Features

- Up to 2 Gsps Sampling Rate
- Power Consumption: 4.6 W
- 500 mVpp Differential 100Ω or Single-ended $50 \Omega(\pm 2 \%)$ Analog Inputs
- Differential 100Ω or Single-ended 50Ω Clock Inputs
- ECL or LVDS Output Compatibility
- 50Ω Differential Outputs with Common Mode not Dependent on Temperature
- ADC Gain Adjust
- Sampling Delay Adjust
- Offset Control Capability
- Data Ready Output with Asynchronous Reset
- Out-of-range Output Bit
- Selectable Decimation by 32 Functions
- Gray or Binary Selectable Output Data; NRZ Output Mode
- Pattern Generator Output (for Acquisition System Monitoring)
- Radiation Tolerance Oriented Design (More Than 100 Krad (Si) Expected)
- CBGA 152 Cavity Down Hermetic Package
- CBGA Package Evaluation Board TSEV83102G0BGL
- Companion Device: DMUX 8-/10-bit 1:4/1:8 2 Gsps TS81102G0

Performance

- 3.3 GHz Full Power Input Bandwidth (-3 dB)
- Gain Flatness: $\pm 0.2 \mathrm{~dB}$ (from DC up to 1.5 GHz)
- Low Input VSWR: 1.2 Max from DC to 2.5 GHz
- \quad SFDR $=-59 \mathrm{dBc} ; 7.6$ Effective Bits at $\mathrm{F}_{\mathrm{S}}=1.4 \mathrm{Gsps}, \mathrm{F}_{\mathrm{IN}}=700 \mathrm{MHz}[-1 \mathrm{dBFS}]$
- $\quad \mathrm{SFDR}=-53 \mathrm{dBc} ; 7.1 \mathrm{Effective}$ Bits at $\mathrm{Fs}=1.4 \mathrm{Gsps}, \mathrm{F}_{\mathrm{IN}}=1950 \mathrm{MHz}[-1 \mathrm{dBFS}]$
- \quad SFDR $=-54 \mathrm{dBc} ; 6.5$ Effective Bits at $\mathrm{F}_{\mathrm{S}}=2 \mathrm{Gsps}, \mathrm{F}_{\mathrm{IN}}=2 \mathrm{GHz}[-1 \mathrm{dBFS}]$
- Low Bit Error Rate $\left(10^{-12}\right)$ at 2 Gsps

Application

- Direct RF Down Conversion
- Wide Band Satellite Receiver
- High-speed Instrumentation
- High-speed Acquisition Systems
- High-energy Physics
- Automatic Test Equipment
- Radar

Screening

- Temperature Range for Packaged Device:
- "C" grade: $0^{\circ} \mathrm{C}<\mathrm{Tc}$; $\mathrm{Tj}<90^{\circ} \mathrm{C}$
- "V" grade: $-20^{\circ} \mathrm{C}<\mathrm{Tc} ; \mathrm{Tj}<110^{\circ} \mathrm{C}$
- Standard Die Flow (upon Request)

Description

The TS83102G0B is a monolithic 10-bit analog-to-digital converter, designed for digitizing wide bandwidth analog signals at very high sampling rates of up to 2 Gsps. It uses an innovative architecture, including an on-chip Sample and Hold (S/H). The 3.3 GHz full power input bandwidth and band flatness performances enable the digitizing of high IF and large bandwidth signals.

Figure 1. Simplified Block Diagram

Functional Description

The TS83102G0B is a 10 -bit 2 Gsps ADC. The device includes a front-end master/slave Track and Hold stage (Sample and Hold), followed by an analog encoding stage (Analog Quantizer), which outputs analog residues resulting from analog quantization. Successive banks of latches regenerate the analog residues into logical levels before entering an error correction circuit and resynchronization stage, followed by 50Ω differential output buffers.

The TS83102G0B works in a fully differential mode from analog inputs to digital outputs. A differential Data Ready output (DR/DRB) is available to indicate when the outputs are valid and an Asynchronous Data Ready Reset ensures that the first digitized data corresponds to the first acquisition.
The control pin B / GB (A 11 of the CBGA package) is provided to select either a binary or gray data output format. The gain control pin GA (R9 of the CBGA package) is provided to adjust the ADC gain transfer function.

A Sampling Delay Adjust function (SDA) may be used to ease the interleaving of ADCs.
A pattern generator is integrated on the chip for debug or acquisition setup. This function is activated through the PGEB pin (A9 of the CBGA package).

An Out-of-range bit (OR/ORB) indicates when the input overrides 0.5 Vpp .
A selectable decimation by 32 functions is also available for enhanced testability coverage (A10 of the CBGA package), along with the die junction temperature monitoring function.
The TS83102G0B uses only vertical isolated NPN transistors together with oxide isolated polysilicon resistors, which allows enhanced radiation tolerance (over $100 \mathrm{kRad}(\mathrm{Si})$ total dose expected tolerance).

Specification

Absolute Maximum Ratings

Parameter	Symbol	Comments	Value	Unit
Positive supply voltage	$V_{C C}$		GND to 6.0	V
Digital negative supply voltage	$\mathrm{D}_{\text {VEE }}$		GND to -5.7	V
Digital positive supply voltage	$\mathrm{V}_{\text {PLUSD }}$		GND -1.1 to 2.5	V
Negative supply voltage	$V_{\text {EE }}$		GND to -5.5	V
Maximum difference between negative supply voltages	$\mathrm{D}_{\mathrm{VEE}}$ to V_{EE}		0.3	V
Analog input voltages	$\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {INB }}$		-1.5 to 1.5	V
Maximum difference between VIN and VINB	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {INB }}$		-1.5 to 1.5	V
Clock input voltage	$\mathrm{V}_{\text {CLK }}$ or $\mathrm{V}_{\text {CLKB }}$		-1 to 1	V
Maximum difference between VCLK and VCLKB	$\mathrm{V}_{\text {CLK }}-\mathrm{V}_{\text {CLKB }}$		-1 to 1	Vpp
Static input voltage	V_{D}	GA, SDA	-5 to 0.8	V
Digital input voltage	V_{D}	SDAEN, DRRB, B/GB, PGEB, DECB	-5 to 0.8	V
Digital output voltage	V_{O}		$V_{\text {PLUSD }}$ min operating -2.2 to $V_{\text {PLUSD }}$ max operating +0.8	V
Junction temperature	T_{J}		130	${ }^{\circ} \mathrm{C}$

Note: Absolute maximum ratings are short term limiting values (referenced to $\mathrm{GND}=0 \mathrm{~V}$), to be applied individually, while other parameters are within specified operating conditions. Long exposure to maximum ratings may affect device reliability. All integrated circuits have to be handled with appropriate care to avoid damage due to ESD. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.

Recommended Conditions of Use

Parameter	Symbol	Comments	Min	Typ	Max	Unit
Positive supply voltage	V_{Cc}		4.75	5	5.25	V
Positive digital supply voltage	$\mathrm{V}_{\text {PLUSD }}$	Differential ECL output compatibility	-0.9	-0.8	- 0.7	V
		LVDS output compatibility	1.375	1.45	1.525	V
		Grounded ${ }^{(1)}$				
		Maximum operating VPLUSD			1.7	V
Negative supply voltages	$\mathrm{V}_{\mathrm{EE}}, \mathrm{D}_{\mathrm{VEE}}$		-5.25	-5.0	- 4.75	V
Differential analog input voltage (full-scale)	$\begin{aligned} & V_{\text {IN }}, V_{\text {INB }} \\ & V_{I N}-V_{\text {INB }} \end{aligned}$	50Ω differential or single-ended	$\begin{gathered} \pm 113 \\ 450 \end{gathered}$	$\begin{gathered} \pm 125 \\ 500 \end{gathered}$	$\begin{gathered} \pm 137 \\ 550 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mVpp} \end{gathered}$
Clock input power level (ground common mode)	$\mathrm{P}_{\text {CLK }}, \mathrm{P}_{\text {CLKB }}$	50Ω single-ended clock input or 100Ω differential clock (recommended)	-4	0	4	dBm

Recommended Conditions of Use (Continued)

| Parameter | Symbol | Comments | Min | Typ |
| :--- | :---: | :---: | :---: | :---: | Max | Unit |
| :---: |
| Operating Temperature
 Range |

Note: 1. ADC performances are independent on $\mathrm{V}_{\text {PLUSD }}$ common mode voltage and performances are guaranteed in the limits of the specified $\mathrm{V}_{\text {PLUSD }}$ range (from -0.9 V to 1.7 V).

Electrical Operating Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\text {PLUSD }}=0 \mathrm{~V}$ (unless otherwise specified). ADC performances are independent of $\mathrm{V}_{\mathrm{PLUSD}}$ common mode voltage and performances are guaranteed within the limits of the specified $\mathrm{V}_{\text {PLUSD }}$ range (from -0.9 V to 1.7 V);
$\mathrm{V}_{\mathrm{EE}}=\mathrm{D}_{\mathrm{VEE}}=-5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{INB}}=500 \mathrm{mVpp}$ (full-scale single-ended or differential input);
clock inputs differential driven; analog-input single-ended driven.

