

STL24NM60N

N-channel 600 V, 0.200 Ω 16 A PowerFLAT™ (8x8) HV MDmesh™ II Power MOSFET

Preliminary data

Features

Туре	V _{DSS} @ T _{Jmax}	R _{DS(on)} max	I _D
STL24NM60N	650 V	< 0.215 Ω	16 A ⁽¹⁾

- 1. The value is rated according to R_{thi-case}
- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Application

Switching applications

Description

This device is made using the second generation of MDmesh™ technology. This revolutionary Power MOSFET associates a new vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

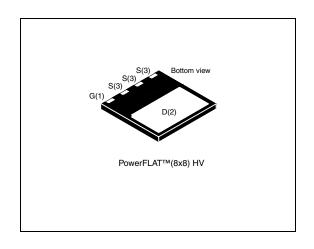


Figure 1. Internal schematic diagram

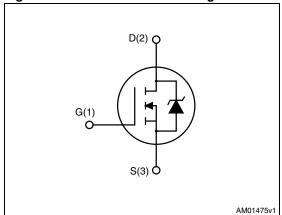


Table 1. Device summary

Order code	Marking	Package	Packaging
STL24NM60N	24NM60N	PowerFLAT™ (8x8) HV	Tape and reel

January 2011 Doc ID 18363 Rev 1 1/11

Contents STL24NM60N

Contents

1	Electrical ratings 3	}
2	Electrical characteristics4	ļ
3	Test circuits 6	Ì
4	Package mechanical data7	,
5	Revision history)

STL24NM60N Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	600	V
V_{GS}	Gate-source voltage	± 25	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	16	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	10	Α
I _D ⁽²⁾	Drain current (continuous) at T _C = 25 °C	3.3	Α
I _D ⁽²⁾	Drain current (continuous) at T _C = 100 °C	1.5	Α
I _{DM} ^{(2),(3)}	Drain current (pulsed)	13.2	Α
P _{TOT} (3)	Total dissipation at T _C = 25 °C (steady state)	3	W
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25 °C (steady state)	125	W
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	4	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	300	mJ
dv/dt (4)	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
Tj	Max. operating junction temperature	150	°C

^{1.} The value is rated according to $R_{thj\text{-}case}$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	1	°C/W
R _{thj-amb} ⁽¹⁾	Thermal resistance junction-amb max	45	°C/W

^{1.} When mounted on 1inch² FR-4 board, 2 oz Cu

^{2.} Pulse width limited by safe operating area

^{3.} When mounted on FR-4 board of inch², 2oz Cu

^{4.} $I_{SD} \leq$ 16 A, di/dt \leq 400 A/ μ s, $V_{DSpeak} \leq V_{(BR)DSS}$, V_{DD} = 80% $V_{(BR)DSS}$

Electrical characteristics STL24NM60N

2 Electrical characteristics

($T_C = 25$ °C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	600			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max rating V_{DS} = Max rating, T_{C} =125 °C			1 100	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 8 A		0.2	0.215	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	1400 44 7.4	-	pF pF pF
C _{oss eq.} ⁽¹⁾	Output equivalent capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0	-	190	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	5	-	Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 480 V, I_D = 16 A, V_{GS} = 10 V (see <i>Figure 3</i>)	-	46 7 23	-	nC nC nC

^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(off)} t _r t _C t _f	Turn-off delay time Rise time Cross time Fall time	$V_{DD} = 300 \text{ V}, I_D = 8 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 4</i>)	1	11.5 16.5 73 37	-	ns ns ns ns

4/11 Doc ID 18363 Rev 1

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		16 64	A A
V _{SD} (2)	Forward on voltage	I _{SD} = 16 A, V _{GS} = 0	-		1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 16 A, di/dt = 100 A/μs V _{DD} = 100 V (see <i>Figure 4</i>)	-	340 4.6 27		ns µC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 16 \text{ A, di/dt} = 100 \text{ A/µs}$ $V_{DD} = 100 \text{ V, T}_j = 150 ^{\circ}\text{C}$ (see <i>Figure 4</i>)	-	4.4 5.7 28		ns μC Α

