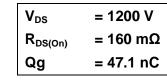


CMF10120D – Silicon Carbide MOSFET

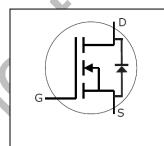
Z-FETTM MOSFET

Features


- **High-Frequency Operation** •
- **Temperature-Independent Switching** •
- **Extremely Fast Switching** •

Benefits

- High Temperature Operation •
- **High Frequency Operation** ٠
- Higher Efficiency ٠
- Reduction of Heat Sink Requirements •
- Parallel Devices Without Thermal Runaway •


Applications

- Switch Mode Power Supplies
- **Power Factor Correction**
- Motor Drives

Package

	Part Number	Package	Marking
	CMF10120	TO-247	CMF10120D

Maximum Ratings (T_c = 25°C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Notes
	Continuous Drain Current	24	A	$V_{GS} = 20V, T_{C} = 25^{\circ}C$	
I _D	Continuous Drain Current	12	Α	$V_{GS} = 20V, T_{C} = 100^{\circ}C$	
I _{Dpulse}	Pulsed Drain Current		Α	Pulse width limited by $T_{J(max)}$, $T_{C} = 25^{\circ}C$	
E _{AS}	Single Pulse Avalanche Energy	TBD	J	$I_D = 20A$, $V_{DD} = 50V$, $L = 9.5mH$ t_{AR} limited by $T_{J(max)}$	
E _{AR}	Repetitive Avalanche Energy	TBD	J		
I _{AR}	Repetitive Avalanche Current	TBD	A	$I_D = 20A$, $V_{DD} = 50V$, $L = 3mH$ t_{AR} limited by $T_{J(max)}$	
VGS	Gate – Source Voltage	-5/+25	V		
P _{tot}	Maximum Power Dissipation	152	W	$T_{\rm C} = 25^{\circ}{\rm C}$	
	Operating Junction and	-55 to	°C		
T _J , T _{stg}	Storage Temperature	+125			
	Range				
TL	Solder Temperature	260	°C	1.6mm (0.063") from case for 10 sec	
Md	Mounting Torque	1	Nm	M3 or 6-32 screw	
INIC		8.8	lbf-in		

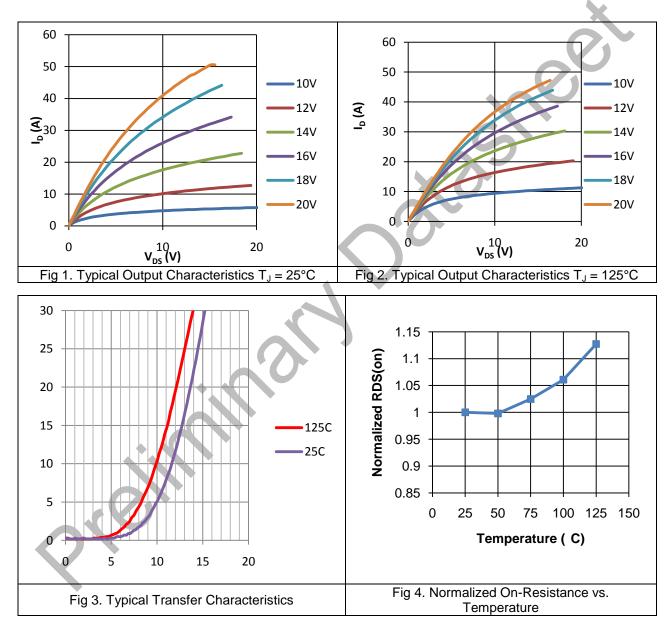
Electrical Characteristics ($T_c = 25^{\circ}C$ unless otherwise specified)

