

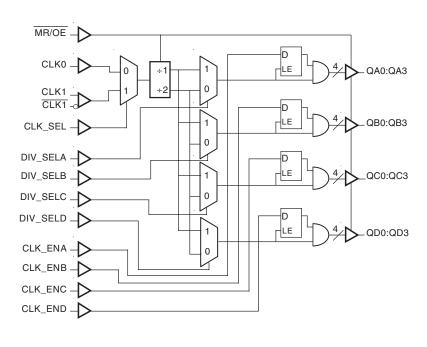
LOW SKEW, 1-TO-16 LVCMOS/LVTTL CLOCK GENERATOR

ICS87016I

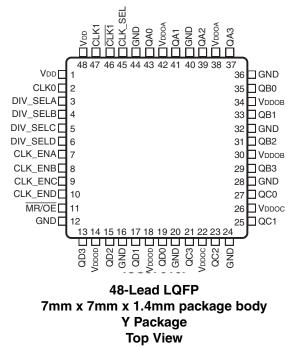
Description

The ICS87016I is a low skew, 1:16 LVCMOS/LVTTL Clock Generator and is a member of the HiPerClockS family of High Performance Clock Solutions. The device has 4 banks of 4 outputs and each bank can be independently selected for ÷1 or

÷2 frequency operation. Each bank also has its own power supply pins so that the banks can operate at the following different voltage levels: 3.3V, 2.5V, and 1.8V. The low impedance LVCMOS/LVTTL outputs are designed to drive 50Ω series or parallel terminated transmission lines.


The divide select inputs, DIV_SELA:DIV_SELD, control the output frequency of each bank. The output banks can be independently selected for \div 1 or \div 2 operation. The bank enable inputs, CLK_ENA:CLK_END, support enabling and disabling each bank of outputs individually. The CLK_ENA:CLK_END circuitry has a synchronizer to prevent runt pulses when enabling or disabling the clock outputs. The master reset input, MR/OE, resets the \div 1/ \div 2 flip flops and also controls the active and high impedance states of all outputs. This pin has an internal pull-up resistor and is normally used only for test purposes or in systems which use low power modes.

The ICS87016I is characterized to operate with the core at 3.3V or 2.5V and the banks at 3.3V, 2.5V, or 1.8V. Guaranteed bank, output, and part-to-part skew characteristics make the 87016I ideal for those clock applications demanding well-defined performance and repeatability.


Features

- Sixteen LVCMOS/LVTTL outputs (4 banks of 4 outputs)
- Selectable differential CLK1/CLK1 or LVCMOS/LVTTL clock input
- CLK1, CLK1 pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL
- CLK0 supports the following input types: LVCMOS, LVTTL
- Maximum output frequency: 250MHz
- Independent bank control for ÷1 or ÷2 operation
- Independent output bank voltage settings for 3.3V, 2.5V, or 1.8V operation
- Asynchronous clock enable/disable
- Output skew: 170ps (maximum)
- Bank skew: 50ps (maximum
- Part-to-Part Skew: 800ps (maximum)
- Supply modes: Core/Output
 3.3V/3.3V
 3.3V/2.5V
 3.3V/1.8V
 2.5V/2.5V
 2.5V/1.8V
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