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

Test circuits STL24NM60N

3 Test circuits

Figure 2. Switching times test circuit for resistive load

Figure 3. Gate charge test circuit

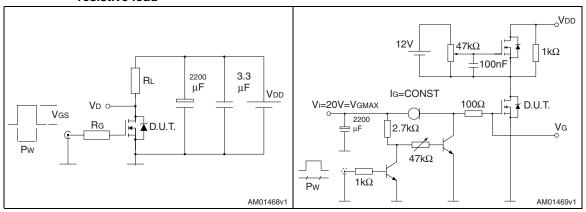


Figure 4. Test circuit for inductive load switching and diode recovery times

Figure 5. Unclamped inductive load test circuit

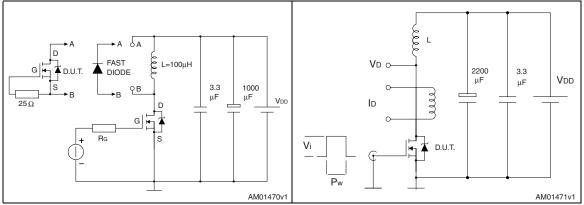
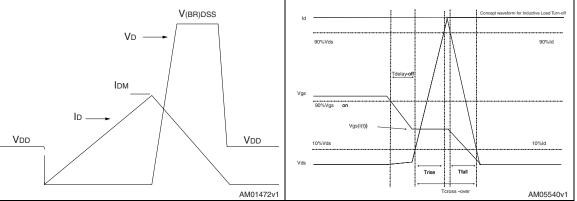



Figure 6. Unclamped inductive waveform

Figure 7. Switching time waveform

6/11 Doc ID 18363 Rev 1

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 8. PowerFLAT™ 8x8 HV mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
А	0.80	0.90	1.00
A1		0.02	0.05
b	0.95	1.00	1.05
С		0.10	
D		8.00	
E		8.00	
D2	7.05	7.20	7.30
E2	4.15	4.30	4.40
е		2.00	
L	0.40	0.50	0.60

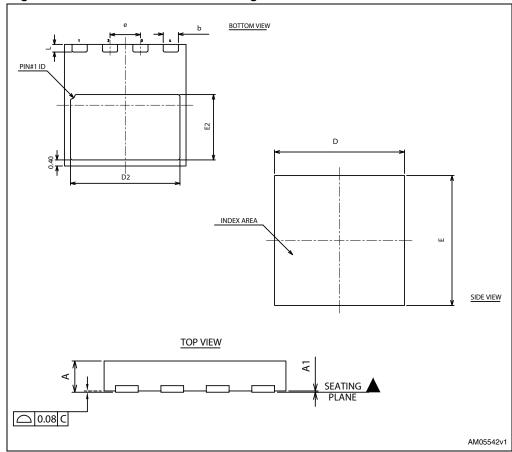


Figure 8. PowerFLAT™ 8x8 HV drawing mechanical data

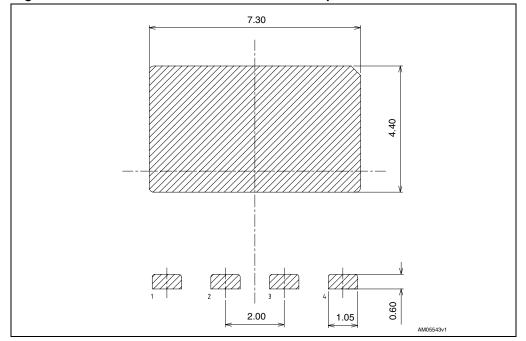


Figure 9. PowerFLAT™ 8x8 HV recommended footprint

577

Revision history STL24NM60N

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
05-Jan-2011	1	First release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 18363 Rev 1

11/11