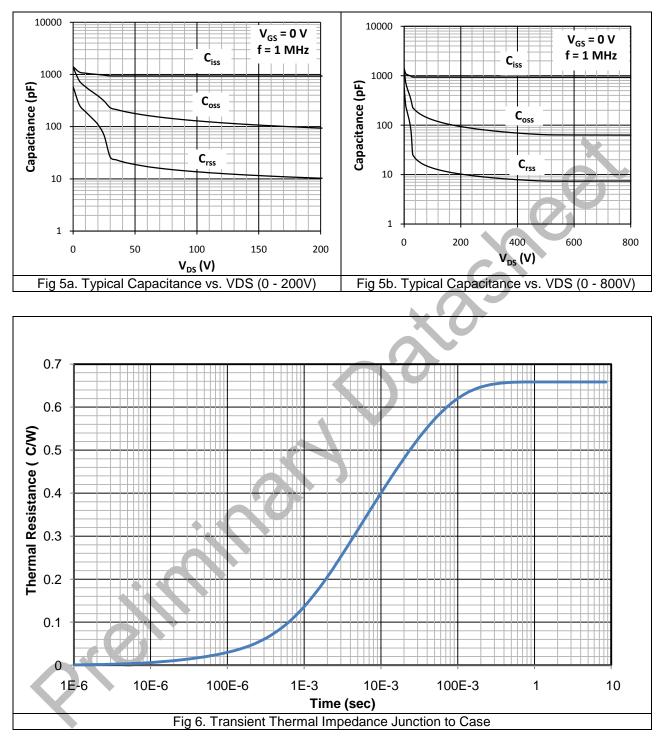
Symbol	Parameter	Min	Value		Unit	Test Conditions	Notes
-		Min	Тур	Max			
$V_{(\text{BR})\text{DSS}}$	Drain – Source Breakdown Voltage	1200			V	V_{GS} = -5V, I_{D} = 100µA	
V _{GS(th)}	Gate Threshold Voltage		2.85	4	V	$V_{DS} = V_{GS},$ $I_D = 500 \mu A$	20A was 2.5V
V GS(th)			2.20		V	$V_{DS} = V_{GS},$ $I_D = 500\mu A, T_J = 125^{\circ}C$	20A was 1.8V
I _{DSS}	Zero Gate Voltage Drain Current		1	50	μA	V _{DS} = 1200V, V _{GS} = 0V	
IDSS			10	125	μΑ	V _{DS} = 1200V, V _{GS} = 0V, T _J =125°C	
I _{GSS}	Gate-Source Leakage Current			250	nA	$V_{GS} = 20V, V_{DS} = 0V$	
П	Drain-Source On-State Resistance		0.16	0.22	Ω	$V_{GS} = 20V,$ $I_D = 10A$	
$R_{DS(on)}$			0.19	0.26		V _{GS} = 20V, I _D = 10A, T _J =125°C	
a.	Transconductance		3.7		S	V _{GS} = 20V, I _D = 10A	
g fs			3.4			V _{GS} = 20V, I _D = 10A, T _J =125°C	
Ciss	Input Capacitance		928				
Coss	Output Capacitance		63.2		pF	$V_{GS} = 0V, V_{DS} = 800V$ f = 1MHz, V _{AC} = 25mV	
C _{rss}	Reverse Transfer Capacitance		7.45			T = TWTZ, VAC = 2011V	
t _{d(on)i}	Turn-On Delay Time		7				
t _{ri}	Rise Time		14		ns	$V_{DD} = 800V, V_{GS} = -2/20V$	
t _{d(off)i}	Turn-Off Delay Time		46		ns	$I_D = 10A, R_{G(ext)} = 6.8\Omega,$	
t _{fi}	Fall Time		37			L = 856µH	
EON	Turn-On Switching Loss		261		μJ	Per JEDEC24 pg 27	
EOFF	Turn-Off Switching Loss		120		-		
R _G	Internal Gate Resistance		13.6		Ω	$f = 1MHz, V_{AC} = 25mV$	

Reverse Diode Characteristics

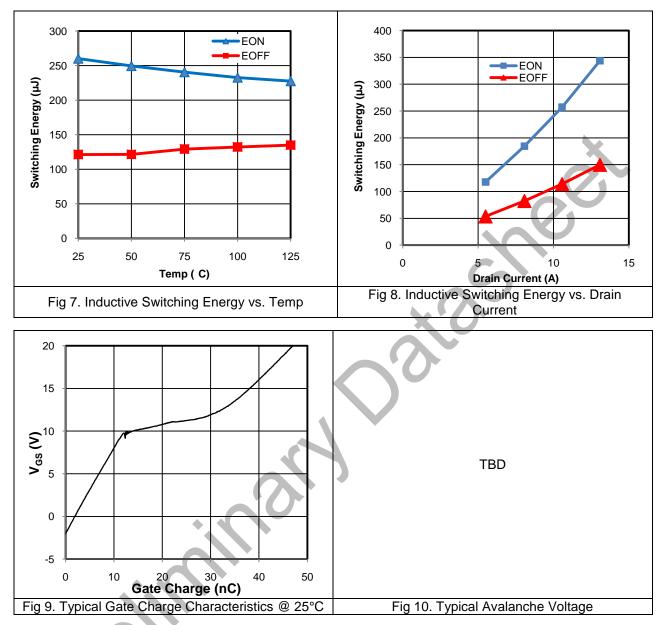
Symbol	Boromotor	Value		Unit	Test Conditions	Notes
Symbol	Parameter	Тур	Max	Unit	Test conditions	Notes
V.	Diode Forward Voltage	3.5		V	V _{GS} = -5V, I _F = 5A, T _J = 25°C	
V_{sd}	Didde Forward Voltage	3.1		V	V _{GS} = -5V, I _F = 5A, T _J = 125°C	
t _{rr}	Reverse Recovery Time	138		ns	$V_{GS} = -5V$, $I_{F} = 10A T_{J} = 25^{\circ}C$	
Qrr	Reverse Recovery Charge	94		nC	$V_{R} = 800V$	
Irrm	Peak Reverse Recovery Current	1.57		А	di _f /dt = 100A/µs	