Block Diagram

Pin Assignment

IDT™ / ICS™ LVCMOS/LVTTL CLOCK GENERATOR

ICS87016AYI REV. C MAY 25, 2007

Table 1. Pin Descriptions

Number	Name	Т	уре	Description
1, 48	V _{DD}	Power		Positive supply pins.
2	CLK0	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
3	DIV_SELA	Input	Pullup	Controls frequency division for Bank A outputs. See Table 3. LVCMOS / LVTTL interface levels.
4	DIV_SELB	Input	Pullup	Controls frequency division for Bank B outputs. See Table 3. LVCMOS / LVTTL interface levels.
5	DIV_SELC	Input	Pullup	Controls frequency division for Bank C outputs. See Table 3. LVCMOS / LVTTL interface levels.
6	DIV_SELD	Input	Pullup	Controls frequency division for Bank D outputs. See Table 3. LVCMOS / LVTTL interface levels.
7	CLK_ENA	Input	Pullup	Output enable for Bank A outputs. Active HIGH. If pin is LOW, outputs drive low. LVCMOS/LVTTL interface levels. See Table 3.
8	CLK_ENB	Input	Pullup	Output enable for Bank A outputs. Active HIGH. If pin is LOW, outputs drive low. LVCMOS/LVTTL interface levels. See Table 3.
9	CLK_ENC	Input	Pullup	Output enable for Bank A outputs. Active HIGH. If pin is LOW, outputs drive low. LVCMOS/LVTTL interface levels. See Table 3.
10	CLK_END	Input	Pullup	Output enable for Bank A outputs. Active HIGH. If pin is LOW, outputs drive low. LVCMOS/LVTTL interface levels. See Table 3.
11	MR/OE	Input	Pullup	Master reset. When LOW, resets the ÷1/÷2 flip flops and sets the outputs to high impedance. LVCMOS / LVTTL interface levels.
12, 16, 20, 24, 28, 32, 36, 40, 44	GND	Power		Power supply ground
13, 15, 17, 19	QD3, QD2, QD1, QD0	Output		Bank D single-ended clock outputs. LVCMOS/LVTTL interface levels.
14, 18	V _{DDOD}	Power		Bank D output supply pins.
21, 23, 25, 27	QC3, QC2, QC1, QC0	Output		Bank C single-ended clock outputs. LVCMOS/LVTTL interface levels.
22, 26	V _{DDOC}	Power		Bank C output supply pins.
29, 31, 33, 35	QB3, QB2, QB1, QB0	Output		Bank C single-ended clock outputs. LVCMOS/LVTTL interface levels.
30, 34	V _{DDOB}	Power		Bank B output supply pins.
37, 39, 41, 43	QA3, QA2, QA1, QA0	Output		Bank A single-ended clock outputs. LVCMOS/LVTTL interface levels.
38, 42	V _{DDOA}	Power		Bank B output supply pins.
45	CLK_SEL	Input	Pulldown	Clock select input. When HIGH, selects CLK1, CLK1 inputs. When LOW, selects CLK0 input. LVCMOS / LVTTL interface levels.
46	CLK1	Input	Pullup	Inverting differential clock input.
47	CLK1	Input	Pulldown	Non-inverting differential clock input.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
		$V_{DD,} V_{DDOx} = 3.465 V$			18	pF
	Power Dissipation Capacitance (per output); NOTE 1	$V_{DD,} V_{DDOx} = 2.625V$			12	pF
C _{PD}		V _{DD} = 3.465V, V _{DDOx} = 2.625V			20	pF
~PD		V _{DD} = 3.465V, V _{DDOx} = 1.89V			30	pF
		V _{DD} = 2.625V, V _{DDOx} = 1.89V			14	pF
R _{OUT}	Output Impedance		5	7	12	Ω

NOTE 1: V_{DDOx} denotes V_{DDOA}, V_{DDOB}, V_{DDOC}, V_{DDOD}.

Function Tables

Table 3. Function Table

	Inputs	Outputs		
MR/OE	CLK_ENx	DIV_SELx	Bank [A:D]	Qx Frequency
0	Х	Х	Hi-Z	N/A
1	1	0	Active	fIN/2
1	1	1	Active	fIN
1	0	Х	LOW	N/A

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating	
Supply Voltage, V _{CC}	4.6V	
Inputs, V _I	-0.5V to V _{DD} + 0.5V	
Outputs, V _O	-0.5V to V _{DD Ox} + 0.5V	
Package Thermal Impedance, θ_{JA}	47.9°C/W (0 lfpm)	
Storage Temperature, T _{STG}	-65°C to 150°C	

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDOx} = 3.3V \pm 5\%$, $2.5V \pm 5\%$, $1.8V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
V _{DDOA,}			3.135	3.3	3.465	V
V _{DDOB,} V _{DDOC,}	Output Supply Voltage		2.375	2.5	2.625	V
V _{DDOD}			1.71	1.8	1.89	V
I _{DD}	Power Supply Current				100	mA
I _{DDOA,} I _{DDOB,} I _{DDOC,} I _{DDOD}	Output Supply Current				15	mA