Parameter	Test Level	Symbol	Min	Typ	Max	Unit
Resolution				10		Bits
Power Requirements						
Positive supply voltage - analog - digital (ECL) - digital (LVDS)	$\begin{aligned} & 1 \\ & 1 \\ & 4 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\text {PLUSD }} \\ \mathrm{V}_{\text {PLUSD }} \end{gathered}$	4.75	$\begin{gathered} 5 \\ -0.8 \\ 1.45 \end{gathered}$	5.25	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Positive supply current - analog - digital	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{VCC}} \\ \mathrm{I}_{\mathrm{VPLUSD}} \end{gathered}$		$\begin{aligned} & 138 \\ & 154 \end{aligned}$	$\begin{aligned} & 205 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Negative supply voltage - analog - digital	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{D}_{\mathrm{VEE}} \end{aligned}$	$\begin{aligned} & -5.25 \\ & -5.25 \end{aligned}$	$\begin{aligned} & -5 \\ & -5 \end{aligned}$	$\begin{aligned} & -4.75 \\ & -4.75 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Negative supply current - analog - digital	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{v}_{\mathrm{EEE}} \\ \mathrm{I}_{\mathrm{DVEE}} \end{gathered}$		$\begin{aligned} & 615 \\ & 160 \end{aligned}$	$\begin{aligned} & 750 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Power dissipation - ECL - LVDS	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	P_{D}		$\begin{aligned} & 4.6 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.7 \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
Analog Inputs						
Full-scale input voltage range (differential mode) (0 V common mode voltage)	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN},} \\ & \mathrm{~V}_{\mathrm{INB}} \end{aligned}$	$\begin{aligned} & -125 \\ & -125 \end{aligned}$		$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Full-scale input voltage range (single-ended input option) (0 V common mode voltage)	4 4	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}, \\ & \mathrm{~V}_{\mathrm{INB}} \end{aligned}$	- 250	0	250	mV mV

Electrical Operating Characteristics (Continued)

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{PLUSD}}=0 \mathrm{~V}$ (unless otherwise specified). ADC performances are independent of $\mathrm{V}_{\text {PLUSD }}$ common mode voltage and performances are guaranteed within the limits of the specified $\mathrm{V}_{\text {PLUSD }}$ range (from -0.9 V to 1.7 V);
$V_{E E}=D_{V E E}=-5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{INB}}=500 \mathrm{mVpp}$ (full-scale single-ended or differential input);
clock inputs differential driven; analog-input single-ended driven.

Parameter	Test Level	Symbol	Min	Typ	Max	Unit
Analog input power level (50Ω single-ended)	4	$\mathrm{P}_{\text {IN }}$		-2		dBm
Analog input capacitance (die)	4	$\mathrm{C}_{\text {IN }}$		0.3		pF
Input leakage current	4	I_{IN}		10		$\mu \mathrm{A}$
Input resistance - single-ended - differential	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{IN}} \\ & \mathrm{R}_{\mathbb{I N}} \end{aligned}$	$\begin{aligned} & 49 \\ & 98 \end{aligned}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{gathered} 51 \\ 102 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Clock Inputs						
Logic common mode compatibility for clock inputs	Differential ECL to LVDS					
Clock inputs common voltage range ($\mathrm{V}_{\text {CLK }}$ or $\mathrm{V}_{\text {CLKB }}$) (DC coupled clock input) AC coupled for LVDS compatibility (common mode 1.2V)	4	V_{CM}	-1.2	0	0.3	V
Clock input power level (low-phase noise sinewave input) 50Ω single-ended or 100Ω differential	4	$\mathrm{P}_{\text {CLK }}$	-4	0	4	dBm
Clock input swing (single ended; with CLKB $=50 \Omega$ to GND)	4	$\mathrm{V}_{\text {CLK }}$	± 200	± 320	± 500	mV
Clock input swing (differential voltage) - on each clock input	4	$V_{\text {CLK }}$ $V_{\text {CLKB }}$	± 141	± 226	± 354	mV
Clock input capacitance (die)	4	$\mathrm{C}_{\text {CLK }}$		0.3		pF
Clock input resistance - single-ended - differential ended		$\mathrm{R}_{\mathrm{CLK}}$ $\mathrm{R}_{\mathrm{CLK}}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{gathered} 55 \\ 110 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Digital Inputs (SDAEN, PGEB, DECB/Diode, B/GB, DRRB)						
- logic low - logic high	4	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & -5 \\ & -2 \end{aligned}$		$\begin{gathered} -3 \\ 0 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \mathrm{V} \end{aligned}$
Digital Inputs (DRRB Only)						
Logic Compatibility			Negative ECL			
- logic low - logic high	4	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & -1.810 \\ & -1.165 \end{aligned}$		$\begin{aligned} & -1.625 \\ & -0.880 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Electrical Operating Characteristics (Continued)

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\text {PLUSD }}=0 \mathrm{~V}$ (unless otherwise specified). ADC performances are independent of $\mathrm{V}_{\text {PLUSD }}$ common mode voltage and performances are guaranteed within the limits of the specified $\mathrm{V}_{\text {PLUSD }}$ range (from -0.9 V to 1.7 V);
$V_{E E}=D_{V E E}=-5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{INB}}=500 \mathrm{mVpp}$ (full-scale single-ended or differential input);
clock inputs differential driven; analog-input single-ended driven.

Parameter	Test Level	Symbol	Min	Typ	Max	Unit
Digital Outputs ${ }^{(1)}$						
Logic compatibility (depending on $\mathrm{V}_{\text {PLUSD }}$ value)	Differential ECL ($\mathrm{V}_{\text {PLUSD }}=-0.8 \mathrm{~V}$ typical $)$					
Output levels 50Ω transmission lines, $100 \Omega(2 \times 50 \Omega)$ differentially terminated - logic low - logic high - swing (each single-ended output) - common mode	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 4 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{OL}} \\ \mathrm{~V}_{\mathrm{OH}} \\ \mathrm{~V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \end{gathered}$	$\begin{gathered} -0.98 \\ 200 \\ -.095 \end{gathered}$	$\begin{gathered} -1.17 \\ -0.94 \\ 230 \\ -1.05 \end{gathered}$	$\begin{gathered} -1.10 \\ 300 \\ -1.15 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
Logic compatibility (depending on $\mathrm{V}_{\text {PLUSD }}$ value)	LVDS ($\mathrm{V}_{\text {PLUSD }}=1.45 \mathrm{~V}$ typical)					
Output levels 50Ω transmission lines, 100Ω (2 $\times 50 \Omega$) differentially terminated - logic low - logic high - swing (each single-ended output) - common mode $\begin{aligned} & \max V_{\text {PLUSD }}=1.525 \mathrm{~V} \\ & \operatorname{typ} \mathrm{~V}_{\text {PLUSD }}=1.45 \mathrm{~V} \\ & \min V_{\text {PLUSD }}=1.375 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{OL}} \\ \mathrm{~V}_{\mathrm{OH}} \\ \mathrm{~V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \end{gathered}$	$\begin{aligned} & 825 \\ & 200 \\ & \\ & 1190 \\ & 1125 \end{aligned}$	$\begin{gathered} 1090 \\ 1310 \\ 230 \\ 1200 \end{gathered}$	$\begin{gathered} 1575 \\ 300 \\ 1275 \\ 1210 \end{gathered}$	mV mV mV mV mV mV
DC Accuracy						
DNLrms ${ }^{(2)}$	4	DNLrms	0.50	0.53	0.55	LSB
Differential non-linearity ${ }^{(3)}$	1	DNL+		1.5	2	LSB
Integral non-linearity ${ }^{(3)}$	1	INL-	-4.0	-2.4		LSB
Integral non-linearity ${ }^{(3)}$	1	INL+		2.4	4.0	LSB
Gain central value ${ }^{(4)}$	1		0.89	0.94	1.1	
Gain error drift	4			23	35	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Input offset voltage	1		- 10		10	mV

Notes: 1. Differential output buffers impedance $=100 \Omega$ differential (50Ω single-ended). See Figure 46 starting on page 42.
2. Histogram testing at $\mathrm{Fs}=1 \mathrm{Gsps}$, $\mathrm{Fin}=100 \mathrm{MHz}$, DNLrms is a component of quantization noise.
3. Histogram testing at $\mathrm{Fs}=50 \mathrm{Msps}$, $\mathrm{Fin}=25 \mathrm{MHz}$
4. This range of gain can be set to "1" by using the gain adjust function.

AC Electrical Characteristics at Ambient and Hot Temperatures (T_{J} Max)

Parameter	Test Level	Symbol	Min	Typ	Max	Unit
AC Analog Inputs						
Full power input bandwidth ${ }^{(1)}$	4	FPBW		3.3		GHz
Small signal input bandwidth (10\% full-scale) ${ }^{(1)}$	4	SSBW		3.5		GHz
Gain flatness ${ }^{(2)}$	4	BF		± 0.2	± 0.3	dB
Input voltage standing wave ratio ${ }^{(3)}$	4	VSWR		$1.1: 1$	1.2:1	
AC Performance: Nominal Condition at Ambient and Hot Temperatures $\mathrm{T}_{\mathbf{J}}$ Max -1 dBFS single-ended input mode (unless otherwise specified); 50% clock duty cycle; 0 dBm differential clock (CLK, CLKB); binary output data format						
Signal-to-noise and distortion ratio $\mathrm{Fs}=1 \mathrm{Gsps}$ Fin $=100 \mathrm{MHz}$ Fs $=1.4 \mathrm{Gsps} \quad$ Fin $=700 \mathrm{MHz}$ Fs $=1.4 \mathrm{Gsps} \quad \mathrm{Fin}=1950 \mathrm{MHz}$ Fs $=2$ Gsps \quad Fin $=2 \mathrm{GHz}$	4	SINAD	$\begin{aligned} & 47 \\ & 44 \\ & 43 \\ & 38 \end{aligned}$	$\begin{aligned} & 50 \\ & 48 \\ & 45 \\ & 41 \end{aligned}$		dB
Effective number of bits $\begin{array}{ll} \text { Fs }=1 \text { Gsps } & \text { Fin }=100 \mathrm{MHz} \\ \text { Fs }=1.4 \mathrm{Gsps} & \text { Fin }=700 \mathrm{MHz} \\ \text { Fs }=1.4 \mathrm{Gsps} & \text { Fin }=1950 \mathrm{MHz} \\ \text { Fs }=2 \mathrm{Gsps} & \text { Fin }=2 \mathrm{GHz} \end{array}$	4	ENOB	$\begin{aligned} & 7.5 \\ & 7.0 \\ & 6.8 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.6 \\ & 7.1 \\ & 6.5 \end{aligned}$		Bit
Signal to noise ratio $\begin{array}{ll} \text { Fs }=1 \text { Gsps } & \text { Fin }=100 \mathrm{MHz} \\ \text { Fs }=1.4 \text { Gsps } & \text { Fin }=700 \mathrm{MHz} \\ \text { Fs }=1.4 \text { Gsps } & \text { Fin }=1950 \mathrm{MHz} \\ \text { Fs }=2 \mathrm{Gsps} & \text { Fin }=2 \mathrm{GHz} \end{array}$	4	SNR	$\begin{aligned} & 48 \\ & 45 \\ & 44 \\ & 39 \end{aligned}$	$\begin{aligned} & 50 \\ & 48 \\ & 45 \\ & 41 \end{aligned}$		dB

