54ABT377 Octal D-Type Flip-Flop with Clock Enable

National Semiconductor

54ABT377 Octal D-Type Flip-Flop with Clock Enable

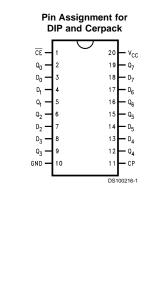
General Description

The 'ABT377 has eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) input loads all flip-flops simultaneously, when the Clock Enable ($\overline{CE})$ is LOW.

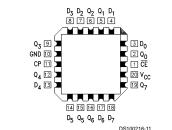
The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. The \overrightarrow{CE} input must be stable only one setup time prior to the LOW-to-HIGH clock transition for predictable operation.

Features

 Clock enable for address and data synchronization applications

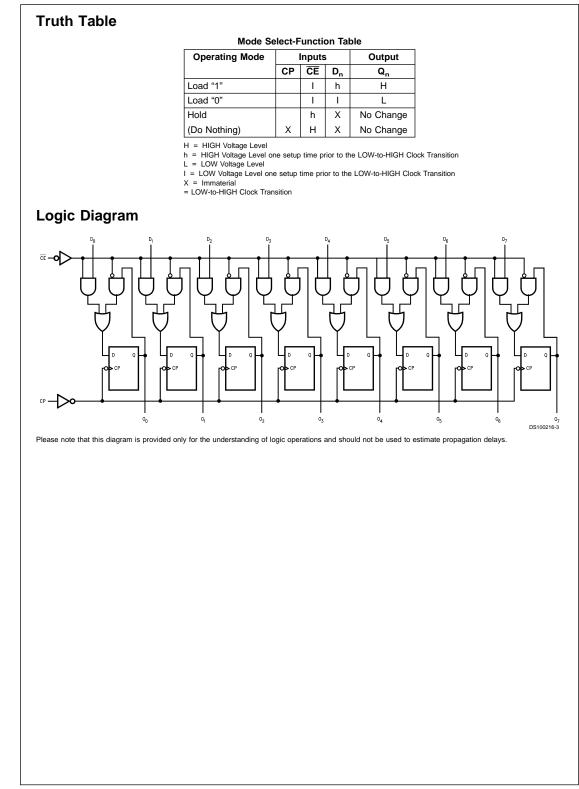

Eight edge-triggered D flip-flops

- Buffered common clock
- See 'ABT273 for master reset version
- See 'ABT373 for transparent latch version
- See 'ABT374 for TRI-STATE[®] version
- Output sink capability of 48 mA, source capability of 24 mA
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability
- Disable time less than enable time to avoid bus contention
- Standard Microcircuit Drawing (SMD) 5962-9314801


Ordering Code:

Military	Package	Package Description		
	Number			
54ABT377J-QML	J20A	20-Lead Ceramic Dual-In-Line		
54ABT377W-QML	W20A	20-Lead Cerpack		
54ABT377E-QML	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C		

Connection Diagram



Pin	Description		
Names			
D ₀ –D ₇	Data Inputs		
CE	Clock Enable (Active LOW)		
CP	Clock Pulse Input		
00-	Data Outputs		

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1998 National Semiconductor Corporation DS100216

www.national.com

www.national.com

2

Absolute Maximum Ratings (Note 1)

Storage Temperature	-65°C to +150°C
0 1	
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	
Ceramic	–55°C to +175°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to +4.75V
in the HIGH State	-0.5V to V _{CC}
Current Applied to Output	
in LOW State (Max)	Twice the rated I_{OL} (mA)

DC Latchup Source Current (Across Comm Operating Range) Over Voltage Latchup

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	–55°C to +125°C
Supply Voltage	
Military	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V/\Delta t)$
Data Input	50 mV/ns
Enable Input	20 mV/ns