Table 4B. Power Supply DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $V_{DDOx} = 2.5V \pm 5\%$, $1.8V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Positive Supply Voltage		2.375	2.5	2.625	V
V _{DDOA,}			2.375	2.5	2.625	V
V _{DDOB} , V _{DDOC} , V _{DDOD} Output Supply Voltage	Output Supply Voltage		1.71	1.8	1.89	V
I _{DD}	Power Supply Current				95	mA
I _{DDOA,} I _{DDOB,} I _{DDOC,} I _{DDOD}	Output Supply Current				8	mA

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V	lan ut Link Valt		V _{DD} = 3.465V	2		V _{DD} + 0.3	V
V _{IH}	Input High Volta	age	V _{DD} = 2.625V	1.7		V _{DD} + 0.3	V
V	Innut Low Volta	~~	V _{DD} = 3.465V	-0.3		0.8	V
V _{IL}	Input Low Volta	ige	V _{DD} = 2.625V	-0.3		0.7	V
	Input	CLK0, CLK_SEL	$V_{DD} = V_{IN} = 3.465 V \text{ or}$ 2.625 V			150	μA
I _{IH}	High Current	CLK_EN[A:D], DIV_SEL[A:D], MR/OE	$V_{DD} = V_{IN} = 3.465V \text{ or}$ 2.625V			5	μA
Input I _{IL} Low Current	Input	CLK0, CLK_SEL	$V_{DD} = 3.465V \text{ or } 2.625V,$ $V_{IN} = 0V$	-5			μA
	Low Current	CLK_EN[A:D], DIV_SEL[A:D], MR/OE	$V_{DD} = 3.465V \text{ or } 2.625V,$ $V_{IN} = 0V$	-150			μA
			$V_{DDOx} = 3.3V \pm 5\%$	2.6			V
V _{OH}	Output High Vo	Itage: NOTE 1	$V_{DDOx} = 2.5V \pm 5\%$	1.8			V
on			$V_{DDOx} = 1.8V \pm 5\%;$ $I_{OH} = -2mA$	V _{DD} - 0.45			V
			$V_{DDOx} = 3.3V \pm 5\%$			0.5	V
V _{OL}	Output Low Vol	tage: NOTE 1	$V_{DDOx} = 2.5V \pm 5\%$			0.5	V
			$V_{DDOx} = 1.8V \pm 5\%;$ $I_{OH} = 2mA$			0.45	V
I _{OZL}	Output Hi-Z Current Low			-5			μA
I _{OZH}	Output Hi-Z Cu	rrent High				5	μA

Table 4C. LVCMOS/LVTTL DC Characteristi	ics, T	$A = -40^{\circ}C$ to $85^{\circ}C$
---	--------	-------------------------------------

NOTE 1: Outputs terminated with 50 Ω to V_{DDOX}/2. See Parameter Measurement Information, *Output Load Test Circuit diagrams*.

Table 4D. Differential DC Characteristics, T_A = -40°C to $85^\circ C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
I _{IH} Input High Curr	Input High Current	CLK1	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			5	μA
	input nigh Current	CLK1	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			150	μA
	Input Low Current	CLK1	$V_{DD} = 3.465 V \text{ or } 2.625 V, V_{IN} = 0 V$	-150			μA
۱		CLK1	$V_{DD} = 3.465 V \text{ or } 2.625 V, V_{IN} = 0 V$	-5			μA
V _{PP}	Peak-to-Peak Voltage			0.15		1.3	V
V _{CMR}	Common Mode Input Voltage; NOTE 1, 2			GND + 0.5		V _{DD} – 0.85	V

NOTE 1: Common mode input voltage is defined as $\mathrm{V}_{\mathrm{IH}}.$

NOTE 2: For single-ended applications, the maximum input voltage for CLK1, $\overline{\text{CLK1}}$ is V_{DD} + 0.3V.

