

## MICROCIRCUIT DATA SHEET

## MNDS90LV031A-X REV 1C0

Original Creation Date: 02/09/99 Last Update Date: 08/15/03 Last Major Revision Date: 02/21/00

## 3V LVDS Quad CMOS Differential Line Driver

### General Description

The DS90LV031A is a quad CMOS differential line driver utilizing Low Voltage Differentional Signaling (LVDS) technology. It is designed for applications requiring low power dissipation and high data rates.

The DS90LV031A accepts TTL/CMOS input levels and translates them to low voltage (350 mV) differential output siginals. In addition the driver supports a TRI-STATE function that may be used to disable the output stage, disabling the load current, and thus dropping the device to a low idle power state.

The EN and EN\* inputs allow active Low or active High control of the TRI-STATE outputs. The enables are common to all four drivers. The DS90LV031A and companion line receiver (DS90LV032A) provide a new alternative to high power pseudo-ECL devices for high speed point-to-point interface applications.

In addition, the DS90LV031A provides power-off high impedance LVDS outputs. This feature assures minimal loading effect on the LVDS bus lines when VCC is not present.

### Industry Part Number

DS90LV031A

Prime Die

DS90LV031A

### Controlling Document

SEE FEATURES SECTION

## NS Part Numbers

DS90LV031AW-MLS DS90LV031AW-QML DS90LV031AWGMLS DS90LV031AWGOML

| Processing                     | Subgrp | Description         | Temp (°C) |
|--------------------------------|--------|---------------------|-----------|
| MIL-STD-883, Method 5004       | 1      | Static tests at     | +25       |
|                                | 2      | Static tests at     | +125      |
|                                | 3      | Static tests at     | -55       |
| Quality Conformance Inspection | 4      | Dynamic tests at    | +25       |
| <b>2</b>                       | 5      | Dynamic tests at    | +125      |
| MIL-STD-883, Method 5005       | 6      | Dynamic tests at    | -55       |
| MIE BID 005, Mcthod 5005       | 7      | Functional tests at | +25       |
|                                | 8A     | Functional tests at | +125      |
|                                | 8B     | Functional tests at | -55       |
|                                | 9      | Switching tests at  | +25       |
|                                | 10     | Switching tests at  | +125      |
|                                | 11     | Switching tests at  | -55       |
|                                |        |                     |           |

### **Features**

- High impedance LVDS outputs with power-off
- 3.3V power supply design
- +/- 350mV differential signaling
- Low power dissipation.
- Low differential skew.
- Low propagation delay
- Interoperable with existing 5V LVDS devices
- Military operating temprature range
- Pin compatible with DS26C31.
- Compatible with IEEE 1596.3 SCI LVDS standard
- Compatible with proposed TIA/EIA-644 LVDS standard
- Typical Rise/Fall times of 800pS.
- Typical Tri-State Enable/Disable Delays of less than 5nS.

#### CONTROLLING DOCUMENT:

DS90LV031AW-QML 5962-9865101QFA DS90LV031AWGQML 5962-9865101QXA

## (Absolute Maximum Ratings)

| Supply Voltage (Vcc)                                                              | -0.3 to +4V        |
|-----------------------------------------------------------------------------------|--------------------|
| Input Voltage (Din)                                                               | -0.3 to (Vcc+0.3V) |
| Enable Input Voltage (EN, EN*)                                                    | -0.3 to (Vcc+0.3V) |
| Output Voltage (Dout+, Dout-)                                                     | -0.3 to +3.9V      |
| Storage Temperature Range                                                         | -65C to +150C      |
| Lead Temperature Soldering (4 sec)                                                | 260C               |
| ESD Rating.                                                                       | 6000 Volts.        |
| Maximum Junction Temperature                                                      | +150C              |
| Maximum Power Dissipation @ +25C (Note 2)                                         |                    |
| 16 PIN CERPAK (W Pkg)<br>16 PIN CERAMIC SOIC (WG Pkg)                             | 845mW<br>845mW     |
| Thermal Resistance. (Theta JA) 16 PIN CERPAK (W Pkg) 16 PIN CERAMIC SOIC (WG Pkg) | 148C/W<br>148C/W   |
| Thermal Resistance. (Theta JC) 16 PIN CERPAK (W Pkg) 16 PIN CERAMIC SOIC (WG Pkg) | 22C/W<br>22C/W     |

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Derate (W & WG Pkgs) at 6.8mW/C for temperatures above +25C.