AC Electrical Characteristics at Ambient and Hot Temperatures ($\mathrm{T}_{\mathrm{J}} \mathrm{Max}$) (Continued)

Parameter	Test Level	Symbol	Min	Typ	Max	Unit
Total harmonic distortion $\begin{array}{ll} \text { Fs }=1 \text { Gsps } & \text { Fin }=100 \mathrm{MHz} \\ \text { Fs }=1.4 \mathrm{Gsps} & \text { Fin }=700 \mathrm{MHz} \\ \text { Fs }=1.4 \mathrm{Gsps} & \text { Fin }=1950 \mathrm{MHz} \\ \text { Fs }=2 \mathrm{Gsps} & \text { Fin }=2 \mathrm{GHz} \end{array}$	4	ITHDI	$\begin{aligned} & 48 \\ & 48 \\ & 44 \\ & 44 \end{aligned}$	$\begin{aligned} & 54 \\ & 53 \\ & 50 \\ & 49 \end{aligned}$		dB
Spurious free dynamic range $\begin{array}{ll} \text { Fs }=1 \text { Gsps } & \text { Fin }=100 \mathrm{MHz} \\ \text { Fs }=1.4 \mathrm{Gsps} & \text { Fin }=700 \mathrm{MHz} \\ \text { Fs }=1.4 \mathrm{Gsps} & \text { Fin }=1950 \mathrm{MHz} \\ \text { Fs }=2 \mathrm{Gsps} & \text { Fin }=2 \mathrm{GHz} \end{array}$	4	ISFDRI	$\begin{aligned} & 50 \\ & 50 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 59 \\ & 59 \\ & 53 \\ & 54 \end{aligned}$		dBC
Two-tone third-order intermodulation distortion	4	IMD31		65 65 65 65		dBFS

Notes: 1. See "Definition of Terms" on page 35.
2. From DC to 1.5 GHz
3. Specified from DC up to 2.5 GHz input signal. Input VSWR is measured on a soldered device. It assumes an external $50 \Omega \pm 2 \Omega$ controlled impedance line, and a 50Ω driving source impedance ($\mathrm{S}_{11}<-30 \mathrm{~dB}$).

AC Performance at Cold Temperature (T_{C} Min)

Parameter	Test Level	Symbol	Min	Typ	Max	Unit
AC Performance Condition -1 dBFS single-ended input mode; 50% clock duty cycle; 0 dBm differential clock (CLK, CLKB); binary output data format						
Signal-to-noise and distortion ratio Fs $=1$ Gsps \quad Fin $=100 \mathrm{MHz}$ Fs $=1.4 \mathrm{Gsps} \quad \mathrm{Fin}=700 \mathrm{MHz}$ Fs $=1.4 \mathrm{Gsps} \quad \mathrm{Fin}=1950 \mathrm{MHz}$ Fs $=2$ Gsps \quad Fin $=2 \mathrm{GHz}$	4	SINAD	$\begin{aligned} & 41 \\ & 40 \\ & 39 \\ & 38 \end{aligned}$	$\begin{aligned} & 43 \\ & 42 \\ & 40 \\ & 39 \end{aligned}$		dB
Effective number of bits $\begin{array}{ll} \text { Fs }=1 \mathrm{Gsps} & \text { Fin }=100 \mathrm{MHz} \\ \mathrm{Fs}=1.4 \mathrm{Gsps} & \text { Fin }=700 \mathrm{MHz} \\ \mathrm{Fs}=1.4 \mathrm{Gsps} & \text { Fin }=1950 \mathrm{MHz} \\ \mathrm{Fs}=2 \mathrm{Gsps} & \text { Fin }=2 \mathrm{GHz} \end{array}$	4	ENOB	$\begin{aligned} & 6.5 \\ & 6.3 \\ & 6.2 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 6.7 \\ & 6.4 \\ & 6.2 \end{aligned}$		Bit
Signal to noise ratio $\begin{array}{ll} \text { Fs }=1 \text { Gsps } & \text { Fin }=100 \mathrm{MHz} \\ \text { Fs }=1.4 \mathrm{Gsps} & \text { Fin }=700 \mathrm{MHz} \\ \text { Fs }=1.4 \mathrm{Gsps} & \text { Fin }=1950 \mathrm{MHz} \\ \text { Fs }=2 \mathrm{Gsps} & \text { Fin }=2 \mathrm{GHz} \end{array}$	4	SNR	$\begin{aligned} & 45 \\ & 44 \\ & 45 \\ & 43 \end{aligned}$	$\begin{aligned} & 46 \\ & 46 \\ & 46 \\ & 44 \end{aligned}$		dB
Total harmonic distortion $\begin{array}{ll} \text { Fs }=1 \text { Gsps } & \text { Fin }=100 \mathrm{MHz} \\ \text { Fs }=1.4 \mathrm{Gsps} & \text { Fin }=700 \mathrm{MHz} \\ \text { Fs }=1.4 \mathrm{Gsps} & \text { Fin }=1950 \mathrm{MHz} \\ \text { Fs }=2 \mathrm{Gsps} & \text { Fin }=2 \mathrm{GHz} \end{array}$	4	ITHDI	$\begin{aligned} & 42 \\ & 41 \\ & 40 \\ & 39 \end{aligned}$	$\begin{aligned} & 44 \\ & 43 \\ & 42 \\ & 41 \end{aligned}$		dB
Spurious free dynamic range $\begin{array}{ll} \text { Fs }=1 \text { Gsps } & \text { Fin }=100 \mathrm{MHz} \\ \text { Fs }=1.4 \mathrm{Gsps} & \text { Fin }=700 \mathrm{MHz} \\ \text { Fs }=1.4 \mathrm{Gsps} & \text { Fin }=1950 \mathrm{MHz} \\ \text { Fs }=2 \mathrm{Gsps} & \text { Fin }=2 \mathrm{GHz} \end{array}$	4	ISFDRI	$\begin{aligned} & 44 \\ & 43 \\ & 41 \\ & 41 \end{aligned}$	$\begin{aligned} & 46 \\ & 45 \\ & 43 \\ & 43 \end{aligned}$		dBC

Transient and Switching Performances

Parameter	Test Level	Symbol	Min	Typ	Max	Unit
Transient Performance						
Bit error rate ${ }^{(1)}$	4	BER		10^{-12}		Error/ sample
ADC setting time ($\left.\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {INB }}=400 \mathrm{mVpp}\right)$	4	TS		1		ns
Overvoltage recovery time	4	ORT			500	ps
ADC step response rise/fall time (10-90\%)				80	100	ps
Overshoot				4		\%
Ringback				2		\%
Switching Performance and Characteristics						
Maximum clock frequency ${ }^{(2)}$		$\mathrm{F}_{\mathrm{S}} \mathrm{Max}$	2		2.2	Gsps
Minimum clock frequency ${ }^{(2)}$	4	$\mathrm{F}_{S} \mathrm{Min}$		150	200	Msps
Minimum clock pulse width (high)	4	TC1	0.2	0.25	2.5	ns
Minimum clock pulse width (low)	4	TC2	0.2	0.25	2.5	ns
Aperture delay ${ }^{(2)}$	4	TA		160		ps
Aperture uncertainty ${ }^{(2)}$	4	Jitter		150	200	fs rms
Output rise/fall time for DATA (20-80\%) ${ }^{(3)}$	4	TR/TF		150	200	ps
Output rise/fall time for DATA READY (20-80\%) ${ }^{(3)}$	4	TR/TF		150	200	ps
Data output delay ${ }^{(4)}$	4	TOD		360		ps
	4	TDR		410		ps
Data ready output delay ${ }^{(4)}$	4	ITOD minus TDRI	0	50	100	ps
Output data to data ready propagation delay ${ }^{(5)}$	4	TD1	250	300	350	ps
Data ready to output data propagation delay ${ }^{(5)}$	4	TD2	150	200	250	ps
Output data pipeline delay	4	TPD		4.0		Clock cycles
Data ready reset delay	4	TRDR	1000			ps

Notes: 1. Output error amplitude $< \pm 6 \mathrm{LSB}, \mathrm{Fs}=2 \mathrm{Gsps}, \mathrm{T}_{\mathrm{J}}=110^{\circ} \mathrm{C}$
2. See "Definition of Terms" on page 35.
3. $50 \Omega / / C_{\text {LOAD }}=2 \mathrm{pF}$ termination (for each single-ended output). Termination load parasitic capacitance derating value: $50 \mathrm{ps} / \mathrm{pF}$ (ECL). See "Timing Information" on page 37.
4. TOD and TDR propagation times are defined at package input/outputs. They are given for reference only. See "Propagation Time Considerations" on page 37.
5. Values for TD1 and TD2 are given for a 2 Gsps external clock frequency (50% duty cycle). For different sampling rates, apply the following formula: $\mathrm{TD} 1=\mathrm{T} / 2+($ ITOD - TDRI) and TD2 $=\mathrm{T} / 2+(I T O D-$ TDRI), where $\mathrm{T}=$ clock period. This places the rising edge (True/False) of the differential data ready signal in the middle of the output data valid window. This gives maximum setup and hold times for external data acquisition.

Table 1. Explanation of Test Levels

Level	Explanation
1	100% production tested at $25^{\circ} \mathrm{C}^{(1)}$ (for "C" temperature range) ${ }^{(2)}$
2	100% production tested at $25^{\circ} \mathrm{C}^{(1)}$ and sample tested at specified temperatures (for "V" temperature ranges ${ }^{(2)}$)
3	Sample tested only at specified temperatures
4	Parameter is guaranteed by design and characterization testing (thermal steady-state conditions at specified temperature)
5	Parameter is a typical value guaranteed by design only
6	100% production tested over specified temperature range (for "B/Q" temperature range ${ }^{(2)}$)

Notes: 1. Unless otherwise specified
2. Refer to "Ordering Information" on page 55.