–500 mA

 V_{CC} + 4.5V

DC Electrical Characteristics

Symbol	Parameter	Parameter		ABT377		Units	V _{cc}	Conditions
			Min	Тур	Max	1		
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{он}	Output HIGH Voltage	54ABT	2.5			V	Min	I _{он} = –3 mA
		54ABT	2.0					I _{он} = –24 mA
V _{OL}	Output LOW Voltage	54ABT			0.55	V	Min	I _{OL} = 48 mA
I _{IH}	Input HIGH Current				5	μA	Max	V _{IN} = 2.7V (Note 4)
					5			$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current				7	μA	Max	V _{IN} = 7.0V
	Breakdown Test							
I _{IL}	Input LOW Current				-5	μA	Max	V _{IN} = 0.5V (Note 4)
					-5			$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
los	Output Short-Circuit Current		-100		-275	mA	Max	V _{OUT} = 0.0V
I _{CEX}	Output High Leakage Currer	nt			50	μA	Max	$V_{OUT} = V_{CC}$
I _{CCH}	Power Supply Current				50	μA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW
I _{CCT}	Maximum I _{cc} /Input Ou	tputs Enabled						$V_{I} = V_{CC} - 2.1V$
					1.5	mA	Max	Data Input V _I = V _{CC} – 2.1V
								All Others at V_{CC} or GND
I _{CCD}	Dynamic I _{CC}	No Load			0.3	mA/	Max	Outputs Open (Note 3)
						MHz		One bit Toggling, 50% Duty Cycle

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

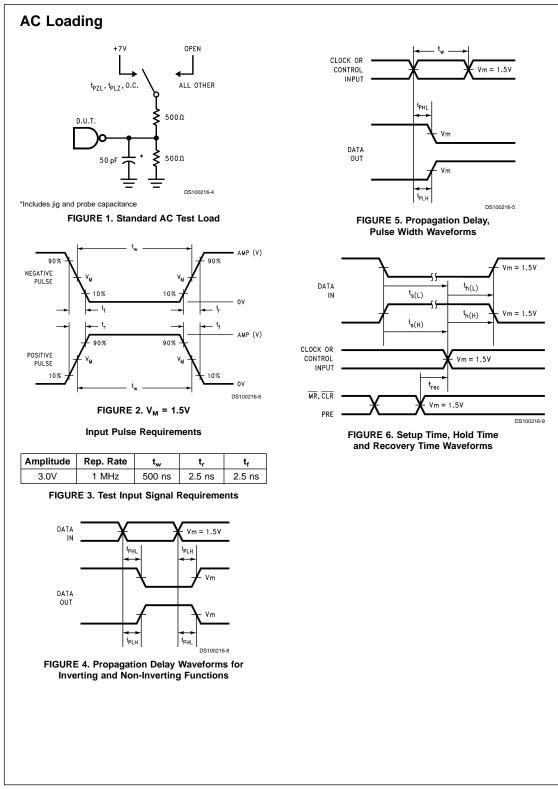
Note 3: For 8 bits toggling, $I_{CCD} < 0.5$ mA/MHz.

Note 4: Guaranteed but not tested.