# Recommended Operating Conditions

Supply Voltage

3.0 to 3.6V

Operating Free Air Temperature

-55 to +125 C

## Electrical Characteristics

## DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Vcc = 3.0/3.6V unless otherwise specified

| SYMBOL | PARAMETER                                                                                | CONDITIONS NOT                                               |                 | PIN-<br>NAME    | MIN   | MAX         | UNIT | SUB-<br>GROUPS |
|--------|------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------|-----------------|-------|-------------|------|----------------|
| Vod1   | Differential<br>Ouput Voltage                                                            |                                                              |                 | Dout-,<br>Dout+ | 250   | 450         | mV   | 1, 2,          |
| DVod1  | Change in<br>Magnitude of Vodl<br>for complementary<br>output States                     | RL = 100 Ohms                                                |                 | Dout-,<br>Dout+ |       | 50          | mV   | 1, 2,          |
| Vos    | Offset Voltage                                                                           | RL = 100 Ohms                                                |                 | Dout-,<br>Dout+ | 1.125 | 1.625       | V    | 1, 2,          |
| DVos   | Change in<br>Magnitude of Vos<br>for Complementary<br>Output States                      | RL = 100 Ohms                                                |                 | Dout-,<br>Dout+ |       | 50          | mV   | 1, 2,          |
| Voh    | Output Voltage<br>High                                                                   | RL = 100 Ohms                                                |                 | Dout-,<br>Dout+ |       | 1.85        | V    | 1, 2,          |
| Vol    | Output Voltage<br>Low                                                                    | RL = 100 Ohms                                                |                 | Dout-,<br>Dout+ | .9    |             | V    | 1, 2,          |
| Vih    | Input Voltage<br>High                                                                    |                                                              |                 | Din,<br>EN, EN* | 2.0   | Vcc         | V    | 1, 2,          |
| Vil    | Input Voltage Low                                                                        |                                                              |                 | Din,<br>EN, EN* | Gnd   | 0.8         | V    | 1, 2,          |
| IIH    | Input Current                                                                            | Vin = Vcc or 2.5V, Vcc = 3.6V                                |                 | Din,<br>EN, EN* |       | <u>+</u> 10 | uA   | 1, 2,          |
| IIL    | Input Current                                                                            | Vin = Gnd or 0.4V, Vcc = 3.6V                                |                 | Din,<br>EN, EN* |       | <u>+</u> 10 | uA   | 1, 2,          |
| Vcl    | Input Clamp<br>Voltage                                                                   | Icl = -8mA, Vcc = 3.0V                                       |                 | Din,<br>EN, EN* |       | -1.5        | V    | 1, 2,          |
| Ios    | Output Short<br>Circuit Current                                                          | ENABLED Din = Vcc, Dout + = 0V or Din = Gnd, Dout - = 0V     | or Dout-,       |                 |       | -9.0        | mA   | 1, 2,          |
| Ioff   | Power-off Leakage                                                                        | Vout = 0V or 3.6V<br>Vcc = 0V or Vcc = Open                  | Dout-,<br>Dout+ |                 |       | <u>+</u> 20 | uA   | 1, 2,          |
| Ioz    | Output TRI-STATE EN = 0.8V and EN* = 2.0V VOUT = 0V or VCC, VCC = 3.6V                   |                                                              |                 | Dout-,<br>Dout+ |       | <u>+</u> 10 | uA   | 1, 2,          |
| Icc    | No Load Drivers<br>Enabled Supply<br>Current                                             | bled Supply                                                  |                 | Vcc             |       | 18          | mA   | 1, 2,          |
| Iccl   | Loaded Drivers<br>Enabled Supply<br>Current                                              | Rl = 100 ohms All Channels,<br>Din = Vcc or Gnd (all inputs) |                 | Vcc             |       | 35          | mA   | 1, 2,          |
| Iccz   | Loaded or No Load Drivers Disabled Supply Current  Din = Vcc or Gnd, En = Gnd, En* = Vcc |                                                              |                 | Vcc             |       | 12          | mA   | 1, 2,          |