Only minimum and maximum values are guaranteed (typical values are issued from characterization results).

Figure 2. Timing Diagram

Note: Detailed timing diagrams are provided on page 39.

Table 2. Digital Coding

Differential Analog Input	Voltage Level	Digital Output			
		Binary (B/GB = GND or floating)		GRAY (B/GB $=\mathrm{V}_{\text {EE }}$)	
		MSB............LSB	Out-of-Range	MSB............LSB	Out-of-Range
> 250.25 mV	>Top end of full-scale $+1 / 2 \mathrm{LSB}$	1111111111	1	100000000	1
250.25 mV	Top end of full-scale $+1 / 2$ LSB	1111111111	0	100000000	0
249.75 mV	Top end of full-scale - $1 / 2$ LSB	1111111110	0	1000000001	0
125.25 mV	3/4 full-scale $+1 / 2$ LSB	1100000000	0	1010000000	0
124.75 mV	3/4 full-scale - $1 / 2$ LSB	1011111111	0	1110000000	0
0.25 mV	Mid-scale + $1 / 2$ LSB	1000000000	0	110000000	0
-0.25 mV	Mid-scale - $1 / 2$ LSB	0111111111	0	0100000000	0
-124.75 mV	1/4 full-scale $+1 / 2$ LSB	0100000000	0	0110000000	0
-124.25 mV	1/4 full-scale-1/2 LSB	0011111111	0	0010000000	0
-249.75 mV	Bottom end of full-scale $+1 / 2$ LSB	0000000001	0	0000000001	0
-250.25 mV	Bottom end of full-scale - $1 / 2$ LSB	0000000000	0	0000000000	0
<-250.25 mV	< Bottom end of full-scale - $1 / 2$ LSB	000000000	1	000000000	1

Table 3. Die Mechanical Information

Description	Data
Die size	$3740 \mu \mathrm{~m} \times 3820 \mu \mathrm{~m}(\pm 15 \mu \mathrm{~m})$
Pad size	
- single pad	$90 \mu \mathrm{~m} \times 90 \mu \mathrm{~m}$
- double pad	$180 \mu \mathrm{~m} \times 90 \mu \mathrm{~m}$
Die thickness	$380 \mu \mathrm{~m} \pm 25 \mu \mathrm{~m}$
Back side metallization	None
Metallization	
- number of layers	3
- material	AlCu
Pad metallization	AlCu
Passivation	Oxyde nitride
Back side potential	-5 V

TS83102G0B Package Description

Table 4. Pin Description (CBGA 152)

Symbol	Pin Number	Function
Power Supplies		
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCTH}}$	K1, K2, J3, K3, B6, C6, A7, B7, C7, P8, Q8, R8	5 V analog supply (connected to same power supply plane)
GND	B1, C1, D1, G1, M1, Q1, B2, C2, D2, E2, F2, G2, N2, P2, Q2, A3, B3, D3, E3, F3, G3, N3, P4, Q4, R4, A5, P5, Q5, P6, Q6, P7, Q7, R7, B9, B10, B11, R11, P12, A14, B14, C14, G14, K14, P14, Q14, R14, B15, Q15, B16, Q16	Analog ground
$\mathrm{V}_{\text {EE }}, \mathrm{V}_{\text {EETH }}$	H1, J1, L1, H2, J2, L2, M2, C3, H3, L3, M3, P3, Q3, R3, A4, B4, C4, B5, C5, A8, B8, C8, C9, P9, Q9, C10, Q10, R10	-5 V analog supply (connected to same power supply plane)
$\mathrm{V}_{\text {PLUSD }}$	P10, C11, P11, Q11, A12, B12, C12, Q12, R12, D14, E14, F14, L14, M14, N14	Digital positive supply
DV ${ }_{\text {EE }}$	A13, B13, C13, P13, Q13, R13, H14, J14	-5V digital supply
Analog Inputs		
VIN	R5	In-phase (+) analog input signal of the differential Sample \& Hold preamplifier
VINB	R6	Inverted phase (-) analog input signal of the differential Sample \& Hold preamplifier
Clock Inputs		
CLK	E1	In-phase (+) clock input
CLKB	F1	Inverted phase (-) clock input
Digital Outputs		
$\begin{aligned} & \text { D0, D1, D2, D3, D4, } \\ & \text { D5, D6, D7, D8, D9 } \end{aligned}$	$\begin{aligned} & \text { D16, E16, F16, G16, J16, K16, L16, M16, N16, } \\ & \text { P16 } \end{aligned}$	In-phase (+) digital outputs D0 is the LSB, D7 is the MSB
$\begin{aligned} & \text { D0B, D1B, D2B, D3B, } \\ & \text { D4B, D5B, D6B, D7B, } \\ & \text { D8B, D9B } \end{aligned}$	$\begin{aligned} & \text { D15, E15, F15, G15, J15, K15, L15, M15, N15, } \\ & \text { P15 } \end{aligned}$	Inverted phase (-) digital outputs
OR	C16	In-phase (+) out-of-range output
ORB	C15	Inverted phase (-) out-of-range output
DR	H16	In-phase (+) data ready signal output
DRB	H15	Inverted phase (-) data ready signal output
Additional Functions		
B/GB	A11	Binary or gray select output format control - Binary output format if $B / G B$ is floating or connected to GND - Gray output format if $B / G B$ is connected to $V_{E E}$

Table 4. Pin Description (CBGA 152) (Continued)

Symbol	Pin Number	Function
DECB/DIODE	A10	Decimation function enable or die junction temperature measurement: $-{\text { Decimation active when connected to } V_{\text {EE }} \text { (die }}^{\text {junction temperature monitoring is not possible) }}$- Normal mode when connected to Ground or left floating - Die junction temperature monitoring when current is applied PGEB A9
DRRB	N1	Active low pattern generator enable - Digitized input delivered at outputs according to B/GB if PGEB is floating or connected to GND - Checker board pattern delivered at outputs if PGEB is connected to $V_{\text {EE }}$
GA	R9	Asynchronous data ready reset function (active at ECL low level) or when connected to $V_{\text {EE }}$
SDA	A6	Gain adjust
SDAEN	P1	Sampling delay adjust

Figure 3. Pinout

Notes: 1. To simplify PCB routing, the 4 NC balls can be electrically connected to the GND balls.
2. The pinout is shown from the bottom. The columns and rows are defined differently from the JEDEC standard.

Thermal and Moisture Characteristics

Dissipation by Conduction and Convection

The thermal resistance from junction to ambient $R T H_{J A}$ is around $30^{\circ} \mathrm{C} / \mathrm{W}$. Therefore, to lower $\mathrm{RTH}_{\mathrm{JA}}$, it is mandatory to use an external heat sink to improve dissipation by convection and conduction. The heat sink should be fixed in contact with the top side of the package (CuW heat spreader over Al 2 O 3) which is at -5 V .

The heat sink needs to be electrically isolated, using adequate low RTH electrical isolation.
Example:
The thermal resistance from case to ambient $\mathrm{RTH}_{C A}$ is typically $4.0^{\circ} \mathrm{C} / \mathrm{W}(0 \mathrm{~m} / \mathrm{s}$ air flow or still air) with the heat sink depicted in Figure 4 on page 18, of dimensions $50 \mathrm{~mm} \times 50 \mathrm{~mm}$ x 22 mm (respectively LxIxH).
The global junction to ambient thermal resistance $R T H_{J A}$ is:
$4.35^{\circ} \mathrm{C} / \mathrm{W} \mathrm{RTH}_{\mathrm{JC}}+2.0^{\circ} \mathrm{C} / \mathrm{W}$ thermal grease resistance $+4.0^{\circ} \mathrm{C} / \mathrm{W} \mathrm{RTH}_{\mathrm{CA}}$ (case to ambient) $=10.35^{\circ} \mathrm{C} / \mathrm{W}$ total $\left(\mathrm{RTH}_{\mathrm{JA}}\right)$.
Assuming:
A typical thermal resistance from the junction to the bottom of the case $\mathrm{RTH}_{\mathrm{Jc}}$ of $4.35^{\circ} \mathrm{C} / \mathrm{W}$ (finite element method thermal simulation results): this value does not include the thermal contact resistance between the package and the external heat sink (glue, paste, or thermal foil interface, for example). As an example, use a $2.0^{\circ} \mathrm{C} / \mathrm{W}$ value for a $50 \mu \mathrm{~m}$ thickness of thermal grease.

Note: Example of the calculation of the ambient temperature $\mathrm{T}_{\mathrm{A}} \max$ to ensure $\mathrm{T}_{J} \max =110^{\circ} \mathrm{C}$: assuming $\mathrm{RTH}_{J A}=10.35^{\circ} \mathrm{C} / \mathrm{W}$ and power dissipation $=4.6 \mathrm{~W}, \mathrm{~T}_{\mathrm{A}} \max =\mathrm{T}_{\mathrm{J}}-\left(\mathrm{RTH}_{\mathrm{JA}} \times 4.6 \mathrm{~W}\right)$ $=110-(10.35 \times 4.6)=62.39^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{A}}$ max can be increased by lowering $\mathrm{RTH}_{\mathrm{JA}}$ with an adequate air flow ($2 \mathrm{~m} / \mathrm{s}$, for example).

Figure 4. Black Anodized Aluminium Heat Sink Glued on a Copper Base Screwed on Board (all dimensions in mm)

Note: The cooling system efficiency can be monitored using the temperature sensing diodes, integrated in the device. Refer to "DECB/DIODE: Junction Temperature Monitoring and Output Decimation Enable" on page 45.

Thermal Dissipation by Conduction Only

When the external heat sink cannot be used, the relevant thermal resistance is the thermal resistance from the junction to the bottom of the balls: RTH J-Bottom-of-balls.

The thermal path, in this case, is the junction, then the silicon, glue, CuW heat spreader, package Al2O3, and the balls (Sn63Pb37).

