

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9488-2

Unit Loading/Fan Out

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
CEP	Count Enable Parallel Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { CET }}$	Count Enable Trickle Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
U / \bar{D}	Up-Down Count Control Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$Q_{0}-Q_{3}$	Flip-Flop Outputs	50/33.3	-1 mA/20 mA
$\overline{\mathrm{TC}}$	Terminal Count Output (Active LOW)	50/33.3	-1 mA/20 mA

Functional Description

The 'F169 uses edge-triggered J-K type flip-flops and has no constraints on changing the control or data input signals in either state of the clock. The only requirement is that the various inputs attain the desired state at least a setup time before the rising edge of the clock and remain valid for the recommended hold time thereafter. The parallel load operation takes precedence over other operations, as indicated in the Mode Select Table. When PE is LOW, the data on the $\mathrm{P}_{0}-\mathrm{P}_{3}$ inputs enters the flip-flops on the next rising edge of the clock. In order for counting to occur, both $\overline{\text { CEP }}$ and $\overline{\text { CET }}$ must be LOW and $\overline{\text { PE must be HIGH; the U/ } \overline{\mathrm{D}} \text { input then }}$ determines the direction of counting. The Terminal Count (TC) output is normally HIGH and goes LOW, provided that

CET is LOW, when a counter reaches zero in the Count Down mode or reaches 15 for the ' F 169 in the Count Up mode. The TC output state is not a function of the Count Enable Parallel (CEP) input level. Since the TC signal is derived by decoding the flip-flop states, there exists the possibility of decoding spikes on TC. For this reason the use of $\overline{\mathrm{TC}}$ as a clock signal is not recommended (see logic equations below)

1) Count Enable $=\overline{\mathrm{CEP}} \bullet \overline{\mathrm{CET}} \bullet \overline{\mathrm{PE}}$
2) Up: ('F169): $\overline{T C}=Q_{0} \bullet Q_{1} \bullet Q_{2} \bullet Q_{3} \bullet(U p) \bullet \overline{C E T}$
3) Down: $\overline{T C}=\bar{Q}_{0} \bullet \bar{Q}_{1} \bullet \bar{Q}_{2} \bullet \bar{Q}_{3} \bullet($ Down $\cdot \overline{\mathrm{CET}}$

Logic Diagram

TL/F/9488-5
Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.
Mode Select Table

$\overline{\text { PE }}$	CEP	CET	U/D	Action on Rising Clock Edge	H = HIGH Voltage Level L = LOW Voltage Level $\mathrm{X}=$ Immaterial
L	X	X	X	$\operatorname{Load}\left(P_{n} \rightarrow Q_{n}\right)$	
H	L	L	H	Count Up (Increment)	
H	L	L	L	Count Down (Decrement)	
H	H	X	X	No Change (Hold)	
H	X	H	X	No Change (Hold)	

State Diagram

'F169

TL/F/9488-7

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ Plastic
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to
Ground Pin
-0.5 V to +7.0 V
-0.5 V to +7.0 V
Input Voltage (Note 2)
-30 mA to +5.0 mA
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE ${ }^{\circledR}$ Output

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 Conditions| Free Air Ambient Temperature | |
| :--- | ---: |
| \quad Military | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| \quad Commercial | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Supply Voltage | |
| \quad Military | +4.5 V to +5.5 V |
| Commercial | +4.5 V to +5.5 V |

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{CC}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 20.0 \\ 5.0 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
I_{BV}	Input HIGH Current Breakdown Test	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{aligned} & 100 \\ & 7.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 250 \\ 50 \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$V_{\text {ID }}$	Input Leakage Test	74F	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
${ }^{\text {IOD }}$	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
IIL	Input LOW Current				$\begin{aligned} & -0.6 \\ & -1.2 \\ & \hline \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\text { except } \overline{\mathrm{CET}}) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\overline{\mathrm{CET}}) \end{aligned}$
los	Output Short-Circuit	urrent	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Curre			35	52	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

'F169
AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Count Frequency	90			60		70		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to Q_{n} ($\overline{P E}$ HIGH or LOW)	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 13.0 \end{gathered}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to TC	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 4.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{gathered} 6.5 \\ 11.0 \\ \hline \end{gathered}$	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{gathered} 9.0 \\ 12.0 \\ \hline \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 7.0 \\ 12.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay U/ $\overline{\mathrm{D}}$ to $\overline{\mathrm{TC}}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 12.0 \end{aligned}$	3.5 4.0	$\begin{aligned} & 16.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 13.0 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	74F		54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C c}}=\mathbf{C o m}$		
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\mathrm{P}_{\mathrm{n}} \text { to } \mathrm{CP}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\mathrm{P}_{\mathrm{n}} \text { to } \mathrm{CP}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	$\begin{aligned} & 7.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.0 \\ & 6.5 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	$\begin{gathered} 0 \\ 0.5 \end{gathered}$		$\begin{gathered} 0 \\ 1.0 \end{gathered}$		$\begin{gathered} 0 \\ 0.5 \\ \hline \end{gathered}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\text { PE to } C P ~}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\text { PE to CP }}$	$\begin{gathered} 1.0 \\ 0 \\ \hline \end{gathered}$		$\begin{gathered} 1.0 \\ 0 \\ \hline \end{gathered}$		$\begin{gathered} 1.0 \\ 0 \\ \hline \end{gathered}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW U/D to CP	$\begin{gathered} 11.0 \\ 7.0 \\ \hline \end{gathered}$		$\begin{aligned} & 14.0 \\ & 12.0 \\ & \hline \end{aligned}$		$\begin{gathered} 12.5 \\ 8.5 \\ \hline \end{gathered}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW U/D to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse Width HIGH or LOW			$\begin{aligned} & 6.0 \\ & 9.0 \end{aligned}$		$\begin{aligned} & 4.5 \\ & 8.0 \end{aligned}$		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

> 16-Lead Ceramic Dual-In-Line Package (D)

NS Package Number J16A

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240	National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1	National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261 Tel: (043) 299-2300 Fax: (043) 299-2500	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181	National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998