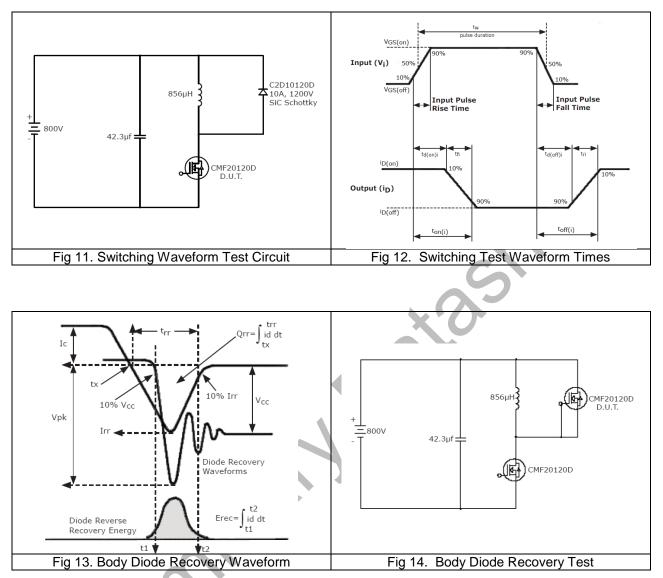
Thermal Characteristics


Symbol	Parameter		Value		Unit	Test Conditions	Notes
Symbol	Falalletei	Min	Тур	Max	Unit		
Rejc	Thermal Resistance Junction to Case		0.66				
$R_{\theta CS}$	Thermal Resistance Case to Sink				K/W		
$R_{ extsf{ heta}JA}$	Thermal Resistance Junction to Ambient						

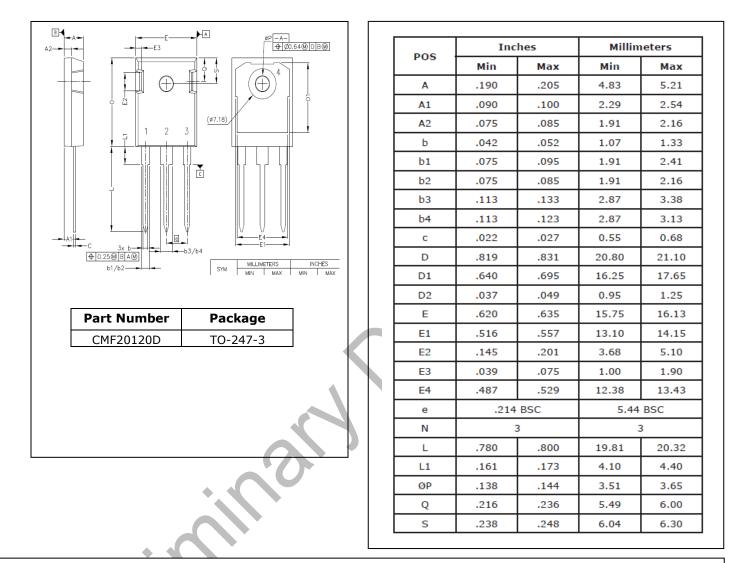

Gate Charge Characteristics

Symbol	Parameter		Value		Unit	Test Conditions	Notes
Symbol	Farameter	Min	Тур	Max	Unit	Test Conditions	Notes
Q _{gs}	Gate to Source Charge		11.8			$V_{DD} = 800V, V_{GS} = -2/20V$	
Q _{gd}	Gate to Drain Charge		21.5		nC	$I_D = 10A$,	
Qg	Total Gate Charge		47.1			Per JEDEC24 pg 27	




4

5



6

 \mathbf{i}

Package Dimensions

"The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent organic pollutants (POP), or otherwise restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April 21, 2006."

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems, or weapons systems.

Copyright © 2006-2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.