The Finite Element Method (FEM) with the thermal simulator leads to
$R T H_{\text {J-bottom of balls }}=12.3^{\circ} \mathrm{C} / \mathrm{W}$. This value assumes pure conduction from the junction to the bottom of the balls (this is the worst case, no radiation and no convection is applied). With such an assumption, $\mathrm{RTH}_{\mathrm{J} \text { - Bottom-of-balls }}$ is user-independent.
To complete the thermal analysis, you must add the thermal resistance from the top of the board (on which the device is soldered) to the ambient resistance, whose values are userdependent (the type of board, thermal, routing, area covered by copper in each board layer, thickness, airflow or cold plate are all parameters to consider).

Typical Characterization Results

Nominal Conditions

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; 50 \%$ clock duty cycle; binary output data format; $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C} ;-1 \mathrm{dBFS}$, unless otherwise specified.

Vin $=-1 \mathrm{dBFS}$
Gain flatness at $\pm 0.15 \mathrm{~dB}$ from DC to 1.5 GHz
Full power input bandwidth at $-3 \mathrm{~dB}>3.3 \mathrm{GHz}$
Figure 5. Full Power Input Bandwidth at -3 dB

Fin (MHz)

Typical VSWR Versus Input Frequency

Figure 6. VSWR Curve for VIN and CLK

Typical Step Response
Tr measured $=90 \mathrm{ps}=\operatorname{sqrt}\left(\operatorname{Tr}_{\text {PulseGenerator }}{ }^{2}+\operatorname{Tr}_{\text {ADC }}{ }^{2}\right)$
$\mathrm{Tr}_{\text {PulseGenerator }}=41 \mathrm{ps}$ (estimated)
Actual $\operatorname{Tr}_{\text {ADC }}=80 \mathrm{ps}$

Figure 7. Step Response (Random Interleaved Sampling Method Measure)

Figure 8. Zoom on Rise Time Step Response

Note: Overshoot and ringback are not measurable (estimated by simulation at 4\% and 2\% respectively).

Typical Dynamic Performances Versus Sampling Frequency

Figure 9. ENOB Versus Sampling Frequency in Nyquist Conditions (Fin = Fs/2)

Figure 10. SFDR Versus Sampling Frequency in Nyquist Conditions (Fin = Fs/2)

Figure 11. THD Versus Sampling Frequency in Nyquist Conditions (Fin = Fs/2)

Figure 12. SNR Versus Sampling Frequency in Nyquist Conditions (Fin = Fs/2)

Typical Dynamic Performances Versus Fin

Figure 13. ENOB Versus Input Frequency at $\mathrm{Fs}=1.4 \mathrm{Gsps}$ and Fs = 1.7 Gsps

Figure 14. THD Versus Input Frequency at Fs = 1.4 Gsps and Fs = 1.7 Gsps

Figure 15. SFDR Versus Input Frequency at Fs = 1.4 Gsps and $\mathrm{Fs}=1.7 \mathrm{Gsps}$

Figure 16. SNR Versus Input Frequency at Fs = 1.4 Gsps and $\mathrm{Fs}=1.7 \mathrm{Gsps}$

Typical Reconstructed Signals and Signal Spectrum

The ADC input signal is sampled at a full sampling rate, but the output data is 8 or 16 times decimated so as to relax the acquisition system data rate. As a consequence, the calculation software sees an effective frequency divided by 8 or 16, compared to the ADC clock frequency used (Fs). The spectrum is thus displayed from DC to Fs/2 divided by the decimation factor.

Decimation only folds all spectral components between DC and Fs/2 divided by the decimation factor but does not change their amplitude.
This does not have any impact on the FFT spectral characteristics because of the ergodicity of the samples (time average = statistic average). The input frequency is chosen to respect the coherence of the acquisition.

Figure 17. Fs $=1.4 \mathrm{Gsps}$ and Fin $=702 \mathrm{MHz},-1 \mathrm{dBFS}$; Decimation Factor $=16,32$ kpoints FFT

Figure 18. Fs = 1.4 Gsps and Fin $=1399 \mathrm{MHz},-1 \mathrm{dBFS}$; Decimation Factor $=16,32$ kpoints FFT

Figure 19. Fs $=1.7 \mathrm{Gsps}$ and $\mathrm{Fin}=898 \mathrm{MHz},-1 \mathrm{dBFS}$; Decimation Factor $=16,32$ kpoints FFT

Figure 20. Fs = 1.7 Gsps and Fin $=1699 \mathrm{MHz},-1 \mathrm{dBFS}$; Decimation Factor $=8$, 32 kpoints FFT

Figure 21. Fs $=2$ Gsps and Fin $=1998 \mathrm{MHz},-1 \mathrm{dBFS}$; Decimation Factor $=8,32$ kpoints FFT

SFDR Performance with/without External Dither

Typical Dual Tone Dynamic Performance

Figure 22. SFDR (in dBC) With and Without Dither (-23 dBm DC to 5 MHz Out of Band Dither)
Fs $=1.4$ Gsps and $\mathrm{Fin}=710 \mathrm{MHz}$

An increase in SFDR up to $>10 \mathrm{~dB}$ with an addition of -23 dBrms DC to 5 MHz out-of-band dither is noted.

The dither profile has to be defined according to the ADC's INL pattern as well as the trade-off to be reached between the increase in SFDR and the loss in SNR.

Please refer to the Application Note on dither for more information on adding dither to an ADC.

Figure 23. Dual Tone Reconstructed Signal Spectrum at Fs $=1.2 \mathrm{Gsps}$, Fin1 $=995 \mathrm{MHz}$, Fin2 $=1005 \mathrm{MHz}(-7 \mathrm{dBFS})$, $\mathrm{IMD} 3=64 \mathrm{dBFS}$

Note: The output data is not decimated. The spectrum is displayed from DC to 600 MHz .

Figure 24. Dual Tone Reconstructed Signal Spectrum at Fs $=1.4 \mathrm{Gsps}$, Fin1 $=745 \mathrm{MHz}$, Fin2 $=755 \mathrm{MHz}(-7 \mathrm{dBFS})$, IMD3 $=65 \mathrm{dBFS}$

Note: The ADC input signal is sampled at 1.4 Gsps but the data acquisition is 8 times decimated. Thus, the spectrum is displayed from DC to Fs/2 divided by the decimation factor $[(\mathrm{Fs} / 2) / 8=87.5 \mathrm{MHz}]$.

Figure 25. Dual Tone Reconstructed Signal Spectrum at Fs $=1.4$ Gsps, Fin1 $=995 \mathrm{MHz}$, Fin2 $=1005 \mathrm{MHz}(-7 \mathrm{dBFS})$, IMD3 $=64 \mathrm{dBFS}$

Note: The ADC input signal is sampled at 1.4 Gsps but the data acquisition is 8 times decimated. Thus, the spectrum is displayed from DC to $\mathrm{Fs} / 2$ divided by the decimation factor $[(\mathrm{Fs} / 2) / 8=87.5 \mathrm{MHz}]$.

Figure 26. Dual Tone Reconstructed Signal Spectrum at Fs $=1.4$ Gsps, Fin1 $=1244 \mathrm{MHz}$, Fin2 $=1255 \mathrm{MHz}(-7 \mathrm{dBFS})$, IMD3 $=65 \mathrm{dBFS}$

Note: The ADC input signal is sampled at 1.4 Gsps but data acquisition is 8 times decimated. Thus, the spectrum is displayed from DC to $\mathrm{Fs} / 2$ divided by the decimation factor $[(\mathrm{Fs} / 2) / 8=87.5 \mathrm{MHz}]$. The dual tone IMD3 at 1.4 Gsps is around -65 dBFS for Fin $=1 \mathrm{GHz}$ $\pm 250 \mathrm{MHz}$ (Fin range is from 750 MHz to 1250 MHz).

Typical Performance Sensitivity Versus Power Supply and Temperature

Figure 27. ENOB Versus Junction Temperature (Fs = 1.4 Gsps, Fin = $698 \mathrm{MHz},-1 \mathrm{dBFS}$)

Figure 28. SFDR Versus Junction Temperature (Fs =1.4 Gsps, Fin = $698 \mathrm{MHz},-1 \mathrm{dBFS}$)

Figure 29. SNR Versus Junction Temperature (Fs = 1.4 Gsps, Fin = $698 \mathrm{MHz},-1 \mathrm{dBFS}$)

Figure 30. $E N O B$ Versus $V_{C C}$ and $V_{E E}$; $F s=1.4$ Gsps Versus Fin $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{I} \mathrm{V}_{\mathrm{EE}} \mathrm{I}=4.75 \mathrm{~V}, 5 \mathrm{~V}\right.$ and 5.25 V$)$

$- \pm 5 \mathrm{~V} \quad-\cdots \pm 5.25 \mathrm{~V} \quad- \pm 4.75 \mathrm{~V}$

Figure 31. SFDR Versus V_{CC} and V_{EE}; $\mathrm{Fs}=1.4$ Gsps Versus Fin $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{I} \mathrm{V}_{\mathrm{EE}} \mathrm{I}=4.75 \mathrm{~V}, 5 \mathrm{~V}\right.$ and 5.25 V$)$

$- \pm 5 \mathrm{~V} \quad- - \pm 5.25 \mathrm{~V} \quad- \pm 4.75 \mathrm{~V}$

Figure 32. SNR Versus V_{CC} and V_{EE}; $\mathrm{Fs}=1.4$ Gsps Versus Fin $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{I} \mathrm{V}_{\mathrm{EE}} \mathrm{I}=4.75 \mathrm{~V}, 5 \mathrm{~V}\right.$ and 5.25 V$)$

Considerations on ENOB: Linearity and Noise Contribution

Figure 33. Example of a 16-kpoint FFT Computation at Fs = 1.4 Gsps, Fin $=702 \mathrm{MHz}$, $-1 \mathrm{dBFS}, \mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$; Bin Spacing $=(\mathrm{Fs} / 2) / 16384=2.67 \mathrm{kHz}$

This is a 16384 points FFT. It is 16 times decimated since a DEMUX $1: 8$ is used to relax the acquisition system data rate, and data is captured on the rising edge of the data ready signal.