AC Electrical Characteristics

Table 5A. AC Characteristics, $V_{DD} = V_{DDOx} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Parameter	Symbol		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency					250	MHz
to	Propagation Delay,	CLK0; NOTE 1A		2.8	3.4	3.9	ns
tp _{LH}	Low to High	CLK1/CLK1; NOTE 1B		2.75	3.4	4.1	ns
<i>t</i> sk(b)	Bank Skew; NOTE 2	2, 6	Measured on the Rising Edge			50	ps
<i>t</i> sk(o)	Output Skew; NOTE 3, 6		Measured on the Rising Edge			170	ps
<i>t</i> sk(pp)	Part-to-Part Skew; N	IOTE 4, 6				800	ps
t _R / t _F	Output Rise/Fall Tim	e; NOTE 5	20% to 80%	200		700	ps
odo			<i>f</i> < 175MHz	45		55	%
odc	Output Duty Cycle		<i>f</i> ≥ 175MHz	40		60	%
t _{EN}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time	; NOTE 5				10	ns

All parameters measured at 250MHz unless noted otherwise.

NOTE 1A: Measured from the $V_{DD}/2$ of the input to $V_{DDOX}/2$ of the output.

NOTE 1B: Measured from the differential input crossing point to V_{DDOX}/2 of the output.

NOTE 2: Defined as skew within a bank with equal load conditions.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOX}/2.

NOTE 4: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions.

Using the same type of input on each device, the output is measured at $V_{DDOX}/2$.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.

Parameter Symbol Test Conditions Minimum Typical Maximum Units **Output Frequency** 250 MHz f_{MAX} CLK0; NOTE 1A 2.9 4.7 3.8 ns Propagation Delay, CLK1/CLK1: tp_{LH} 3.0 3.6 4.3 ns Low to High NOTE 1B Bank Skew; NOTE 2, 6 tsk(b) Measured on the Rising Edge 70 ps Output Skew; NOTE 3, 6 210 tsk(o) Measured on the Rising Edge ps tsk(pp) Part-to-Part Skew; NOTE 4, 6 800 ps Output Rise/Fall Time; NOTE 5 700 t_R / t_F 20% to 80% 150 ps $f \leq 125 \text{MHz}$ 40 odc **Output Duty Cycle** 60 % $t_{\text{Period}}/2-800$ $t_{\text{Period}}/2 + 800$ **Output Pulse Width** f > 125MHz ps t_{pw} **Output Enable Time; NOTE 5** 10 ns t_{EN} Output Disable Time; NOTE 5 10 ns t_{DIS}

Table 5B. AC Characteristics, $V_{DD} = V_{DDOx} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

For NOTES, please see above, Table 5A.

Table 5C. AC Characteristics	$V_{DD} = 3.3V \pm 5\%$,	$V_{DDOx} = 2.5V \pm 5\%$,	$T_A = -40^{\circ}C$ to $85^{\circ}C$
-------------------------------------	---------------------------	-----------------------------	---------------------------------------

Parameter	Symbol		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency					250	MHz
to	Propagation Delay,	CLK0; NOTE 1A		2.9	3.5	4.0	ns
tp _{LH}	Low to High	CLK1/CLK1; NOTE 1B		3.0	3.5	4.0	ns
<i>t</i> sk(b)	Bank Skew; NOTE 2, 6		Measured on the Rising Edge			50	ps
<i>t</i> sk(o)	Output Skew; NOTE 3, 6		Measured on the Rising Edge			170	ps
<i>t</i> sk(pp)	Part-to-Part Skew; N	IOTE 4, 6				800	ps
t _R / t _F	Output Rise/Fall Tim	ne; NOTE 5	20% to 80%	200		700	ps
odc			<i>f</i> < 175MHz	45		55	%
ouc	Output Duty Cycle		<i>f</i> ≥ 175MHz	40		60	%
t _{EN}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time	; NOTE 5				10	ns

All parameters measured at 250MHz unless noted otherwise.

NOTE 1A: Measured from the $V_{DD}/2$ of the input to $V_{DDOX}/2$ of the output.

NOTE 1B: Measured from the differential input crossing point to $V_{DDOX}/2$ of the output.

NOTE 2: Defined as skew within a bank with equal load conditions.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOX}/2.

NOTE 4: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDOX}/2$.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.

