitteo	d. 1.	A	В	A	L	A	BB	5.0 V	VCC			
3 7 <u>2</u> /	Same tes Same tes Truth	ts, terminal	conditions, a conditions, a 57 58 59	nd limits a nd limits a B	as subgro as subgro A	oup 1, e oup 1, e B "	except T, except T, A	_c = 125° _c = -55° B	C and V C and V B	_{IC} tests a _c tests a B B A	re omitte e omitteo	d. d. B A	A "	B	A "	L L H	A "	B B B	5.0 V	VCC			
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, an conditions, an 57 58 59 60	nd limits a nd limits a "	as subgro as subgro A	oup 1, e	except T, except T, A	c = 125° c = -55° B "	C and V C and V B "	_{IC} tests a _c tests a B B A B	re omitte e omitteo GND "	d. d. A R	A "	B "	A "	L	A "	BB	5.0 V "	VCC			
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, a conditions, a 57 58 59	nd limits a nd limits a " "	as subgro as subgro A "	oup 1, e	except T	c = 125° c = -55° B "	C and V C and V B "	_{IC} tests a _c tests a B B A	re omitte e omitteo GND "	d. d. B A "	А "	B "	A "	L	А н н	B B B	5.0 V "		3/		
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, au conditions, au 57 58 59 60 61	nd limits a nd limits a " " "	as subgro as subgro A " "	oup 1, e	except T	c = 125° c = -55° B " "	C and V C and V B " "	_{IC} tests a _c tests a B B A B A A	re omitte e omitteo GND " " "	d. d. A " "	A " "	B " "	A " "	⊥ I = =	А п п п	B B A "	5.0 V " " "		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, au conditions, au 57 58 59 60 61 62 63 64	nd limits a nd limits a " " " "	as subgro as subgro A " "	oup 1, e	except T	c = 125° c = -55° B " "	C and V C and V C and V	_{IC} tests a c tests a B A B A B A B A B	re omitte e omitteo GND " " "	d. d. A " "	А " " "	B " "	А " " "	L I = = =	А п п	B B A "	5.0 V " " " "		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, an conditions, an 57 58 59 60 61 62 63 63 64 65	nd limits a nd limits a " " " "	A " " " " "	Dup 1, e Dup 1, e B " " " "	A " " " " " " " " " " " " " " " " " " "	C = 125° C = -55° B " " " " "	C and V C and V C and V	E tests a c tests a B A B A B A A A A	re omitte e omitteo " " " " "	d. d. A	A " " "	B " "	A " " " "	L T = = L	А п п п	B B A "	5.0 V " " " " "		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, a conditions, a 57 58 59 60 61 62 63 64 65 66	nd limits a nd limits a " " " " " " " " " "	A " " " " "	Dup 1, e Dup 1, e B " " " "	A " " " " " " " " " " " " " " " " " " "	C = 125° C = -55° B " " " " "	C and V C and V B " " " " " " " "	_{IC} tests a B B A B A B A B A B A	re omitte e omitteo " " " " "	d. d. A = = = = = = = = = =	A " " "	B " "	A " " " "	L H " L	A "" " " " " " "	B B A " " "	5.0 V " " " " " " "		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, au conditions, au 57 58 59 60 61 62 63 64 62 63 64 65 66 67	nd limits a nd limits a " " " " " " " " " " " "	A " " " " "	Dup 1, e Dup 1, e B " " " "	A " " " " " " " " " " " " " " " " " " "	C = 125° C = -55° B " " " " "	C and V C and V B " " " " " " " " " " " " "	C tests and C test	re omitte e omitteo " " " " " " " " "	d. B. A. " " " " "	A " " " " "	B " " " " " " " " " " " " " " " " " " "	A "" " " "	L H " L L	A 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	B B A " "	5.0 V " " " " " " " " " " " " " " " " " " "		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, au conditions, au 57 58 59 60 61 62 63 64 63 64 65 66 66 67 68	nd limits a nd limits a " " " " " " " " " " " " " "	as subgro as subgro as subgro " " " " " " "	Dup 1, e Dup 1, e B " " " " " " " " " " " " " "	xcept Tr xcept Tr A " " " " " "	c = 125° c = -55° " " " " " " " " " "	C and V C and V B " " " " " " " " " " " " " " "	C tests a c tests a B A B A B A B A B A B A B A B A B B A B	re omitte e omittec " " " " " " " " " " " " "	d.	A " " " " " " " " " " " " "	B 	A 19 19 19 19 19 19 19 19 19 19	L H " L L	A 11 11 11 11 11 11 11 11 11 11 11 11 11	B B A " " " "	5.0 V " " " " " " " " " " "		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, au conditions, au 57 58 59 60 61 62 63 64 65 66 65 66 67 68 69	nd limits a nd limits a " " " " " " " " " " " " " " " "	as subgro as subgro as subgro " " " " " " "	bup 1, e bup 1, e " " " " " " "	xcept Tr xcept Tr A " " " " " "	c = 125° c = -55° B " " " " " " " "	C and V C and V B " " " " " " " " " " " " " " " " " "	C tests a c tests a B A B A B A B A B A B A B A A B A A	e omitteo GND " " " " " " " " "	d. d. A A a a a a a a a a a a a a a a a a a	A " " " " " " " " " " " " " " " " " " "	