The spectrum is computed over the first Nyquist zone from DC to Fs/2 divided by the decimation factor, which equals $\mathrm{Fs} / 32=43.75 \mathrm{MHz}$.

Legend:

1. Ideal 10-bit quantization noise spectral density, peak value $=-84 \mathrm{~dB}$
2. Average SNR noise floor: $47 \mathrm{~dB}+10 \log \left(\mathrm{~N}_{\text {FFTpoint }} / 2\right)=86 \mathrm{~dB}$ including thermal noise
3. Average SNR noise floor: $57 \mathrm{~dB}+10 \log \left(\mathrm{~N}_{\mathrm{FFTpoint}} / 2\right)=96 \mathrm{~dB}$ without thermal noise
4. Ideal 10-bit averaged SNR noise floor $6.02 \times(N=10)+1.76+10 \log \left(N_{\text {FFTpoint }} / 2\right)=101$ dB

Note: \quad The thermal noise floor is expressed in $\mathrm{dBm} / \mathrm{Hz}$ (at $\mathrm{T}=300 \mathrm{~K}, \mathrm{~B}=1 \mathrm{~Hz}$): 10 log $(\mathrm{kTB} / 1 \mathrm{~mW})=-174 \mathrm{dBm} / \mathrm{Hz}$ or $-139.75 \mathrm{dBm} / 2.67 \mathrm{kHz}$. THD is calculated over the 25 first harmonics.

With ADC input referred thermal noise:

- $\mathrm{ENOB}=7.6$ bits
- SINAD $=47 \mathrm{~dB}$
- THD = -55.7 dB (over 25 harmonics)
- \quad SFDR $=-62.6 \mathrm{dBc}$
- $\quad S N R=47.3 \mathrm{~dB}$

Without ADC input referred thermal noise:

- $\mathrm{ENOB}=9.2$ bits
- SINAD $=57 \mathrm{~dB}$
- THD $=-55.7 \mathrm{~dB}$ (over 25 harmonics)
- \quad SFDR $=-62.6 \mathrm{dBc}$
- $\quad S N R=57.3 \mathrm{~dB}$

Conclusion:

Though the ENOB is 7.6 bits (in this example at 1.4 Gsps Nyquist conditions), the ADC features a 10-bit linearity regarding the 60 dB typical SFDR performance.

However, it has to be pointed out that the ENOB is actually limited by the ADC's input referred thermal noise, which dominates the rms quantization noise. For certain applications (using a spread spectrum) the signal may be recovered below the thermal noise floor (by cross correlation since it is white noise).
Therefore, the thermal noise can be extracted from the ENOB: the ENOB without a referred input thermal noise is 9.2 instead of 7.6 in this example, only limited by the quantization noise and clock induced jitter.

Equivalent Input/Output Schematics

Figure 34. Equivalent Analog Input Circuit and ESD Protections

Note: $\quad 100 \Omega$ termination midpoint is located inside the package cavity and is DC coupled to ground.
Figure 35. Equivalent Clock Input Circuit and ESD Protections

Note: $\quad 100 \Omega$ termination midpoint is on-chip and AC coupled to ground through a 40 pF capacitor.

Figure 36. Equivalent Data Output Buffer Circuit and ESD Protections

Figure 37. ADC Gain Adjust Equivalent Input Circuits and Protections

Figure 38. B / GB and PGEB Equivalent Input Schematics and ESD Protections

Figure 39. DRRB Equivalent Input Schematics and ESD Protections

Definition of Terms

Table 5. Definitions of Terms

Term		Description
BER	Bit Error Rate	Probability to exceed a specified error threshold for a sample. An error code is a code that differs by more than ± 4 LSB from the correct code
BW	Full-power Input Bandwidth	The analog input frequency at which the fundamental component in the digitally reconstructed output has fallen by 3 dB with respect to its low frequency value (determined by FFT analysis) for input at full-scale
DG	Differential Gain	The peak gain variation (in percent) at five different $D C$ levels for an $A C$ signal of 20% fullscale peak to peak amplitude. $\mathrm{F}_{\text {IN }}=5 \mathrm{MHz}$ (TBC)
DNL	Differential Nonlinearity	The differential non-linearity for an output code (i) is the difference between the measured step size of code (i) and the ideal LSB step size. DNL (i) is expressed in LSBs. DNL is the maximum value of all DNL (i). DNL error specification of less than 1 LSB guarantees that there are no missing output codes and that the transfer function is monotonic
DP	Differential Phase	The peak phase variation (in degrees) at five different DC levels for an AC signal of 20% fullscale peak to peak amplitude. $\mathrm{F}_{\text {IN }}=5 \mathrm{MHz}$ (TBC)
FS MAX	Maximum Sampling Frequency	Sampling frequency for which ENOB < 6 bits
FS MIN	Minimum Sampling Frequency	Sampling frequency for which the ADC gain has fallen by 0.5 dB with respect to the gain reference value. Performances are not guaranteed below this frequency
FPBW	Full Power Input Bandwidth	Analog input frequency at which the fundamental component in the digitally reconstructed output waveform has fallen by 3 dB with respect to its low frequency value (determined by FFT analysis) for input at full-scale $-1 \mathrm{~dB}(-1 \mathrm{dBFS})$
ENOB	Effective Number of Bits	$\text { ENOB }=\frac{\text { SINAD }-1.76+20 \log \frac{A}{\text { FS/2 }}}{6.02} \quad \begin{aligned} & \text { Where } \mathrm{A} \text { is the actual input amplitude and } \mathrm{V} \text { is the } \\ & \text { full-scale range of the ADC under test } \end{aligned}$
IMD3	Inter Modulation Distortion	The two tones third order intermodulation distortion (IMD3) rejection is the ratio of either input tone to the worst third order intermodulation products
INL	Integral Non-linearity	The integral non-linearity for an output code (i) is the difference between the measured input voltage at which the transition occurs and the ideal value of this transition. INL (i) is expressed in LSBs, and is the maximum value of all INL (i)
JITTER	Aperture Uncertainty	The sample to sample variation in aperture delay. The voltage error due to jitter depends on the slew rate of the signal at the sampling point
NPR	Noise Power Ratio	The NPR is measured to characterize the ADC's performance in response to broad bandwidth signals. When using a notch-filtered broadband white-noise generator as the input to the ADC under test, the Noise-to-Power Ratio is defined as the ratio of the average out-of-notch to the average in-notch power spectral density magnitudes for the FFT spectrum of the ADC output sample test
NRZ	Non Return to Zero	When the input signal is larger than the upper bound of the ADC input range, the output code is identical to the maximum code and the out-of-range bit is set to logic one. When the input signal is smaller than the lower bound of the ADC input range, the output code is identical to the minimum code, and the out-of-range bit is set to logic one (it is assumed that the input signal amplitude remains within the absolute maximum ratings)
ORT	Overvoltage Recovery Time	Time to recover 0.2% accuracy at the output, after a 150% full-scale step applied on the input is reduced to midscale

Table 5. Definitions of Terms (Continued)
$\left.\begin{array}{|l|l|l|}\hline \text { PSRR } & \begin{array}{l}\text { Power Supply } \\ \text { Rejection Ratio }\end{array} & \text { PSRR is the ratio of input offset variation to a change in power supply voltage }\end{array}, \begin{array}{l}\text { Sper ratio expressed in dB of the RMS signal amplitude, set at 1 dB below full-scale, to the } \\ \text { RMS value of the next highest spectral component (peak spurious spectral component). } \\ \text { SFDR is the key parameter for selecting a converter to be used in a frequency domain } \\ \text { application (radar systems, digital receiver, network analyzer...). It may be reported in dBc } \\ \text { (i.e., degrades as signal level is lowered), or in dBFS (i.e. always related back to converter } \\ \text { full-scale) }\end{array}\right\}$

TS83102G0B Operating Features

Timing Information

Timing Value for TS83102G0B

Propagation Time Considerations

Principle of Operation

The timing values are defined in the "Electrical Operating Characteristics" on page 4.
The timing values are given at the package inputs/outputs, taking into account the package's transmission line, bond wire, pad and ESD protections capacitance, as well as specified termination loads. The evaluation board propagation delays in 50Ω controlled impedance traces are not taken into account. You should apply proper derating values corresponding to termination topology.

The TOD and TDR timing values are given from the package pin to pin and do not include the additional propagation times between the device pins and input/output termination loads. For the evaluation board, the propagation time delay is $6.1 \mathrm{ps} / \mathrm{mm}$ ($155 \mathrm{ps} / \mathrm{inch}$) corresponding to a 3.4 dielectric constant (at 10 GHz) of the RO4003 used for the board.
If a different dielectric layer is used (for instance Teflon), you should use appropriate propagation time values.

TD1 and TD2 do not depend on propagation times because they are differential data (see "Definition of Terms" on page 35).

TD1 and TD2 are also the most straightforward data to measure, because they are differential: TD can be measured directly on the termination loads, with matching oscilloscope probes.

Values for TOD and TDR track each other over the temperature (there is a 1% variation for TOD and TDR per $100^{\circ} \mathrm{C}$ temperature variation). Therefore the TOD and TDR variation over temperature is negligible. Moreover, the internal (on-chip) skews between each TOD and TDR data effect can be considered negligible. Consequently, the minimum values for TOD and TDR are never more than 100 ps apart. The same is true for their maximum values.
However, the external TOD and TDR values can be dictated by the total digital data skews between each TOD and TDR. These digital skews can include the MCM board, bonding wires and output line length differences, as well as output termination impedance mismatches.

The external (on-board) skew effect has not been taken into account for the specification of TOD and TDR minimum and maximum values.

