

AIGAAS RED MANF260C, MANF280C GREEN MANF460C, MANF480C HIGH EFF. RED MANF960C, MANF980C

PACKAGE DIMENSIONS

NOTES: Dimensions are in mm (inch).
All pins are 0.5 (0.02) diameter
Tolerances are ± 0.25 (0.1) unless otherwise noted.

FEATURES

Easy to read digit
Common anode or cathode
Low power consumption
Highly visible bold segments
High brightness with high contrast
White segments on a grey face
Directly compatible with integrated
circuits
Rugged plastic/epoxy construction

APPLICATIONS

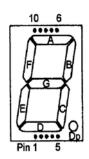
Digital readout displays Instrument panels

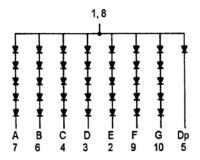
MODEL NUMBERS

Part number	Color	<u>Description</u>
MANF260C	AlGaAs Red	Common Anode; right hand decimal
MANF280C	AIGaAS Red	Common Cathode; right hand decimal
MANF460C	Green	Common Anode; right hand decimal
MANF480C	Green	Common Cathode; right hand decimal
MANF960C	High efficiency red	Common Anode; right hand decimal
MANF980C	High efficiency red	Common Cathode; right hand decima
(For other color o	ntions, contact your local	area Sales Office)

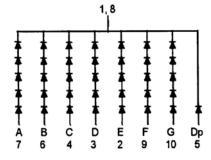
ABSOLUTE MAXIMUM RATING (Ta=25°C unless otherwise specified)

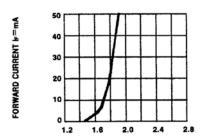
	AlGaAs Red	Green	High Eff. Red	
	MANF	MANF	MANE	
	260C	460C	960C	
Part number	280C	480C	980C	Unit
Continuous forward current (I,				
Per die	25	30	30	mA
Peak forward current per die (I _f) 200 (at f = 10.0 KHz, Duty factor = 1/10)		90	90	mA
Power dissipation (PD) per die	100*	70 *	70*	mW
*Derate linearly from 25°C	0.5	0.33	0.33	mW/°C
Reverse voltage per dice				5V
Operating and Storage temperature rangeLead soldering time (at 1/16 inch from the bottom of lamp)			40°C to +85°C	

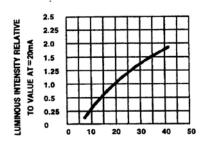

ELECTRO - OPTICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise specified)

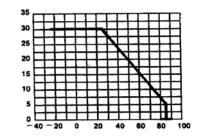

Part number	AlGaAs Red MANF 260C 280C	Green MANF 460C 480C	High Eff. Red MANF 960C 980C	Test Condition
Luminous intensity (ucd) typical	9000	7900	6300	I _F = 20 mA
Forward voltage (V _F) typical	9.0	10.5	10.0	l, = 20 mA
maximum	12.5	14.0	14.0	I, = 20 mA
Peak wavelength (nm)	660	570	635	$I_F = 20 \text{ mA}$
Spectral line half width (nm	1) 20	30	45	$I_F = 20 \text{ mA}$
Reverse breakdown voltag		10	10	I _R =100 uA

PINOUT

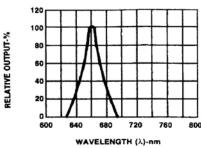

MANFX60C - Common Anode


MANFX80C - Common Cathode

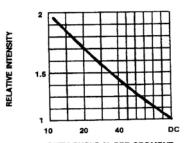



GRAPHICAL DETAIL: AlGaAs Red (T_A = 25°C unless otherwise specified)

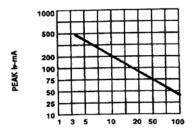
FORWARD VOLTAGE (Vr)-VOLTS
Fig.1 FORWARD CURRENT VS. FORWARD VOLTAGE.



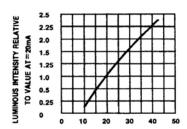
Ir-FORWARD CURRENT-MA
Fig.3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT

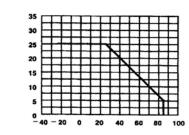


DCMAX-MAXIMUM DC CURRENT-mA

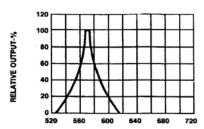

TA AMBIENT TEMPERATURE C Fig.4 MAXIMUM ALLOWABLE DC CURRENT PER SEGMENT VS. A FUNCTION OF AMBIENT TEMPERATURE.


DUTY CYCLE % PER SEGMENT (AVERAGE Is=10mA) Fig.5 LUMINOUS INTENSITY VS. DUTY CYCLE

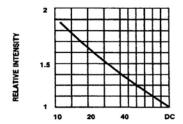

DUTY CYCLE %
Fig. 6 MAX PEAK CURRENT VS. DUTY CYCLE %
(REFRESH RATE !=1 KHz)


GRAPHICAL DETAIL: Green (T_A = 25°C unless otherwise specified)

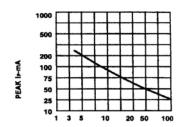
FORWARD VOLTAGE (V_f)-VOLTS Fig.1 FORWARD CURRENT VS. FORWARD VOLTAGE.



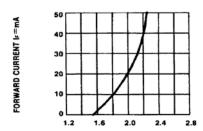
IF-FORWARD CURRENT-MA
Fig.3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT



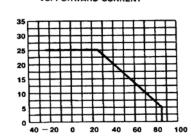
DCMAX-MAXIMUM DC CURRENT-MA


TA AMBIENT TEMPERATURE ©
Fig.4 MAXIMUM ALLOWABLE DC CURRENT PER
SEGMENT CS. A FUNCTION OF AMBIENT
TEMPERATURE.

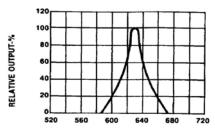
WAVELENGTH (λ)-nm Fig.2 SPECTRAL RESPONSE


DUTY CYCLE % PER SEGMENT
(AVERAGE I=10mA)
Fig.5 LUMINOUS INTENSITY VS. DUTY CYCLE

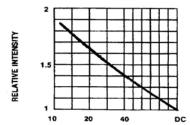

DUTY CYCLE %
Fig. 6 MAX PEAK CURRENT VS. DUTY CYCLE %
(REFRESH RATE !=1 KHz)


GRAPHICAL DETAIL: High Efficiency Red (T_A = 25°C unless otherwise specified)

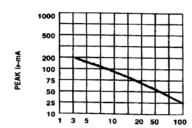
FORWARD VOLTAGE (V_F)-VOLTS
Fig.1 FORWARD CURRENT VS. FORWARD VOLTAGE.



IF-FORWARD CURRENT-MA
FIG.3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT



IDCMAX-MAXIMUM DC CURRENT-mA


TA AMBIENT TEMPERATURE C Fig.4 MAXIMUM ALLOWABLE DC CURRENT PER SEGMENT VS. A FUNCTION OF AMBIENT TEMPERATURE.

WAVELENGTH (λ)-nm Fig.2 SPECTRAL RESPONSE

DUTY CYCLE % PER SEGMENT
(AVERAGE Ir=10mA)
Fig.5 LUMINOUS INTENSITY VS. DUTY CYCLE

DUTY CYCLE %
Fig. 6 MAX PEAK CURRENT VS. DUTY CYCLE %
(REFRESH RATE (=1 KHz)

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TOANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.