Parameter	Symbol		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency					250	MHz
tp _{LH}	Propagation Delay, Low to High	CLK0; NOTE 1A		3.0	3.9	4.7	ns
		CLK1/CLK1; NOTE 1B		3.0	3.9	4.7	ns
<i>t</i> sk(b)	Bank Skew; NOTE 2, 6		Measured on the Rising Edge			50	ps
<i>t</i> sk(o)	Output Skew; NOTE 3, 6		Measured on the Rising Edge			170	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 4, 6					800	ps
t _R / t _F	Output Rise/Fall Time; NOTE 5		20% to 80%	200		700	ps
odc	Output Duty Cycle		<i>f</i> < 175MHz	45		55	%
			<i>f</i> ≥ 175MHz	40		60	%
t _{EN}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time	; NOTE 5				10	ns

Table 5D. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDOx} = 1.8V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

For NOTES, please see above, Table 5C.

Parameter	Symbol Output Frequency		Test Conditions	Minimum	Typical	Maximum 250	Units MHz
f _{MAX}							
	Propagation	CLK0; NOTE 1A		3.1	4.1	5.2	ns
tp _{LH}	Delay, Low to High	CLK1/CLK1; NOTE 1B		3.0	3.9	4.7	ns
<i>t</i> sk(b)	Bank Skew; NOTE 2, 6		Measured on the Rising Edge			70	ps
<i>t</i> sk(o)	Output Skew; NOTE 3, 6		Measured on the Rising Edge			210	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 4, 6					800	ps
t _R / t _F	Output Rise/Fall Time; NOTE 5		20% to 80%	150		700	ps
odc	Output Duty Cycle		<i>f</i> < 175MHz	45		55	%
			<i>f</i> ≥ 175MHz	40		60	%
t _{EN}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time; NOTE 5					10	ns

Table 5E. AC Characteristics, V_{DD} = 2.5V ± 5%, V_{DDOx} = 1.8V ± 5%, T_A = -40°C to 85°C

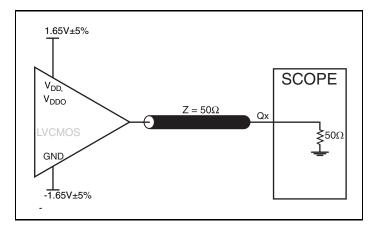
All parameters measured at 250MHz unless noted otherwise.

NOTE 1A: Measured from the $V_{DD}/2$ of the input to $V_{DDOX}/2$ of the output.

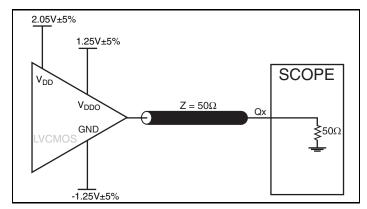
NOTE 1B: Measured from the differential input crossing point to $V_{DDOX}/2$ of the output.

NOTE 2: Defined as skew within a bank with equal load conditions.

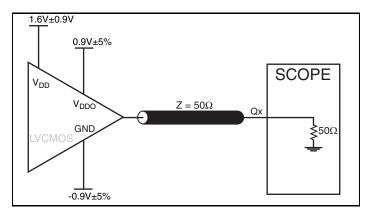
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOX}/2.

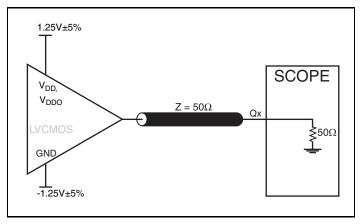

NOTE 4: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions.

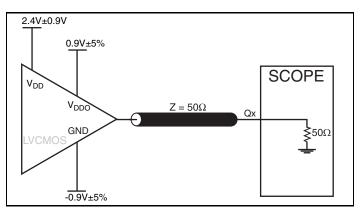
Using the same type of input on each device, the output is measured at $V_{DDOX}/2$.

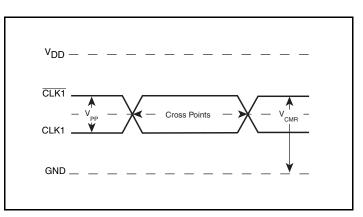

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.