The analog input is sampled on the rising edge of the external clock's input (CLK/CLKB) after TA (aperture delay). The digitized data is available after 4 clock periods' latency (pipeline delay [TPD]) on the clock's rising edge, after a typical propagation delay TOD. The Data Ready differential output signal frequency (DR/DRB) is half the external clock's frequency. It switches at the same rate as the digital outputs. The Data Ready output signal (DR/DRB) switches on the external clock's falling edge after a propagation delay TDR.
If TOD equals TDR, the rising edge (True-False) of the differential Data Ready signal is placed in the middle of the Output Data Valid window. This gives maximum setup and hold times for external data acquisition.

A Master Asynchronous Reset input command DRRB (ECL compatible single-ended input) is available for initializing the differential Data Ready output signal (DR/DRB). This feature is mandatory in certain applications using interleaved ADCs or using a single ADC with demultiplexed outputs. Without Data Ready signal initialization, it is impossible to store the output digital data in a defined order.

When used with Atmel's TS81102G0 1:4/8 8/10 bit DMUX, it is not necessary to initialize Data Ready, as this device can start on either clock edge.

Principle of Data Ready Signal Control by DRRB Input Command

Data Ready Output Signal Reset

Data Ready Output Signal Restart

The Data Ready signal is reset on the DRRB input command's falling edge, on the ECL logical low level (-1.8 V). DRRB may also be tied to $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$ for the Data Ready output signal master reset. As long as DRRB remains at a logical low level, (or tied to $\mathrm{V}_{\text {EE }}=-5 \mathrm{~V}$), the Data Ready output remains at a logical zero and is independent of the external free-running encoding clock.

The Data Ready output signal (DR/DRB) is reset to a logical zero after TRDR.
TRDR is measured between the -1.3 V point of the DRRB input command's falling edge and the zero crossing point of the differential Data Ready output signal (DR/DRB).The Data Ready Reset command may be a pulse of 1 ns minimum time width.

The Data Ready output signal restarts on the DRRB command's rising edge, on the ECL logical high level (-0.8 V).
DRRB may also be grounded, or may float, for normal free-running of the Data Ready output signal. The Data Ready signal's restart sequence depends on the logical level of the external encoding clock, at a DRRB rising edge instant:

- The DRRB's rising edge occurs when the external encoding clock input (CLK/CLKB) is LOW : the Data Ready output's first rising edge occurs after half a clock period on the clock's falling edge, and a TDR delay time of 410 ps , as defined above.
- The DRRB's rising edge occurs when the external encoding clock input (CLK/CLKB) is HIGH : the Data Ready output's first rising edge occurs after one clock period on the clock's falling edge, and a TDR delay time of 410 ps .
Consequently, as the analog input is sampled on the clock's rising edge, the first digitized data corresponding to the first acquisition (N), after a Data Ready signal restart (rising edge), is always strobed by the third rising edge of the Data Ready signal.
The time delay (TD1) is specified between the last point of a change in the differential output data (zero crossing point) to the rising or falling edge of the differential Data Ready signal (DR/DRB) [zero crossing point].

Note: For normal initialization of the Data Ready output signal, the external encoding clock signal frequency and level must be controlled. The minimum encoding clock sampling rate for the ADC is 150 Msps , due to the internal Sample and Hold drop rate. Consequently the clock cannot be stopped.

Timing Diagram

Figure 40. TS83102G0B Timing Diagram (2 Gsps Clock Rate) - Data Ready Reset Clock Held at LOW Level

Figure 41. TS83102G0B Timing Diagram (2 Gsps Clock Rate) - Data Ready Reset Clock Held at HIGH Level

Analog Inputs (VIN/VINB)

Static Issues:
Differential Versus Single-ended (Fullscale Inputs)

The ADC's front-end Track and Hold differential preamplifier has been designed to be entered either in differential or single-ended mode, up to the maximum operating speed of 2.2 Gsps, without affecting dynamic performances (it does not require a single to differential balun).

In a single-ended input configuration, the in-phase full-scale input amplitude is 0.5 V peak-topeak, centered on 0 V (or -2 dBm into 50Ω).

Figure 42. Typical Single-ended Analog Input Configuration (Full-scale)

The analog full-scale input range is 0.5 V peak-to-peak (Vpp), or -2 dBm into the $50 \Omega(100 \Omega$ differential) termination resistor.

In the differential mode input configuration, this means 0.25 V on each input, or $\pm 125 \mathrm{mV}$ around OV . The input common mode is ground.

Figure 43. Differential Inputs Voltage Span (Full-scale)

500 mV
Full-scale Analog Input

The TS83102G0B analog input features a $100 \Omega(\pm 2 \%)$ differential input impedance ($2 \times 50 \Omega / / 0.3 \mathrm{pF}$). Each analog input (VIN,VINB) is terminated by 50Ω single-ended (100Ω differential) resistors ($\pm 2 \%$ matching) soldered into the package cavity.
The transmission lines of the ADC package's analog inputs feature a 50Ω controlled impedance. Each single-ended die input pad capacitance (taking into account the ESD protection) is 0.3 pF . This leads to a global input VSWR (including ball, package and bounding) of less than 1.2 from DC up to 2.5 GHz .

Clock Inputs (CLK/CLKB)

The TS83102G0B clock inputs are designed for either single-ended or differential operation. The device's clock inputs are on-chip $100 \Omega(2 \times 50 \Omega)$ differentially terminated. The termination mid point is AC coupled to ground through a 40 pF on-chip capacitor. Therefore, either ground or different common modes can be used (ECL, LVDS).
Note: As long as V_{IH} remains below the 1 V peak, the ADC clock can be DC coupled. If V_{IH} is higher than the 1V peak, it is necessary to AC couple the signal via 100 pF capacitors, for example, and to bias CLK and CLKB:

- CLK biased to ground via a $10 \mathrm{k} \Omega$ resistor
- CLKB biased to ground via a $10 \mathrm{k} \Omega$ resistor and to V_{EE} via a $100 \mathrm{k} \Omega$ resistor.

However, logic ECL or LVDS square wave clock generators are not recommended because of poor jitter performances. Furthermore, the propagation times of the biasing tees used to offset the common mode voltage to ECL or LVDS levels may not match. A very low-phase noise (low jitter) sinewave input signal should be used for enhanced SNR performance, when digitizing high frequency analog inputs. Typically, when using a sinewave oscillator featuring a $-135 \mathrm{dBc} / \mathrm{Hz}$ phase noise, at 20 KHz from the carrier, a global jitter value (including the ADC and the generator) of less than 200 fs RMS has been measured. If the clock signal frequency is at fixed rates, it is recommended to narrow-band filter the signal to improve jitter performance.
Note: The clock input buffer's 100Ω termination load is on-chip and mid-point AC coupled (40 pF) to the chip's ground plane, whereas the analog input buffer's 100Ω termination is soldered inside the package cavity and mid-point DC coupled to the package ground plane.Therefore, driving the analog input in single-ended mode does not perturb the chip's ground plane (since the termination mid-point is connected to the package ground plane). However, driving the clock input in single-ended mode does perturb the chip's ground plane (since the termination mid-point is AC coupled to the chip's ground plane). Therefore, it is required to drive the clock input in differential mode for minimum chip ground plane perturbation (a 4 dBm maximum operation is recommended). The typical clock input power is 0 dBm . The minimum operating clock input power is -4 dBm (equivalent to a 250 mV minimum swing amplitude), to avoid SNR performance degradations linked to the clock signal's slew rate.
A single to differential balun with sqrt (2) ratio may be used (featuring a 50Ω input impedance with 100Ω differential termination).
For instance:
4 dBm is equivalent to 1 Vpp into 50Ω and 1.4 Vpp into 100Ω termination (secondary). 0 dBm is equivalent to 0.632 Vpp into 50Ω and 0.632 x sqrt (2) $=0.894 \mathrm{Vpp}$ into 100Ω termination (secondary), $\pm 0.226 \mathrm{~V}$ at each clock input.
The recommended clock input's common mode is ground.

Differential Clock Inputs Voltage Levels (0 dBm Typical)

Figure 44. Differential Clock Inputs - Ground Common Mode (Recommended)

Equivalent Singleended Clock Input Voltage Levels (0 dBm Typical)

Figure 45. Single-ended Clock Inputs - Ground Common Mode

Noise Immunity Information

The circuit's noise immunity performance begins at the design level. Efforts have been made on the design to make the device as insensitive as possible to chip environment perturbations, which may result from the circuit itself or be induced by external circuitry (cascode stage's isolation, internal damping resistors, clamps, internal on-chip decoupling capacitors.)
Furthermore, the fully differential operation from the analog input up to the digital output provides enhanced noise immunity by common mode noise rejection. The common mode noise voltage induced on the differential analog and clock inputs is cancelled out by these balanced differential amplifiers.

Moreover, proper active signal shielding has been provided on the chip to reduce the amount of coupled noise on the active inputs. The analog and clock inputs of the TS83102G0B device have been surrounded by ground pins, which must be directly connected to the external ground plane.

Digital Outputs: Termination and Logic Compatibility

Each single-ended output of the TS83102G0B's differential output buffers are internally 50Ω terminated, and feature a 100Ω differential output impedance. The 50Ω resistors are connected to the VPLUSD digital power supply. The TS83102G0B output buffers are designed to drive 50Ω controlled impedance lines properly terminated by a 50Ω resistor. A 10.5 mA bias current flowing alternately into one of the 50Ω resistors when switching, ensures a 0.25 V single-ended voltage drop across the resistor (0.5 V differential).
Each single-ended output transmission line length must be kept identical ($<3 \mathrm{~mm}$). Mismatches in the differential line lengths may cause variations in the output differential common mode.

It is recommended to bypass the midpoint of the differential 100Ω termination with a 47 pF capacitor, so as to avoid common mode perturbations in case of a slight mismatch in the differential output line lengths.

VPLUSD Digital Power Supply Settings

See the recommended termination scenarios in Figures 46. and 47. below.
Note: \quad Since the output buffers feature a 100Ω differential output impedance, it is possible to directly drive high the input impedance storing registers without terminating the 50Ω transmission lines. Timewise, this means that the incident wave reflects at the 50Ω transmission line output and travels back to the 50Ω data output buffer. Since the buffer output impedance is 50Ω, no back reflection occurs and the output swing is doubled.