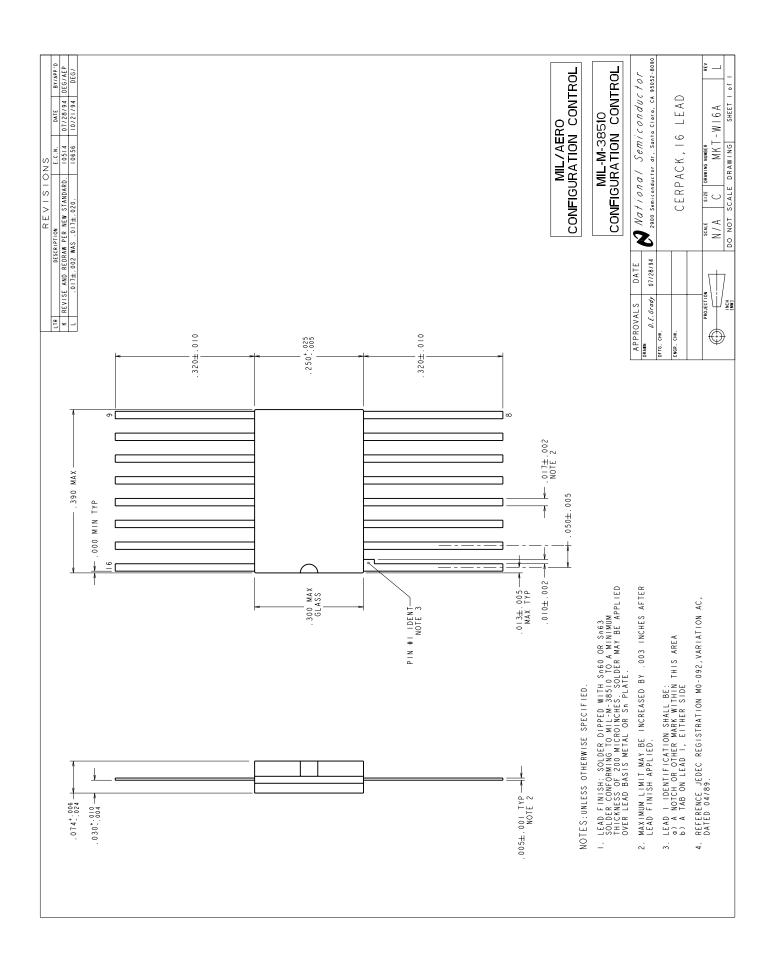
## Electrical Characteristics

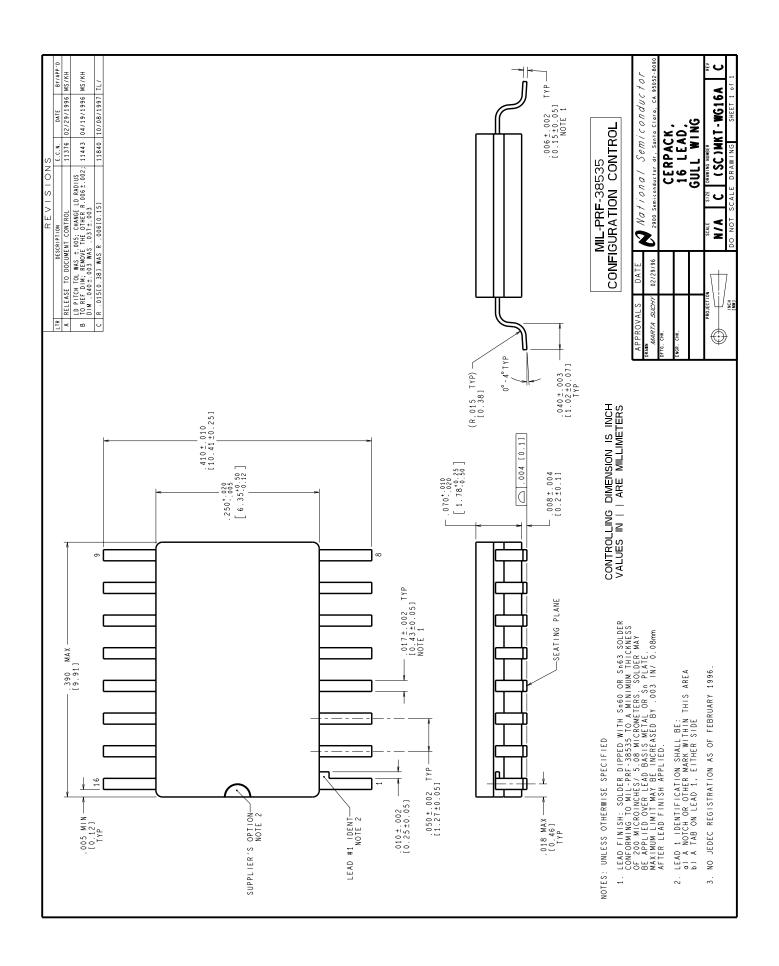
### AC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: VCC = 3.0/3.3/3.6V, RL = 100 Ohms, CL = 20pF

| SYMBOL | PARAMETER                                        | CONDITIONS | NOTES | PIN-<br>NAME | MIN | MAX  | UNIT | SUB-<br>GROUPS |
|--------|--------------------------------------------------|------------|-------|--------------|-----|------|------|----------------|
| tPHLD  | Differential<br>Propagation Delay<br>High to Low |            |       |              | 0.3 | 3.5  | ns   | 9, 10,<br>11   |
| tPLHD  | Differential<br>Propagation Delay<br>Low to High |            |       |              | 0.3 | 3.5  | ns   | 9, 10,<br>11   |
| tSKD   | Differential Skew tPHLD-tPLHD                    |            |       |              |     | 1.5  | ns   | 9, 10,<br>11   |
| tSK1   | Channel to<br>Channel Skew                       |            | 2     |              |     | 1.75 | ns   | 9, 10,<br>11   |
| tSK2   | Chip to Chip Skew                                |            | 3     |              |     | 3.2  | ns   | 9, 10,<br>11   |

Note 1:


Note 2:


Tested during VOH/VOL tests.
Channel to Channel Skew is defined as the difference between the propagation delay of one channel and that of the others on the same chip with any event on the inputs.
Chip to Chip Skew is defined as the difference between the minimum and maximum specified differential propagation delays. Note 3:

# Graphics and Diagrams

| GRAPHICS# | DESCRIPTION                          |
|-----------|--------------------------------------|
| W16ARL    | CERPACK (W), 16 LEAD (P/P DWG)       |
| WG16ARC   | CERAMIC SOIC (WG), 16 LEAD (P/P DWG) |

See attached graphics following this page.





# Revision History

| Rev | ECN #    | Rel Date | Originator      | Changes                                                                                                                                                                                    |
|-----|----------|----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0A0 | M0003265 | 03/10/00 | Mike Fitzgerald | Initial MDS Release                                                                                                                                                                        |
| 1A0 | M0003630 | 08/16/02 | Mike Fitzgerald | Added WG pkg NSID's, split out Pkg references under<br>the "Absolute Maximum Ratings" section for Thermal<br>Resistance, and Power Dissipation. Added WG pkg<br>Marketing Outline Drawing. |
| 1B0 | M0004034 | 08/15/03 | Rose Malone     | Update MDS: MNDS90LV031A-X, Rev. 1A0 to MNDS90LV031A-X, Rev. 1B0. Added to Main Table NS Part Number DS90LV031AW-MLS. Moved reference to SMD number from Main Table to Features Section.   |
| 1C0 | M0004183 | 08/15/03 | Rose Malone     | Update MDS: MNDS90LV031A-X, Rev. 1B0 to 1C0. MDS enhancements: Additional verbage to the general discription, Main Table and Added new bullet to the Features Section.                     |