B " " " " " " " "	A " " " " " " " " " " " " "	L H 	A " " " " " " " " " " " " " " " " " " "	B B A " " " " " " "	5.0 V " " " " " " " " " " " " " " " " " " "		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, al conditions, al 57 58 59 60 61 62 63 64 65 65 66 67 68 68 69 70	nd limits a nd limits a " " " " " " " " " " " " " " " " " " "	A as subgro A " " " " " " " " " " " " "	Dup 1, e Dup 1, e B " " " " " " " " " " " " " " "	A A A a a a a a a a a a a a a a	c = 125° c = -55° " " " " " " " " " "	C and V	c tests a c tests a B A B A B A B A B A B A B A B B A B B A B	re omitte e omittec " " " " " " " " " " " " "	d. B. B. A " " " " " " " " " " " " "	A 11 12 13 14 15 15 15 15 15 15 15 15 15 15	B 	A " " " " " " " " " " " " " " " " " " "	L H 	A 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	B B A " " " " " " " " "	5.0 V " " " " " " " " " " " " " " " " " " "		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, al conditions, al 57 58 59 60 61 62 63 64 65 66 67 68 66 67 70 71	nd limits a nd limits a " " " " " " " " " " " " " " " " " " "	A subgro as subgro as subgro " " " " " " " " " " " " " " " " " " "	bup 1, e bup 1, e bup 1, e r r r r r r r r r r r r r r r r r r r	except Transferred	c = 125° c = -55° n n n n n n n n n n n n n n n n n n	C and V C and V C and V I I I I I I I I I I I I I I I I I I I	C tests a c tests a c tests a A B A B A B A B A B A B A B A A B A	re omitte e omitteo GND " " " " " " " " " " " " " " " " " " "	d. B A " " " " " " " " " " " " "	A 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	B ************************************	A 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	L H 	A 11 11 11 11 11 11 11 11 11 1	B B A " " " " " " " " " " " " " "	5.0 V " " " " " " " " " " " " " " " " " " "	V (2)	<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, al conditions, al 57 58 59 60 61 62 63 64 65 66 66 67 68 69 70 70 71 72	nd limits a nd limits a " " " " " " " " " " " " " " " " " " "	A as subgro A " " " " " " " " " " " " "	Dup 1, e Dup 1, e B " " " " " " " " " " " " " " "	A A A a a a a a a a a a a a a a	c = 125° c = -55° B " " " " " " " " " " " " " " "	C and V C and V B " " " " " " " " " " " " " " " " " "	C tests a c tests a c tests a A B A B A B A B A B B A B A B A B A B	re omitte e omittec " " " " " " " " " " " " "	d. B A " " " " " " " " " " " " "	A " " " " " " " " " " " " " " " " " " "	B 0 0 0 0 0 0 0 0 0 0 0 0 0	A 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	L H - L H H L L H L L L	A 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	B B A " " " " " " " " " " " " "	5.0 V 11 11 11 11 11 11 11 11 11 11 11 11 11	V &	<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, al conditions, al 57 58 59 60 61 62 63 64 65 66 64 65 66 67 68 69 70 70 71 71 72 73	nd limits a nd limits a " " " " " " " " " " " " " " " " " " "	A subgro as subgro as subgro a a a a a a a a a a a a a a a a a a a	Dup 1, e Dup 1, e Dup 1, e B I I I I I I I I I I I I I I I I I I	except Transformed	c = 125° c = -55° B " " " " " " " " " " " " " " " " " "	C and V C and V C and V N N N N N N N N N N N N N N N N N N N	C tests a C tests and C tests	re omitte e omittec gND " " " " " " " " " " " " " " " " " " "	d. B A " " " " " " " " " " " " "	A " " " " " " " " " " " " " " " " " " "	B 	A 9 9 9 9 9 9 9 9 9 9 9 9 9	L H 	A 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	B B A " " " " " " " " " " " " " " " " "	5.0 V 		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	ts, terminal	conditions, al conditions, al 57 58 59 60 61 62 63 64 65 66 66 67 68 69 70 70 71 72	nd limits a nd limits a " " " " " " " " " " " " " " " " " " "	A subgro as subgro as subgro " " " " " " " " " " " " " " " " " " "	bup 1, e bup 1, e bup 1, e r r r r r r r r r r r r r r r r r r r	except Transferred	c = 125° c = -55° B " " " " " " " " " " " " " " "	C and V C and V B " " " " " " " " " " " " " " " " " "	C tests a c tests a c tests a A B A B A B A B A B B A B A B A B A B	re omitte e omitteo GND " " " " " " " " " " " " " " " " " " "	d. B A " " " " " " " " " " " " "	A " " " " " " " " " " " " " " " " " " "	B 0 0 0 0 0 0 0 0 0 0 0 0 0	A 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	L H - L H H L L H L L L	A 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	B B A " " " " " " " " " " " " "	5.0 V " " " " " " " " " " " " " " " " " " "		<u>3</u> /		