- For differential ECL digital output levels: $\mathrm{V}_{\text {PLusD }}$ should be supplied with -0.8 V (or connected to ground via a 5Ω resistor to ensure the -0.8 voltage drop).
- For the LVDS digital output logic compatibility: $\mathrm{V}_{\text {PLusD }}$ should be tied to 1.45 V ($\pm 75 \mathrm{mV}$).
If used with the TS81102G0 DMUX, $\mathrm{V}_{\text {PLUSD }}$ can be set to ground.

Figure 46. 50Ω Terminated Differential Outputs (Recommended)


```
VOL typ \(=-1.17 \mathrm{~V}\)
``` VOH typ \(=-0.94 \mathrm{~V}\)

Differential Output Swing:
\(\pm 0.23 \mathrm{~V}=0.46 \mathrm{Vpp}\)
Common Mode Level \(=-1.05 \mathrm{~V}\)

Figure 47. Unterminated Differential Outputs (Optional)

ECL Differential Output Termination Configurations

LVDS Differential Output Loading Configurations

LVDS Logic Compatibility

Figure 48. \(50 \Omega\) Terminated Differential Outputs (Recommended)

Differential Output Swing:
\(\pm 0.23 \mathrm{Vp}=0.46 \mathrm{Vpp}\)
Common Mode Level \(=1.20 \mathrm{~V}\)

Figure 49. Unterminated Differential Outputs (Optional)

Figure 50. LVDS Format (Refer to the IEEE Standards 1596.3-1994): 1125 mV < Common Mode < 1275 mV and 250 mV < Output Swing < 400 mV

\section*{Main Functions of the ADC}

Out-of-range Bit (OR/ORB)

\section*{Bit Error Rate (BER)}

Gray or Binary Output Data Format Selection

\section*{Pattern Generator Function}

\section*{DECB/DIODE:}

Junction Temperature Monitoring and Output Decimation Enable

The out-of-range bit reaches a logical high state when the input exceeds the positive full-scale or falls below the negative full-scale. When the analog input exceeds the positive full-scale, the digital outputs remain at a logical high state with OR/ORB at a logical one. When the analog input falls below the negative full-scale, the digital outputs remain at a logical low state, with OR/ORB at a logical one again.

The TS83102GOB's internal regeneration latches indecisions (for inputs very close to the latches' threshold). This may produce errors in the logic encoding circuitry, leading to large amplitude output errors.
This is because the latches regenerate the internal analog residues into logical states with a finite voltage gain value (Av) within a given positive amount of time \(D(t): A v=\exp (D(t) / t)\), with \(t\) being the positive regeneration time constant feedback.
The TS83102G0B has been designed to reduce the probability of such errors occuring to 10-12 (measured for the converter at 2 Gsps). A standard technique for reducing the amplitude of such errors down to \(\pm 1\) LSB consists in setting the digital output data to gray code format. However, the TS83102GOB has been designed to feature a Bit Error Rate of 10-12 with a binary output format.

To reduce the amplitude of such errors when they occur, it is possible to choose between the binary or gray output data format by storing gray output codes.
Digital data format selection:
- BINARY output format if \(B / G B\) is floating or GND.
- GRAY output format if \(B / G B\) is connected to \(V_{E E}\).

The pattern generator function (enabled by connecting pin A9 PGEB to \(\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}\)) allows you to rapidly check the ADC's operation thanks to a checker board pattern delivered internally to the ADC. Each of the ADC's output bits should toggle from 0 to 1 successively, giving sequences such as 0101010101 and 1010101010 every 2 cycles. This function is disabled when PGEB is left floating or connected to Ground.

The DECB/DIODE pin is provided to enable the decimation function and monitor the die junction temperature.
When \(\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}\), the ADC runs in "decimation by 32 " mode (1 out of 32 data is output from the ADC, thus reducing the data rate by 32).
When the DECB/DIODE pin is left floating or connected to Ground, then the ADC is said to be in a "normal" mode of operation (the output data is not decimated) and can be used for die junction temperature monitoring only.
If you do not intend to use the die junction temperature monitoring function, the DECB/DIODE pin (A10) has to be left either floating or connected to ground.
The decimation function can be used to debug the ADC at initial stages. This function enables you to reduce the ADC output rate by 32 , thus reducing the time of the ADC's debug phase at the maximum speed rate, and is compatible with industrial testing environments.

When this function is active, the ADC outputs only 1 out of 32 bits of data, resulting in a data rate 32 times slower than the clock rate.
Note: The ADC decimation test mode is different from the pattern generator function, which is used to check the ADC's outputs.

\section*{External Configuration Description}

Configuration 1
external configuration allows you to apply the requested levels to activate output data decimation \(\left(\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}\right)\) and at the same time monitor the junction temperature diode (this explains why 7 protection diodes are needed in the other direction, as shown in Figure 51).

Figure 51. Recommended Diode Pin Implementation Allowing for Both Die Junction Temperature Monitoring Function and Decimation Mode

Figure 52. Diode Pin Implementation for Decimation Activation

\section*{Configuration 2:}

Note: In the preliminary specification, Atmel recommends the use of \(2 \times 3\) head-to-tail protection diodes.

Figure 53. Diode Pin Implementation of Die Junction Temperature Monitoring Function Only

Junction Temperature Diode Transfer Function

The forward voltage drop (\(\mathrm{V}_{\text {DIODE }}\)), across the diode component, versus the junction temperature (including the chip's parasitic resistance) is given in the following graph (\(\mathrm{I}_{\text {DIODE }}=1 \mathrm{~mA}\)).

Figure 54. Junction Temperature Versus Diode Voltage for \(\mathrm{I}=1 \mathrm{~mA}\)

\section*{ADC Gain Control}

The ADC gain is adjustable by using pin R9 of the CBGA package. The gain adjust transfer function is shown below.

Figure 55. Gain Adjust Transfer Function

Sampling Delay Adjust
The sampling delay adjust (SDA pin) enables you to fine-tune the sampling ADC aperture delay TAD around its nominal value (160 ps). This functionality is enabled with the SDAEN signal, which is active when tied to \(\mathrm{V}_{\mathrm{EE}}\) and inactive when tied to GND.

This feature is particularly interesting for interleaving ADCs to increase the sampling rate
The variation of the delay around its nominal value as a function of the SDA voltage is shown in Figure 56 (simulation result).

Figure 56. Typical Tuning Range (\(\pm 120 \mathrm{ps}\) for Applied Control Voltage Varying Between -0.5 V and 0.5 V on the SDA Pin)

\section*{TSEV83102G0B Evaluation Board}

Figure 57. Schematic Board View

Note: For more details, refer to the TSEV83102G0BGL Evaluation Board datasheet.

\section*{Applying the TS83102G0B with the TS81102G0 Demultiplexer}

The TS83102G0B output data rate can be demultiplexed 4 or 8 times by using the TS81102G0 (8/10-bit parallel channel 2 Gsps 1:4/1:8 demultiplexer).

The ADC's evaluation of static and dynamic performances can be done using the TSEV83102G0BGL ADC evaluation board, coupled with the TS81102G0 DMUX evaluation board and an acquisition system.
The following block diagram shows a typical characterization set-up.
Figure 58. Characterization Setup

A separate technical specification of the TS81102G0 demultiplexer is available. Refer to this document for further information on the device.

Note: For more information, refer to the "DEMUX and ADCs Application Notes".

\section*{Package Description}

\section*{Hermetic CBGA 152 Outline Dimensions}

Figure 59. Mechanical Description Bottom View

Ceramic body size : \(21 \times 21 \mathrm{~mm}\)
Ball pitch : 1.27 mm
Cofired : Al2O3
Optional: discrete capacitor mounting lands on the top side of the package for extra decoupling.

Figure 60. Isometric View

Figure 61. Package Top View

Figure 62. Package Top View with Optional Discrete Capacitors

Note: For additional decoupling of power supplies, extra land capacitors can be used, as shown in Figure 62. They are not required if following the evaluation board's decoupling recommendations or if using standard power supply sources (performance results of the device have proven to be equivalent without these capacitors).

Figure 63. Cross Section

CBGA 152 21x21 mm Cross Section
10 bits/2 Gsps ADC. External heatsink required

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|c|}
\hline Part Number & Package & Temperature Range & Screening Level & Comments \\
\hline TS83102G0BCGL & CBGA 152 & \begin{tabular}{c}
" C " \\
\(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{c}} ; \mathrm{T}_{J}<90^{\circ} \mathrm{C}\)
\end{tabular} & Standard product & \\
\hline TS83102G0BVGL & CBGA 152 & \(-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{c}} ; \mathrm{T}_{J}<110^{\circ} \mathrm{C}\) & Standard product & \\
\hline TSEV83102G0BGL & CBGA 152 & Ambient & Prototype & \begin{tabular}{c}
Evaluation Board \\
(delivered with a heat \\
sink)
\end{tabular} \\
\hline JTS83102G0-1V1B & Die & Ambient & Visual inspection & \begin{tabular}{c}
UPON REQUEST ONLY \\
(please contact your local \\
Atmel sales office)
\end{tabular} \\
\hline
\end{tabular}

\section*{Atmel Corporation}

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

\section*{Regional Headquarters}

\section*{Europe}

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

\section*{Atmel Operations}

\author{
Memory \\ 2325 Orchard Parkway \\ San Jose, CA 95131, USA \\ Tel: 1(408) 441-0311 \\ Fax: 1(408) 436-4314
}

\section*{Microcontrollers}

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

\section*{RF/Automotive}

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

\author{
Biometrics/Imaging/Hi-Rel MPU/ \\ High Speed Converters/RF Datacom \\ Avenue de Rochepleine \\ BP 123 \\ 38521 Saint-Egreve Cedex, France \\ Tel: (33) 4-76-58-30-00 \\ Fax: (33) 4-76-58-34-80
}

\section*{Literature Requests www.atmel.com/literature}

For more information, please contact: hotline-bdc@gfo.atmel.com

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.
© Atmel Corporation 2004. All rights reserved. Atmel \({ }^{\circledR}\) and combinations thereof, are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.```

