TOSHIBA

MICROWAVE SEMICONDUCTOR TECHNICAL DATA

MICROWAVE POWER GaAs FET TIM4450-25UL

■ BROAD BAND INTERNALLY MATCHED FET

FEATURES

- HIGH POWER
 P1dB=44.5dBm at 4.4GHz to 5.0GHz
- HIGH GAIN
 G1dB=10.0dB at 4.4GHz to 5.0GHz
- HERMETICALLY SEALED PACKAGE

RF PERFORMANCE SPECIFICATIONS (Ta= 25°C)

CHARACTERISTICS	SYMBOL	CONDITIONS	UNIT	MIN.	TYP.	MAX.
Output Power at 1dB Gain	P1dB		dBm	43.5	44.5	
Compression Point						
Power Gain at 1dB Gain	G1dB	\/D0 40\/	dB	9.0	10.0	
Compression Point		VDS= 10V				
Drain Current	IDS1	f = 4.4 to 5.0GHz	Α		6.8	7.6
Gain Flatness	ΔG		dB	_		±0.6
Power Added Efficiency	ηadd		%	_	37	
3rd Order Intermodulation	IM3	Two-Tone Test	dBc	-44	-47	
Distortion		Po=33.5dBm				
Drain Current	IDS2	(Single Carrier Level)	Α	_	6.8	7.6
Channel Temperature Rise	∆Tch	(VDS X IDS +Pin-P1dB)	۰C			80
		X Rth(c-c)				

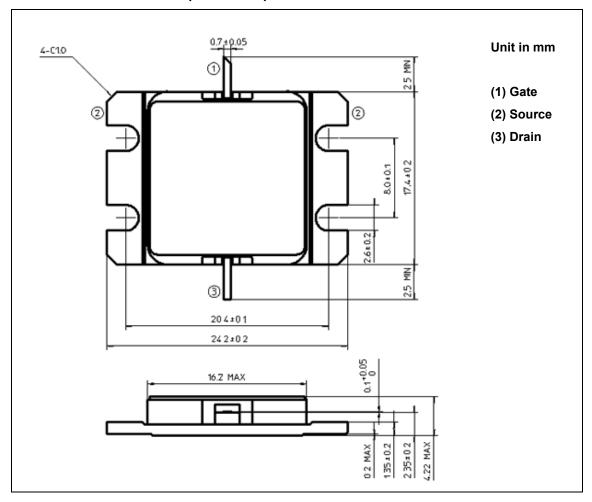
Recommended gate resistance(Rg) : Rg= 28 Ω (MAX.)

ELECTRICAL CHARACTERISTICS (Ta= 25°C)

CHARACTERISTICS	SYMBOL	CONDITIONS	UNIT	MIN.	TYP.	MAX.
Transconductance	gm	VDS= 3V	mS		5000	
		IDS= 8.0A				
Pinch-off Voltage	VGSoff	VDS= 3V	V	-1.0	-2.5	-4.0
		IDS= 80mA				
Saturated Drain Current	IDSS	VDS= 3V	Α		14.4	
		VGS= 0V				
Gate-Source Breakdown	VGSO	IGS= -280μA	V	-5		
Voltage						
Thermal Resistance	Rth(c-c)	Channel to Case	°C/W		1.2	1.5

[◆] The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may results from its use, No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.

TOSHIBA CORPORATION

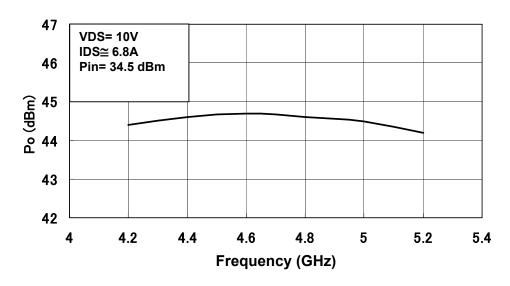

Rev. Jun. 2006

The information contained herein is subject to change without prior notice. It is therefor advisable to contact TOSHIBA before proceeding with design of equipment incorporating this product.

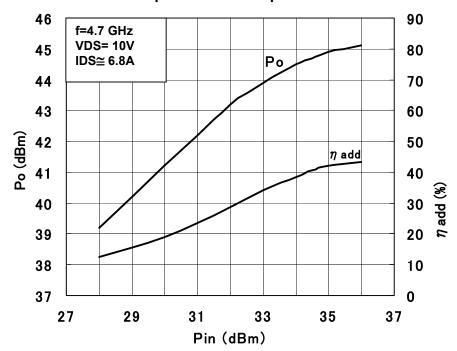
ABSOLUTE MAXIMUM RATINGS (Ta= 25°C)

CHARACTERISTICS	SYMBOL	UNIT	RATING
Drain-Source Voltage	VDS	V	15
Gate-Source Voltage	VGS	V	-5
Drain Current	IDS	Α	20.0
Total Power Dissipation (Tc= 25 °C)	PT	W	100
Channel Temperature	Tch	°C	175
Storage	Tstg	°C	-65 to +175

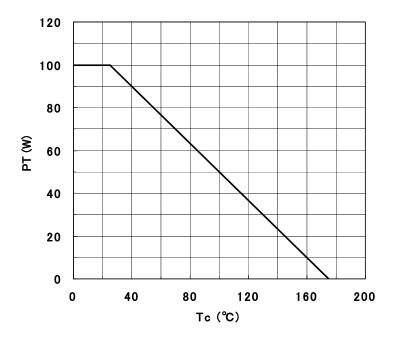
PACKAGE OUTLINE (2-16G1B)

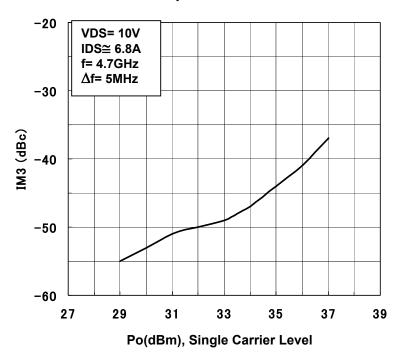


HANDLING PRECAUTIONS FOR PACKAGE MODEL


Soldering iron should be grounded and the operating time should not exceed 10 seconds at 260° C.

RF PERFORMANCE


Output Power vs. Frequency


Output Power vs. Input Power

Power Dissipation vs. Case Temperature

IM3 vs. Output Power Characteristics

