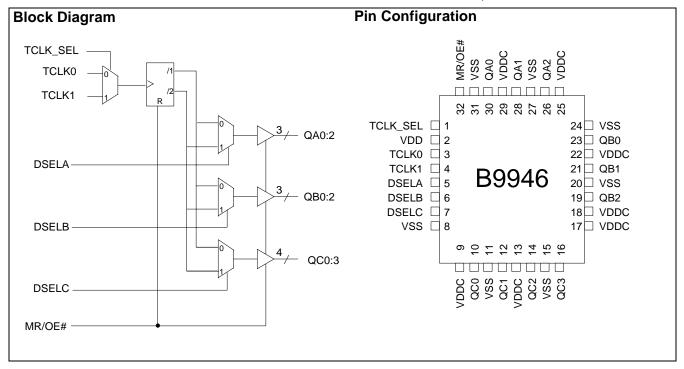


# 3.3V, 160-MHz, 1:10 Clock Distribution Buffer

### **Product Features**


- 160-MHz Clock Support
- LVCMOS/LVTTL Compatible Inputs
- 10 Clock Outputs: Drive up to 20 Clock Lines
- 1X or 1/2X Configurable Outputs
- Output Three-state Control
- 250 ps Maximum Output-to-Output Skew
- Pin Compatible with MPC946
- Industrial Temp. Range: -40°C to +85°C
- 32-Pin TQFP Package

### **Description**

The B9946 is a low-voltage clock distribution buffer with the capability to select one of two LVCMOS/LVTTL compatible input clocks. These clock sources can be used to provide for test clocks as well as the primary system clocks. All other control inputs are LVCMOS/LVTTL compatible. The 10 outputs are 3.3V LVCMOS or LVTTL compatible and can drive two series terminated  $50\Omega$  transmission lines. With this capability the B9946 has an effective fanout of 1:20.

The B9946 is capable of generating 1X and 1/2X signals from a 1X source. These signals are generated and retimed internally to ensure minimal skew between the 1X and 1/2X signals. SEL(A:C) inputs allow flexibility in selecting the ratio of 1X to 1/2X outputs.

The B9946 outputs can also be three-stated via MR/OE# input. When MR/OE# is set HIGH, it resets the internal flip-flops and three-states the outputs.





# Pin Description<sup>[1]</sup>

| Pin                          | Name      | PWR  | 1/0   | Description                                                                                                                                             |
|------------------------------|-----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3, 4                         | TCLK(0,1) |      | I, PU | External Reference/Test Clock Input                                                                                                                     |
| 26, 28, 30                   | QA(2:0)   | VDDC | 0     | Clock Outputs                                                                                                                                           |
| 19, 21, 23                   | QB(2:0)   | VDDC | 0     | Clock Outputs                                                                                                                                           |
| 10, 12, 14, 16               | QC(0:3)   | VDDC | 0     | Clock Outputs                                                                                                                                           |
| 5, 6, 7                      | DSEL(A:C) |      | I, PD | Divider Select Inputs. When HIGH, selects ÷2 input divider. When LOW, selects ÷1 input divider.                                                         |
| 1                            | TCLK_SEL  |      | I, PD | TCLK Select Input. When LOW, TCLK0 clock is selected and when HIGH TCLK1 is selected.                                                                   |
| 32                           | MR/OE#    |      | I, PD | Output Enable Input. When asserted LOW, the outputs are enabled and when asserted HIGH, internal flip-flops are reset and the outputs are three-stated. |
| 9, 13, 17, 18, 22,<br>25, 29 | VDDC      |      |       | 3.3V Power Supply for Output Clock Buffers                                                                                                              |
| 2                            | VDD       |      |       | 3.3V Power Supply                                                                                                                                       |
| 8, 11, 15, 20, 24,<br>27, 31 | VSS       |      |       | Common Ground                                                                                                                                           |

### Note:

<sup>1.</sup> PD = Internal Pull-Down, PU = Internal Pull-Up.



### Maximum Ratings<sup>[2]</sup>

| Maximum Input Voltage Relative to $V_{SS}$ : | V <sub>SS</sub> – 0.3V |
|----------------------------------------------|------------------------|
| Maximum Input Voltage Relative to $V_{DD}$ : | V <sub>DD</sub> + 0.3V |
| Storage Temperature:                         | 65°C to + 150°C        |
| Operating Temperature:                       | 40°C to +85°C          |
| Maximum ESD Protection                       | 2 KV                   |
| Maximum Power Supply:                        | 5.5V                   |
| Maximum Input Current:                       | ±20 mA                 |
|                                              |                        |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation,  $V_{\text{in}}$  and  $V_{\text{out}}$  should be constrained to the

 $V_{SS} < (V_{in} \text{ or } V_{out}) < V_{DD}$ 

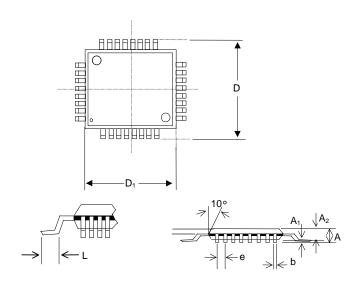
Unused inputs must always be tied to an appropriate logic voltage level (either  $V_{SS}$  or  $V_{DD}$ ).