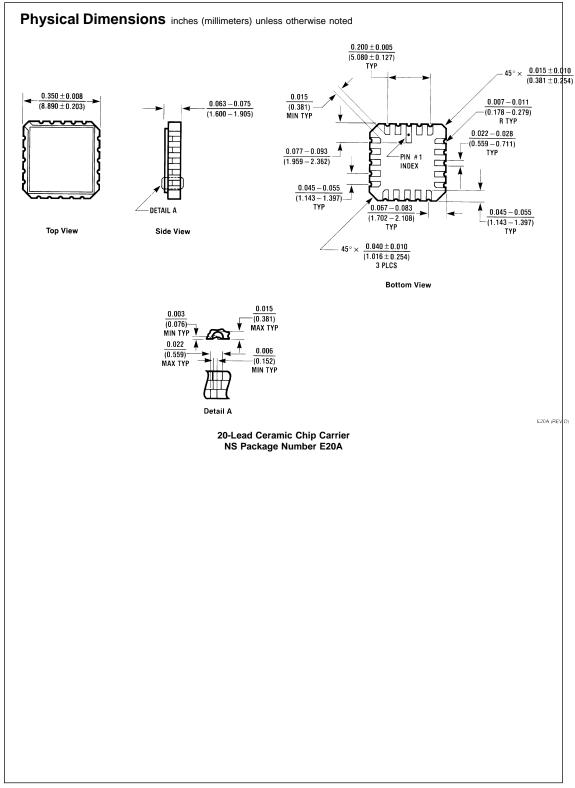
3

Symbol	Parameter	$\frac{54ABT}{T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C}$ $V_{CC} = 4.5V \text{ to } 5.5V$			
		С _L = 50 рF			
		Min	Max		
f _{max}	Max Clock	150		MHz	
	Frequency				
t _{PLH}	Propagation Delay	2.2	6.0	ns	
t _{PHL}	CP to O _n	2.8	6.8		

AC Operating Requirements

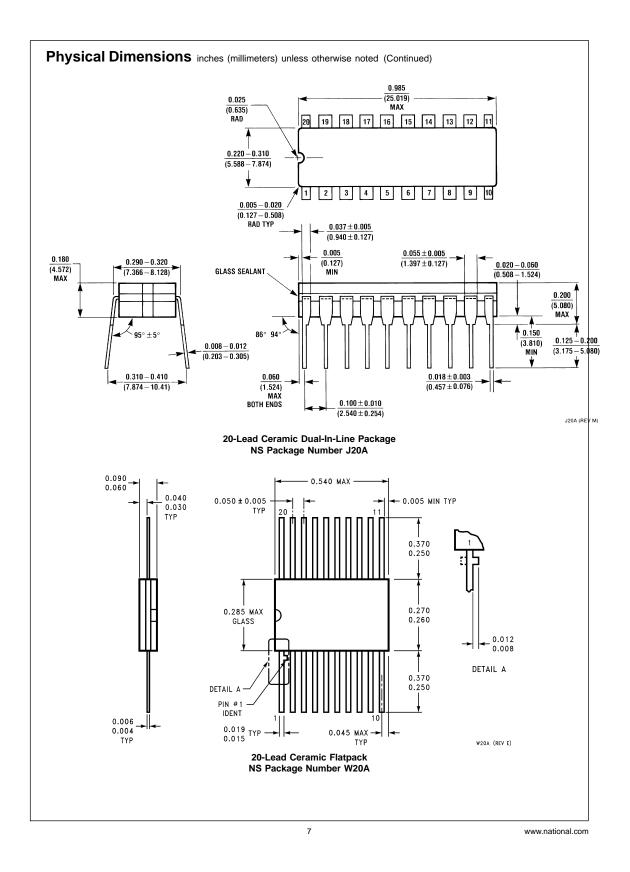

Symbol Parameter		54A T _A = -55°C V _{CC} = 4.5 C _L =	Units	
		Min	Max	
t _s (H)	Setup Time, HIGH	2.0		ns
t _s (L)	or LOW D _n to CP	2.0		
t _h (H)	Hold Time, HIGH	1.8		ns
t _h (L)	or LOW D _n to CP	1.8		
t _s (H)	Setup Time, HIGH	3.0		ns
t _s (L)	or LOW CE to CP	3.0		
t _h (H)	Hold Time, HIGH	1.0		ns
t _h (L)	or LOW CE to CP	1.0		
t _w (H)	Pulse Width, CP,	3.3		ns
t _w (L)	HIGH or LOW	3.3		

Capacitance


Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	5	pF	$V_{CC} = 0V, T_{A} = 25^{\circ}C$
C _{OUT} (Note 5)	Output Capacitance	9	pF	V _{CC} = 5.0V

Note 5: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.

www.national.com



www.national.com

www.national.com

6

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor	National Semiconductor	National Semiconductor	National Semiconducto
Corporation	Europe	Asia Pacific Customer	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5620-6175
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 93 58		
vw.national.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.