TABLE III. Group A inspection for device type 09- Continued.

See footnotes at end of device types 09.

						Termin	al condi	itions (p	ins not	designat	ed may	be high	\geq 2.0 V;	or low \leq	0.7 V; c	or open).							
		MIL-STD-		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Test I	_imits	
Subgroup	Symbol		Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Unit
		method	Test no.	Ser. in	A	В	С	D	CLK INHB	CLK	GND	CLR	E	F	G	Q _H	н	Shift load	V _{cc}	terminal	Min	Max	
9 <u>4</u> / Tc = 25°C	f _{MAX}	3003	76						GND	IN	GND	5.0 V				OUT	IN	GND	5.0 V	$CLK \text{ to } Q_H$	25		MHz
	t _{PHL5}	See fig. 12	77								:	IN				:			:	$CLR \text{ to } Q_H$	5 "	40	ns
	t _{PLH1}		78						GND	IN		5.0 V					IN	GND	-	CLR to Q _H		31	ns
	t _{PHL1}		79						GND	IN		5.0 V				-	IN	GND		CLR to Q _H		35	ns
10	f _{MAX}																				20		MHz
	t _{PHL5}		Same tests	and termi	nal as su	bgroup 9	, except	$T_{\rm C} = 128$	5°C.												5	52	ns
	t _{PLH1} t _{PHL1}																				5 5	40 46	ns ns
11	Same tes	sts, terminal	conditions, a	nd limits a	as subgro	oup 10, e	xcept T _C	= -55°C														1	

TABLE III. Group A inspection for device type 09- Continued.

NOTES:

& <u>1</u>/ Apply _____ --- 2.5 V minimum, 5.5 V maximum to clock input prior to test.

 $\underline{2}/~$ A = 2.5 V and B = 0.4 V.

3/ Output voltages shall be either:

a. H = 2.5 V minimum and L = 0.4 V maximum when using a high speed checker double comparator or,

b. H $\geq\!1.5$ V and L $\leq\!1.5$ V when using a high speed checker single comparator.

<u>4</u>/ f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the "H" shall be one-half of the clock input frequency and the "H" shall be shifted such that the "H" ↑ and ↓ are coincident with the clock ↓. Rise and fall times ≤6 ns. Input peak voltage 3 to 5 volts.

MIL-M-38510/306E

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's system Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature which may be helpful, but is not mandatory.)

6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

- 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. Complete part number (see 1.2).
 - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - j. Requirements for "JAN" marking.

6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

MIL-M-38510/306E

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-3853<u>5</u>, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential
I _{IN}	Current flowing into an input terminal
V _{IC}	Input clamp voltage
V _{IN}	Voltage level at an input terminal

6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.

6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

MIL-M-38510/306E

Military				Company				Generic
device type	Texas Instruments	Signetics Corp.	Raytheon Company	Advanced Micro Devices	Fairchild Semi- conductor	Motorola, Inc.	National Semi- conductor	Industry type
01, circuit	A	В	С	D	E	F	G	54LS194A
02, circuit	A	В	С	D	E	F	G	54LS195A
03, circuit	A	В	С		D	E		54LS95B
04, circuit	A	В						54LS96
05, circuit	A	В	G	С	E	F	D	54LS164
06, circuit	A	С	В		D	E		54LS295B
07, circuit	A	В			С	D		54LS395A
08, circuit	A				С	F		54LS165A
09, circuit	A					F		54LS166

6.6 <u>Change from previous issue.</u> Asterisks are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.

Custodians:

Army - CR Navy - EC Air Force - 11 DLA - CC Preparing activity: DLA - CC

(Project 5962-1960)

Review activities: Army – SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99