### **DC Parameters:** $V_{DDC} = 3.3V \pm 10\%$ , $V_{DD} = 3.3V \pm 10\%$ , $T_A = -40^{\circ}C$ to $+85^{\circ}C$

| Parameter       | Description                                             | Conditions                                                        | Min.            | Тур. | Max.     | Unit |
|-----------------|---------------------------------------------------------|-------------------------------------------------------------------|-----------------|------|----------|------|
| $V_{IL}$        | Input Low Voltage                                       |                                                                   | V <sub>SS</sub> |      | 0.8      | V    |
| V <sub>IH</sub> | Input High Voltage                                      |                                                                   | 2.0             |      | $V_{DD}$ | V    |
| I <sub>IL</sub> | Input Low Current (@V <sub>IL</sub> = V <sub>SS</sub> ) | Note 3                                                            |                 |      | -100     | μA   |
| I <sub>IH</sub> | Input High Current (@V <sub>IL</sub> =V <sub>DD</sub> ) |                                                                   |                 |      | 100      | μA   |
| V <sub>OL</sub> | Output Low Voltage                                      | I <sub>OL</sub> = 20 mA, Note 4                                   |                 |      | 0.4      | V    |
| V <sub>OH</sub> | Output High Voltage                                     | $I_{OH} = -20 \text{ mA}, V_{DDC} = 3.3 \text{V}, \text{ Note 4}$ | 2.5             |      |          | V    |
| I <sub>DD</sub> | Quiescent Supply Current                                | All V <sub>DDC</sub> and V <sub>DD</sub>                          | -               | 1    | 2        | mA   |
| C <sup>in</sup> | Input Capacitance                                       |                                                                   | -               | -    | 4        | pF   |

## **AC Parameters**<sup>[5]</sup>: $V_{DDC} = 3.3V \pm 10\%$ , $V_{DD} = 3.3V \pm 10\%$ , $T_A = -40^{\circ}C$ to $+85^{\circ}C$

| Parameter  | Description                                 | Conditions                      | Min.         | Тур. | Max.       | Unit |
|------------|---------------------------------------------|---------------------------------|--------------|------|------------|------|
| Fmax       | Maximum Input Frequency <sup>[6]</sup>      |                                 | 160          |      |            | MHz  |
| Tpd        | TTL_CLK to Q Delay <sup>[6]</sup>           |                                 | 5.0          | -    | 11.5       | ns   |
| FoutDC     | Output Duty Cycle <sup>[6,7]</sup>          | Measured at V <sub>DDC</sub> /2 | TCYCLE/2 - 1 |      | TCYCLE/2+1 | ns   |
| tpZL, tpZH | Output enable time (all outputs)            |                                 | 2            |      | 10         | ns   |
| tpLZ, tpHZ | Output disable time (all outputs)           |                                 | 2            |      | 10         | ns   |
| Tskew      | Output-to-Output Skew <sup>[6,8]</sup>      |                                 |              |      | 250        | ps   |
| Tskew(pp)  | Part-to-Part Skew <sup>[9]</sup>            |                                 |              | 2.0  | 4.5        | ns   |
| Tr/Tf      | Output Clocks Rise/Fall Time <sup>[8]</sup> | 0.8V to 2.0V                    | 0.10         |      | 1.0        | ns   |


#### Notes:

- The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required. Inputs have pull-up/pull-down resistors that effect input current. Driving series or parallel terminated  $50\Omega$  (or  $50\Omega$  to  $V_{DD}/2$ ) transmission lines.
- Parameters are guaranteed by design and characterization. Not 100% tested in production. All parameters specified with loaded outputs. Outputs driving 50Ω transmission lines. 50% input duty cycle.

  Outputs loaded with 30 pF each Part-to-Part skew at a given temperature and voltage.



### **Package Drawing and Dimensions**



### 32-Pin TQFP Outline Dimensions

|                |           | Inches |       | М    | illimete | rs   |
|----------------|-----------|--------|-------|------|----------|------|
| Symbol         | Min.      | Nom.   | Max.  | Min. | Nom.     | Max. |
| Α              | -         | -      | 0.047 | -    | -        | 1.20 |
| A <sub>1</sub> | 0.002     | -      | 0.006 | 0.05 | -        | 0.15 |
| A2             | 0.037     | -      | 0.041 | 0.95 | -        | 1.05 |
| D              | -         | 0.354  | -     | -    | 9.00     | -    |
| D <sub>1</sub> | -         | 0.276  | -     | -    | 7.00     | -    |
| b              | 0.012     | -      | 0.018 | 0.30 | -        | 0.45 |
| е              | 0.031 BSC |        |       | (    | ).80 BS( |      |
| L              | 0.018     | -      | 0.030 | 0.45 | 0        | 0.75 |

### **Ordering Information**

| Part Number <sup>[10]</sup> | Package Type | Production Flow            |
|-----------------------------|--------------|----------------------------|
| B9946CA                     | 32-Pin TQFP  | Industrial, –40°C to +85°C |

#### Note:

10. The ordering part number is formed by a combination of device number, device revision, package style, and screening as shown below.

Marking: Example: Cypress

B9946CA

Date Code, Lot #

B9946CA

Package
A = TQFP

Revision

Device Number

[+] Feedback



| Document Title: B9946 3.3V, 160-MHz, 1:10 Clock Distribution Buffer<br>Document Number: 38-07077 |         |               |                    |                                                          |  |  |
|--------------------------------------------------------------------------------------------------|---------|---------------|--------------------|----------------------------------------------------------|--|--|
| REV.                                                                                             | ECN NO. | Issue<br>Date | Orig. of<br>Change | Description of Change                                    |  |  |
| **                                                                                               | 107113  | 06/06/01      | IKA                | Convert from IMI to Cypress                              |  |  |
| *A                                                                                               | 108057  | 07/03/01      | NDP                | Changed Commercial to Industrial (See page 4)            |  |  |
| *B                                                                                               | 109803  | 01/31/02      | DSG                | Convert from Word to Frame                               |  |  |
| *C                                                                                               | 122762  | 12/22/02      | RBI                | Add power up requirements to maximum ratings information |  |  |

Document #: 38-07077 Rev. \*C