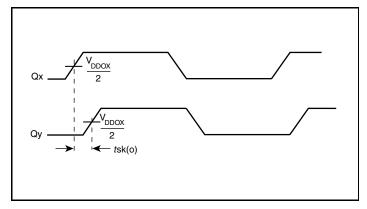



3.3V Core/3.3V LVCMOS Output Load AC Test Circuit

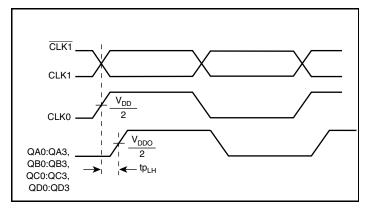

3.3V Core/2.5V LVCMOS Output Load AC Test Circuit

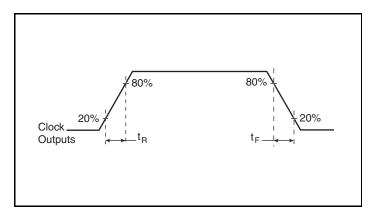

2.5V Core/1.8V LVCMOS Output Load AC Test Circuit

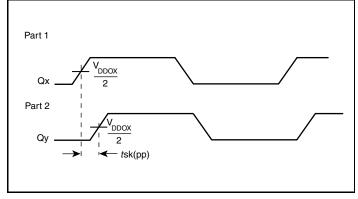
2.5V Core/2.5V LVCMOS Output Load AC Test Circuit

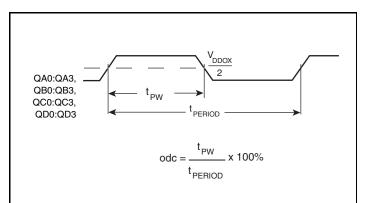


3.3V Core/1.8V LVCMOS Output Load AC Test Circuit




Parameter Measurement Information, continued





Output Rise/Fall Time

Application Information

Wiring the Differential Input to Accept Single Ended Levels

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{DD} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

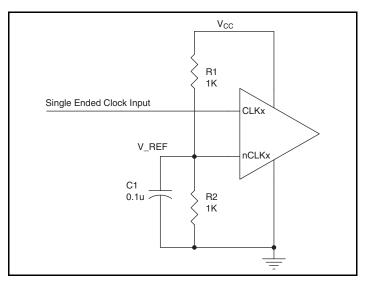


Figure 1. Single-Ended Signal Driving Differential Input

Recommendations for Unused Input and Output Pins

Inputs:

CLK/CLK Inputs:

For applications not requiring the use of the differential input, both CLK and \overline{CLK} can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground.

CLK Input:

For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the CLK input to ground.

LVCMOS Control Pins:

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Outputs:

LVCMOS Outputs:

All unused LVCMOS output can be left floating. There should be no trace attached.

Differential Clock Input Interface

The CLK /CLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both signals must meet the V_{PP} and V_{CMR} input requirements. *Figures 2A to 2E* show interface examples for the HiPerClockS CLK/CLK input driven by the most common driver types. The input interfaces suggested here are

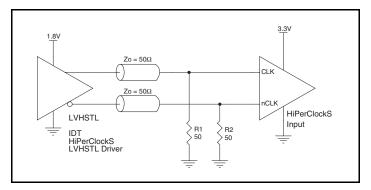


Figure 2A. HiPerClockS CLK/CLK Input Driven by an IDT HiPerClockS LVHSTL Driver

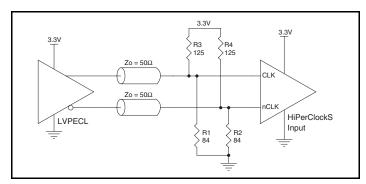


Figure 2C. HiPerClockS CLK/CLK Input Driven by a 3.3V LVPECL Driver

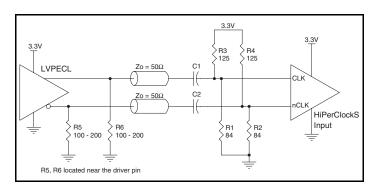


Figure 2E. HiPerClockS CLK/CLK Input Driven by a 3.3V LVPECL Driver with AC Couple

examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example, in Figure 2A, the input termination applies for IDT HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

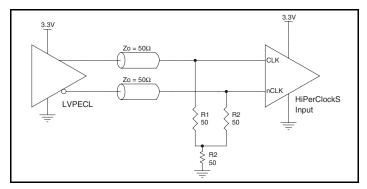


Figure 2B. HiPerClockS CLK/CLK Input Driven by a 3.3V LVPECL Driver

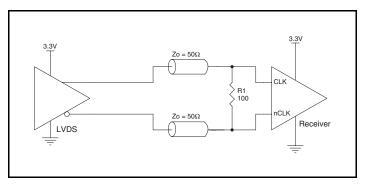
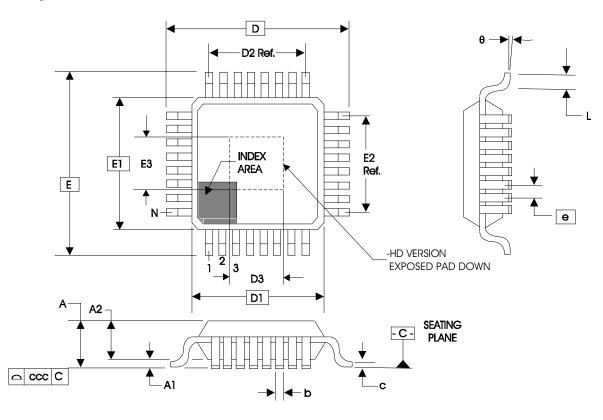


Figure 2D. HiPerClockS CLK/CLK Input Driven by a 3.3V LVDS Driver

Reliability Information

Table 6. θ_{JA} vs. Air Flow Table for a 48 Lead LQFP

$ heta_{JA}$ vs. Air Flow					
Linear Feet per Minute	0	200	500		
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W		
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W		


NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.

Transistor Count

The transistor count for ICS87016I is: 2034

Package Outline and Package Dimension

Package Outline - Y Suffix for 48 Lead LQFP

Table 7. Package Dimensions for 48 Lead LQFP

JEDEC Variation: ABC - HD All Dimensions in Millimeters					
Symbol	Minimum	Nominal	Maximum		
N	48				
Α			1.20		
A1	0.05	0.10	0.15		
A2	0.95	1.00	1.05		
b	0.17	0.22	0.27		
С	0.09		0.20		
D&E	9.00 Basic				
D1 & E1	7.00 Basic				
D2 & E2	5.50 Ref.				
D3 & E3	2.0		7.0		
е	0.5 Basic				
L	0.45	0.60	0.75		
θ	0 °		7 °		
CCC			0.08		

Reference Document: JEDEC Publication 95, MS-026

Ordering Information

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
ICS87016AYI	ICS87016AYI	48 Lead LQFP	Tray	-40°C to 85°C
ICS87016AYIT	ICS87016AYI	48 Lead LQFP	1000 Tape & Reel	-40°C to 85°C
ICS87016AYILF	TBD	"Lead-Free" 48 Lead LQFP	Tray	-40°C to 85°C
ICS87016AYILFT	TBD	"Lead-Free" 48 Lead LQFP	1000 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Rev	Table	Page	Description of Change	Date
в	T2 T4B T4C T4D T5B T5E	1 3 4 5 5 6 8 9 11 15	$\begin{array}{l} \label{eq:product} \end{tabular} Features Section - added 2.5V/2.5V and 2.5V/1.8V to supply mode bullet. \\ \end{tabular} Added lead-free bullet \\ \end{tabular} Pin Characteristics Table - added 2.5V/2.5V and 2.5V/1.8V to C_{PD}. \\ \end{tabular} Added 2.5V Power Supply DC Characteristics Table. \\ \end{tabular} LVCMOS DC Characteristics Table - added 2.5V to V_{IH}/V_{IL}. \\ \end{tabular} Differential DC Characteristics Table - added 2.5V to I_{IH}/I_{IL}. \\ \end{tabular} Added 2.5V Power Supply DC Characteristics Table. \\ \end{tabular} Added 2.5V Power Supply DC Characteristics Table. \\ \end{tabular} Added 2.5V/1.8V Power Supply DC Characteristics Table. \\ \end{tabular} Parameter Measurement Information - added 2.5V Core/2.5V Output Load \\ \hlineend{tabular} Test Circuit and 2.5V Core/1.8V Output Load Test Circuit diagrams. \\ \end{tabular} Added Recommendations for Unused Input and Output Pins. \\ \end{tabular} Ordering Information Table - added lead-free Order/Part Number. \\ \end{array}$	3/30/07
С	T5B	6	2.5V AC Characteristics Table - changed <i>Output Duty Cycle</i> test condition and limits. Added Output Pulse Width.	5/25/07

Revision History Sheet

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 378851

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA