Mobile DDR SDRAM # MT46H8M16LF - 2 Meg x 16 x 4 Banks For the latest data sheet, refer to Micron's Web site: www.micron.com/mobile # **Features** - $VDD = +1.8 \pm 0.1 \text{V}, VDDQ = +1.8 \pm 0.1 \text{V}$ - Bidirectional data strobe per byte of data (DQS) - Internal, pipelined double data rate (DDR) architecture; two data accesses per clock cycle - Differential clock inputs (CK and CK#) - Commands entered on each positive CK edge - · DQS edge-aligned with data for READs; centeraligned with data for WRITEs - Four internal banks for concurrent operation - Data masks (DM) for masking write data-one mask per byte - Programmable burst lengths: 2, 4, or 8 - Concurrent auto precharge option is supported - Auto refresh and self refresh modes - 1.8V LVCMOS-compatible inputs - On-chip temperature sensor to control refresh rate - Partial-array self refresh (PASR) - Selectable output drive (DS) - Clock stop capability | Options | Marking | |---|---------| | • VDD/VDDQ | | | - 1.8V/1.8V | Н | | Configuration | | | - 8 Meg x 16 (2 Meg x 16 x 4 banks) | 8M16 | | Plastic package | | | - 60-Ball VFBGA (lead-free) | CF | | 8mm x 10mm | | | • Timing – cycle time | | | - 7.5ns @ CL = 3 | -75 | | - 10ns @ CL = 3 | -10 | | Operating temperature range | | | Commercial (0° to +70°C) | None | | Industrial (-40°C to +85°C) | IT | | | | Figure 1: 60-Ball VFBGA Assignment (Top View) Table 1: **Configuration Addressing** | Architecture | 8 Meg x 16 | |-------------------|----------------| | Configuration | 2 Meg x 16 x 4 | | Refresh count | 4K | | Row addressing | 4K (A0-A11) | | Bank addressing | 4 (BA0, BA1) | | Column addressing | 1K (A0-A8) | Table 2: **Key Timing Parameters** | Spood | Clock Rate | | e Data- | | | |----------------|------------|--------|---------|-------|------------| | Speed
Grade | CL = 3 | CL = 2 | Window | Time | DQ
Skew | | -75 | 133 MHz | - | 2.4ns | 6.0ns | 0.6ns | | -10 | 104 MHz | - | 3.1ns | 7.0ns | 0.7ns | | -75 | - | 83 MHz | 4.65ns | 6.5ns | 0.6ns | | -10 | _ | 67 MHz | 5.8ns | 7.0ns | 0.7ns | PDF: 09005aef822b7e27/Source: 09005aef822b7dd6 MT46H8M16LFB_1.fm - Rev. A 5/06 EN · Design revision ‡Products and specifications discussed herein are for evaluation and reference purposes only and are subject to change by Micron without notice. Products are only warranted by Micron to meet Micron's production data sheet specifications. :B # 128Mb: 8 Meg x 16 Mobile DDR SDRAM Table of Contents # **Table of Contents** | Features | 1 | |----------------------------------|-----| | Options | 1 | | Marking | 1 | | FBGA Part Marking Decoder | | | General Description | | | Ball Description | | | Functional Description | | | Initialization | 8 | | Register Definition | 9 | | Mode Registers | | | Standard Mode Register | | | Extended Mode Register | | | Commands | | | DESELECT | | | NO OPERATION (NOP) | | | LOAD MODE REGISTER | | | ACTIVE | | | READ | .16 | | WRITE | .16 | | PRECHARGE | .16 | | Auto Precharge | .17 | | BURST TERMINATE | .17 | | AUTO REFRESH | .17 | | SELF REFRESH | .17 | | Operations | .19 | | Bank/row Activation | .19 | | READs | .20 | | WRITEs | .29 | | PRECHARGE | .40 | | Power-Down (CKE Not Active) | .40 | | Power-Down (Active or Precharge) | .41 | | Truth Tables | | | Electrical Specifications | .47 | | Notes | .52 | | Timing Diagrams | .55 | | Package Dimensions | .66 | # 128Mb: 8 Meg x 16 Mobile DDR SDRAM List of Figures # **List of Figures** | Figure 1: | 60-Ball VFBGA Assignment (Top View) | | |------------|---|----| | Figure 2: | Functional Block Diagram (8 Meg x 16) | .6 | | Figure 3: | Standard Mode Register Definition | 0 | | Figure 4: | CAS Latency | 12 | | Figure 5: | Extended Mode Register | 13 | | Figure 6: | Clock Stop Mode | 14 | | Figure 7: | Activating a Specific Row in a Specific Bank | 9 | | Figure 8: | Example: Meeting ${}^{t}RCD$ (${}^{t}RRD$) MIN When 2 < ${}^{t}RCD$ (${}^{t}RRD$) MIN/ ${}^{t}CK \le 3 \dots 2$ | 0 | | Figure 9: | READ Command | 21 | | Figure 10: | READ Burst | | | Figure 11: | Consecutive READ Bursts | | | Figure 12: | Nonconsecutive READ Bursts | 24 | | Figure 13: | Random READ Accesses | 25 | | Figure 14: | Terminating a READ Burst | 26 | | Figure 15: | READ-to-WRITE | | | Figure 16: | READ-to-PRECHARGE | 85 | | Figure 17: | WRITE Command | 30 | | Figure 18: | WRITE Burst | 31 | | Figure 19: | Consecutive WRITE-to-WRITE | 32 | | Figure 20: | Nonconsecutive WRITE-to-WRITE | 32 | | Figure 21: | Random WRITE Cycles | | | Figure 22: | WRITE-to-READ – Uninterrupting | 34 | | Figure 23: | WRITE-to-READ – Interrupting | 35 | | Figure 24: | WRITE-to-READ - Odd Number of Data, Interrupting | 36 | | Figure 25: | WRITE-to-PRECHARGE – Uninterrupting | 37 | | Figure 26: | WRITE-to-PRECHARGE – Interrupting | 38 | | Figure 27: | WRITE-to-PRECHARGE - Odd Number of Data, Interrupting | 39 | | Figure 28: | PRECHARGE Command | 10 | | Figure 29: | Power-Down Command (Active or Precharge) | 11 | | Figure 30: | Power-Down (Active or Precharge) | 12 | | Figure 31: | Typical Self Refresh Current vs. Temperature | 19 | | Figure 32: | x16 Data Output Timing – ^t DQSQ, ^t QH, and Data Valid Window | 55 | | Figure 33: | x16 Data Output Timing – ^t DQSQ, ^t QH, and Data Valid Window | 6 | | Figure 34: | Data Input Timing | 56 | | Figure 35: | Initialize and Load Mode Registers5 | 57 | | Figure 36: | Power-Down Mode (Active or Precharge) | 58 | | Figure 37: | Auto Refresh Mode | 59 | | Figure 38: | Self Refresh Mode6 | | | Figure 39: | Bank Read - Without Auto Precharge6 | | | Figure 40: | Bank Read - With Auto Precharge6 | 32 | | Figure 41: | Bank Write - Without Auto Precharge6 | 33 | | Figure 42: | Bank Write - With Auto Precharge6 | 34 | | Figure 43: | Write – DM Operation | 35 | | Figure 44: | 60-Ball VFBGÂ Package | 36 | # 128Mb: 8 Meg x 16 Mobile DDR SDRAM List of Tables # **List of Tables** | Table 1: | Configuration Addressing | 1 | |-----------|--|----| | Table 2: | Key Timing Parameters | | | Table 3: | 128Mb Mobile DDR SDRAM Part Numbers | | | Table 4: | 60-Ball VFBGA Ball Description | | | Table 7: | Truth Table - Commands | | | Table 8: | Truth Table – DM Operation | | | Table 9: | Truth Table – CKE | | | Table 10: | Truth Table – Current State Bank n - Command to Bank n | 43 | | Table 11: | Truth Table – Current State Bank n - Command to Bank m | 45 | | Table 12: | Absolute Maximum DC Ratings | 47 | | Table 13: | AC/DC Electrical Characteristics and Operating Conditions | | | Table 14: | Capacitance | 48 | | Table 15: | IDD Specifications and Conditions | 48 | | Table 16: | Electrical Characteristics and Recommended AC Operating Conditions | | 128Mb: 8 Meg x 16 Mobile DDR SDRAM FBGA Part Marking Decoder Table 3: 128Mb Mobile DDR SDRAM Part Numbers | Part Number | Configuration | I/O Drive Level | Temperature Option | |----------------------|---------------|--------------------|--------------------| | MT46H8M16LFCF-75:B | 8 Meg x 16 | Programmable drive | 0°C to +70°C | | MT46H8M16LFCF-75IT:B | 8 Meg x 16 | Programmable drive | -40°C to +85°C | | MT46H8M16LFCF-10:B | 8 Meg x 16 | Programmable drive | 0°C to +70°C | | MT46H8M16LFCF-10IT:B | 8 Meg x 16 | Programmable drive | -40°C to +85°C | # FBGA Part Marking Decoder Due to space limitations, FBGA-packaged components have an abbreviated part marking that is different from the part number. Micron's new FBGA Part Marking Decoder makes it easier to understand this part marking. Visit the Web site at www.micron.com/decoder. # **General Description** The 128Mb Mobile DDR SDRAM is a high-speed CMOS, dynamic random-access memory containing 134,217,728 bits. It is internally configured as a quad-bank DRAM. Each of the 33,554,432-bit banks is organized as 4,096 rows by 512 columns by 16 bits. The 128Mb Mobile DDR SDRAM uses a double data rate architecture to achieve high-speed operation. The double data rate architecture is essentially a 2n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O balls. A single read or write access for the 128Mb DDR SDRAM effectively consists of a single 2n-bit wide, one-clock-cycle data transfer at the internal DRAM core and two corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O balls. A bidirectional data strobe (DQS) is transmitted externally, along with data, for use in data capture at the receiver. DQS is a strobe transmitted by the Mobile DDR SDRAM during READs and by the memory controller during WRITEs. DQS is edge-aligned with data for READs and center-aligned with data for WRITEs. The x16 offering has two data strobes, one for the lower byte and one for the upper byte. The 128Mb Mobile DDR SDRAM operates from a differential clock (CK and CK#); the crossing of CK going HIGH and CK# going LOW will be referred to as the positive edge of CK. Commands (address and control signals) are registered at every positive edge of CK. Input data is registered on both edges of DQS, and output data is referenced to both edges of DQS, as well as to both edges of CK. Read and write accesses to the Mobile DDR SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed. The address bits registered coincident with the READ or WRITE command are used to select the bank and the starting column location for the burst access. The Mobile DDR SDRAM provides for programmable READ or WRITE burst lengths of 2, 4, or 8. An auto precharge function may be enabled to
provide a self-timed row precharge that is initiated at the end of the burst access. As with standard SDR SDRAMs, the pipelined, multibank architecture of Mobile DDR SDRAMs allows for concurrent operation, thereby providing high effective bandwidth by hiding row precharge and activation time. ## 128Mb: 8 Meg x 16 Mobile DDR SDRAM **General Description** An auto refresh mode is provided, along with a power saving power-down mode. Self refresh mode offers temperature compensation through an on-chip temperature sensor and PASR, which allow users to achieve additional power saving. The temperature sensor is enabled by default and the PASR can be programmed through the extended mode register. - Notes: 1. Throughout the data sheet, the various figures and text refer to DQs as "DQ." The DQ term is to be interpreted as any and all DQ collectively, unless specifically stated otherwise. Additionally, the x16 is divided into two bytes—the lower byte and upper byte. For the lower byte (DQ0-DQ7) DM refers to LDM and DQS refers to LDQS; and for the upper byte (DQ8-DQ15) DM refers to UDM and DQS refers to UDQS. - 2. Complete functionality is described throughout the document and any page or diagram may have been simplified to convey a topic and may not be inclusive of all requirements. - 3. Any specific requirement takes precedence over a general statement. Figure 2: Functional Block Diagram (8 Meg x 16) # 128Mb: 8 Meg x 16 Mobile DDR SDRAM Ball Description # **Ball Description** Table 4: 60-Ball VFBGA Ball Description | Ball Numbers | Symbol | Туре | Description | |--|--------------------|--------|---| | G2, G3 | CK, CK# | Input | Clock: CK is the system clock input. CK and CK# are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of CK#. Input and output data is referenced to the crossing of CK and CK# (both directions of the crossing). | | G1 | CKE | Input | Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock signals, input buffers, and output drivers. Taking CKE LOW allows PRECHARGE power-down and SELF REFRESH operations (all banks idle), or ACTIVE power-down (row active in any bank). CKE is synchronous for all functions expect SELF REFRESH exit. All input buffers (except CKE) are disabled during power-down and self refresh modes. | | H7 | CS# | Input | Chip select: CS# enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when CS# is registered HIGH. CS# provides for external bank selection on systems with multiple banks. CS# is considered part of the command code. | | G9, G8, G7 | RAS#, CAS#,
WE# | Input | Command inputs: RAS#, CAS#, and WE# (along with CS#) define the command being entered. | | F2, F8 | UDM, LDM | Input | Input data mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH along with that input data during a WRITE access. DM is sampled on both edges of DQS. Although DM balls are input-only, the DM loading is designed to match that of DQ and DQS balls. For the x16, LDM is DM for DQ0–DQ7 and UDM is DM for DQ8–DQ15. | | H8, H9 | BA0, BA1 | Input | Bank address inputs: BAO and BA1 define to which bank an ACTIVE, READ, WRITE, or PRECHARGE command is being applied. BAO and BA1 also determine which mode register (standard mode register or extended mode register) is loaded during a LOAD MODE REGISTER command. | | J8, J9, K7, K8, K2,
K3, J1, J2, J3, J7,
H1, H2 | A0-A11 | Input | Address inputs: Provide the row address for ACTIVE commands, and the column address and auto precharge bit (A10) for READ or WRITE commands, to select one location out of the memory array in the respective bank. During a PRECHARGE command, A10 determines whether the PRECHARGE applies to one bank (A10 LOW, bank selected by BA0, BA1) or all banks (A10 HIGH). The address inputs also provide the op-code during a LOAD MODE REGISTER command. BA0 and BA1 define which mode register (mode register or extended mode register) is loaded during the LOAD MODE REGISTER command. | | A8, B7, B8, C7, C8,
D7, D8, E7 E3, D2,
D3, C2, C3, B2, B3,
A2 | DQ0-DQ15 | I/O | Data input/output: Data bus for x16. | | E2 | UDQS, LDQS | I/O | Data strobe: Output with read data, input with write data. DQS is edgealigned with read data, centered in write data. It is used to capture data. | | A7, B1, C9, D1, E9 | VDDQ | Supply | DQ power supply: $\pm 1.8 \pm 0.1$ V. Isolated on the die for improved noise immunity. | | A3, B9, C1, D9, E1 | VssQ | Supply | DQ ground: Isolated on the die for improved noise immunity. | | A9, F9, K9 | VDD | Supply | Power supply: +1.8 ±0.1V. | | A1, F1, K1 | Vss | Supply | Ground. | | F3, F7, H3 | NC | Input | Reserved for future upgrades. | # 128Mb: 8 Meg x 16 Mobile DDR SDRAM Functional Description # **Functional Description** The 128Mb Mobile DDR SDRAM is a high-speed CMOS, dynamic random-access memory containing 134,217,728-bits. It is internally configured as a quad-bank DRAM. Each of the 33,554,432-bit banks is organized as 4,096 rows by 512 columns by 16 bits. The 128Mb Mobile DDR SDRAM uses a double data rate architecture to achieve high-speed operation. The double data rate architecture is essentially a 2n-prefetch architecture, with an interface designed to transfer two data words per clock cycle at the I/O balls. single read or write access for the 128Mb Mobile DDR SDRAM consists of a single 2n-bit wide, one-clock-cycle data transfer at the internal DRAM core and two corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O balls. Read and write accesses to the Mobile DDR SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA0, BA1 select the bank; A0–A11 select the row). The address bits registered coincident with the READ or WRITE command are used to select the starting column location for the burst access. It should be noted that the DLL signal that is typically used on standard DDR devices is not necessary on the Mobile DDR SDRAM. It has been omitted to save power. Prior to normal operation, the Mobile DDR SDRAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command descriptions and device operation. ### Initialization Mobile DDR SDRAMs must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operation. If there is an interruption to the device power, the initialization routine should be followed to ensure proper functionality of the Mobile DDR SDRAM. The clock stop feature is not available until the device has been properly initialized. To properly initialize the Mobile DDR SDRAM, this sequence must be followed: - 1. To prevent device latch-up, it is recommended the core power (VDD) and I/O power (VDDQ) be from the same power source and brought up simultaneously. If separate power sources are used, VDD must lead VDDQ. - 2. Once power supply voltages are stable and the CKE has been driven HIGH, it is safe to apply the clock. - 3. Once the clock is stable, a $200\mu s$ (minimum) delay is required by the Mobile DDR SDRAM prior to applying an executable command. During this time, NOP or DESE-LECT commands must be issued on the command bus. - Issue a PRECHARGE ALL command. - 5. Issue NOP or DESELECT commands for at least ^tRP time. - 6. Issue an AUTO REFRESH command followed by NOP or DESELECT commands for at least ^tRFC time. Issue a second AUTO REFRESH command followed by NOP or DESELECT commands for at least ^tRFC time. As part of the individualization sequence, two AUTO REFRESH commands must be issued. Typically, both of these commands are issued at this stage as described above. Alternately, the second AUTO REFRESH command and NOP or DESELECT sequence can be issued between steps 10 and 11. - 7. Using the LOAD MODE REGISTER command, load the standard mode register as desired. - 8. Issue NOP or DESELECT commands for at least ^tMRD time. - 9. Using the LOAD MODE REGISTER command, load the extended mode register to the desired operating modes. Note that the sequence in which the standard and extended mode registers are programmed is not critical. - 10. Issue NOP or DESELECT commands for at least ^tMRD time. - 11. The Mobile DDR SDRAM has been properly initialized and is ready to receive any valid command. # **Register Definition** # **Mode Registers** The mode registers are used to define the specific mode of operation of the Mobile DDR SDRAM. There are two mode registers used to specify the operational characteristics of the device. The standard mode register, which exists for all SDRAM devices, and the extended mode register, which exists on all Mobile SDRAM devices. # Standard Mode Register The standard mode register definition includes the selection of a burst length, a burst type, a CAS latency and an operating mode, as shown in Figure 3 on page 10. The standard mode register is programmed via the LOAD MODE REGISTER
SET command (with BA0 = 0 and BA1 = 0) and will retain the stored information until it is programmed again. Reprogramming the standard mode register will not alter the contents of the memory, provided it is performed correctly. The mode register must be loaded (reloaded) when all banks are idle and no bursts are in progress, and the controller must wait the specified time before initiating the subsequent operation. Violating either of these requirements will result in unspecified operation. Mode register bits A0–A2 specify the burst length, A3 specifies the type of burst (sequential or interleaved), A4–A6 specify the CAS latency, and A7–A11 specify the operating mode Note: Standard refers to meeting JEDEC-standard mode register definitions. ### **Burst Length** Read and write accesses to the Mobile DDR SDRAM are burst oriented, with the burst length being programmable, as shown in Figure 3 on page 10. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 2, 4, or 8 are available for both the sequential and the interleaved burst types. Reserved states should not be used, as unknown operation or incompatibility with future versions may result. When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block, meaning that the burst will wrap until a boundary is reached. The block is uniquely selected by A1-Ai when BL=2, by A2-Ai when BL=4, by A3-Ai when BL=8 (where Ai is the most significant column address bit for a given configuration). The remaining (least significant) address bit(s) is (are) used to select the starting location within the block. The programmed burst length applies to both READ and WRITE bursts. ### **Burst Type** Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the burst type and is selected via bit M3. The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address. See Table 5 on page 11 for more information. ## **READ Latency** The READ latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first bit of output data. The latency can be set to 2 or 3 clocks, as shown in Figure 3 on page 10. For CL = 3, if the READ command is registered at clock edge n, then the data will nominally be available at $(n + 2 \operatorname{clocks} + {}^{t}AC)$. For CL = 2, if the READ command is registered at clock edge n, then the data will be nominally be available at $(n + 1 \operatorname{clock} + {}^{t}AC)$. Reserved states should not be used as unknown operation or incompatibility with future versions may result. Figure 3: Standard Mode Register Definition ## Table 5: Burst Definition | Burst | | Starting | | Order of Accesses Within a Burst | | | | |--------|-------|----------------|-----------------|----------------------------------|-----------------|-------------------|--------------------| | Length | Co | Column Address | | Column Add | | Type = Sequential | Type = Interleaved | | 2 | | | A0 | | | | | | | 1 | | 0 | 0-1 | 0-1 | | | | | | | 1 | 1-0 | 1-0 | | | | 4 | | A1 | A0 | | | | | | | | 0 | 0 | 0-1-2-3 | 0-1-2-3 | | | | | | 0 | 1 | 1-2-3-0 | 1-0-3-2 | | | | | 1 | | 0 | 2-3-0-1 | 2-3-0-1 | | | | | 1 1 | | 1 | 3-0-1-2 | 3-2-1-0 | | | | 8 | A2 | A1 | A 0 | | | | | | | 0 | 0 | 0 | 0-1-2-3-4-5-6-7 | 0-1-2-3-4-5-6-7 | | | | | 0 | 0 | 1 | 1-2-3-4-5-6-7-0 | 1-0-3-2-5-4-7-6 | | | | | 0 | 1 | 0 | 2-3-4-5-6-7-0-1 | 2-3-0-1-6-7-4-5 | | | | | 0 | 1 | 1 | 3-4-5-6-7-0-1-2 | 3-2-1-0-7-6-5-4 | | | | | 1 | 1 0 0 | | 4-5-6-7-0-1-2-3 | 4-5-6-7-0-1-2-3 | | | | | 1 0 1 | | 5-6-7-0-1-2-3-4 | 5-4-7-6-1-0-3-2 | | | | | | 1 | 1 | 0 | 6-7-0-1-2-3-4-5 | 6-7-4-5-2-3-0-1 | | | | | 1 | 1 | 1 | 7-0-1-2-3-4-5-6 | 7-6-5-4-3-2-1-0 | | | ### Notes: - 1. For BL = 2, A1–A*i* select the two-data-element block; A0 selects the first access within the - 2. For BL = 4, A2–A*i* select the four-data-element block; A0–A1 select the first access within the block. - 3. For BL = 8, A3-A*i* select the eight-data-element block; A0-A2 select the first access within the block. - 4. Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block. - 5. Ai =the most significant column address bit for a given configuration. ### Table 6: CAS Latency | | Allowable Operating Clock Frequency (MHz) | | | | |-------|---|--------|--|--| | Speed | CL = 2 | CL = 3 | | | | -75 | f ≤83 | f ≤133 | | | | -10 | f ≤67 f ≤104 | | | | Figure 4: CAS Latency Notes: - 1. BL = 4 in the cases shown. - 2. Shown with nominal ^tAC and nominal ^tDSDO. ### **Operating Mode** The normal operating mode is selected by issuing a LOAD MODE REGISTER SET command with bits A7–A11 each set to zero, and bits A0–A6 set to the desired values. All other combinations of values for A7–A11 are reserved for future use and/or test modes. Test modes and reserved states should not be used because unknown operation or incompatibility with future versions may result. # **Extended Mode Register** The extended mode register controls functions specific to low power operation. These additional functions include drive strength, temperature-compensated self refresh (TCSR), and PASR. This device has default values for the extended mode register (if not programmed, the device will operate with the default values – PASR = Full Array, DS = Full Drive). ## **Temperature-Compensated Self Refresh (TCSR)** On this version of the Mobile DDR SDRAM, a temperature sensor is implemented for automatic control of the self refresh oscillator on the device. Programming of the TCSR bits will have no effect on the device. The self refresh oscillator will continue refresh at the factory programmed optimal rate for the device temperature. ### Partial-Array Self Refresh (PASR) For further power savings during SELF REFRESH, the PASR feature allows the controller to select the amount of memory that will be refreshed during SELF REFRESH. The refresh options are as follows: - Full array: banks 0, 1, 2, and 3 - Half array: banks 0 and 1 - · Quarter array: bank 0 WRITE and READ commands can still occur during standard operation, but only the selected banks will be refreshed during SELF REFRESH. Data in banks that are disabled will be lost. ## **Output Driver Strength** Because the Mobile DDR SDRAM is designed for use in smaller systems that are mostly point to point, an option to control the drive strength of the output buffers is available. Drive strength should be selected based on the expected loading of the memory bus. Bits A5 and A6 of the extended mode register can be used to select the driver strength of the DQ outputs. There are three allowable settings for the output drivers (25 ohm internal impedance, 55 ohm internal impedance, and 80 ohm internal impedance). Figure 5: Extended Mode Register Notes: 1. E13 and E12 (BA1 and BA0) must be "1, 0" to select the extended mode register (vs. the standard mode register). 2. On-chip temperature sensor is used in place of TCSR. Setting these bits will have no effect. ### **Stopping the External Clock** One method of controlling the power efficiency in applications is to throttle the clock which controls the SDRAM. There are two basic ways to control the clock: - 1. Change the clock frequency, when the data transfers require a different rate of speed. - 2. Stopping the clock altogether. Both of these are specific to the application and its requirements and both allow power savings due to possible less transitions on the clock path. The Mobile DDR SDRAM allows the clock to change frequency during operation, only if all the timing parameters are met with respect to that change and all refresh requirements are satisfied. The clock can also be stopped all together, if there are no data accesses in progress, either WRITEs or READs that would be effected by this change; i.e., if a WRITE or a READ is in progress the entire data burst must be through the pipeline prior to stopping the clock. CKE must be held HIGH with CK = LOW and CK# = HIGH for the full duration of the clock stop mode. One clock cycle and at least one NOP is required after the clock is restarted before a valid command can be issued. Figure 6 on page 14 illustrates the clock stop mode. It is recommended that the Mobile DDR SDRAM should be in a precharged state if any changes to the clock frequency are expected. This will eliminate timing violations that may otherwise occur during normal operational accesses. Figure 6: Clock Stop Mode - 1. Prior to Ta1 the device is in clock stop mode. To exit, at least one NOP is required before any valid command. - 2. Any valid command is allowed, device is not in clock suspend mode. - 3. Any DRAM operation already in process must be completed before entering clock stop mode. This includes [†]RCD, [†]RPC, [†]MRD, [†]WR, all data-out for READ bursts. This means the DRAM must be either in the idle or precharge state before clock suspend mode can be entered. - 4. To enter and maintain a clock stop mode: CK = LOW, CK# = HIGH, CKE = HIGH. ## 128Mb: 8 Meg x 16 Mobile DDR SDRAM Commands ## Commands Table 7 and Table 8 provide quick references of available commands. This is followed by a written description of each command. Three additional Truth Tables (Table 9 on page 42, Table 10 on page 43, and Table 11 on page 45) provide CKE commands and current/next state information. Table 7: **Truth Table - Commands** Notes 1 and 11 apply to all commands | Name (Function) | CS# | RAS# | CAS# | WE# | ADDR | Notes | |---|-----|------|------|-----|----------|-------| | DESELECT (NOP) | Н | Х | Х | Х | Х | 9 | | NO OPERATION (NOP) | L | Н | Н | Н | Х | 9 | | ACTIVE (select bank
and activate row) | L | L | Н | Н | Bank/Row | 3 | | READ (Select bank and column, and start READ burst) | L | Н | L | Н | Bank/Col | 4 | | WRITE (Select bank and column, and start WRITE burst) | L | Н | L | L | Bank/Col | 4 | | BURST TERMINATE | L | Н | Н | L | Х | 8, 10 | | PRECHARGE (deactivate row in bank or banks) | L | L | Н | L | Code | 5 | | AUTO REFRESH (refresh all or single bank) or SELF REFRESH (enter self refresh mode) | L | L | L | Н | Х | 6, 7 | | LOAD MODE REGISTER (standard or extended mode registers) | L | L | L | L | Op-Code | 2 | - Notes: 1. CKE is HIGH for all commands shown except SELF REFRESH. - 2. BA0-BA1 select either the standard mode register or the extended mode register (BA0 = 0, BA1 = 0 select the standard mode register; BA0 = 1, BA1 = 0 select extended mode register; other combinations of BA0-BA1 are reserved). A0-A11 provide the op-code to be written to the selected mode register. - 3. BA0-BA1 provide bank address and A0-A11 provide row address. - 4. BA0-BA1 provide bank address; A0-A8 provide column address; A10 HIGH enables the auto precharge feature (nonpersistent), and A10 LOW disables the auto precharge feature. - 5. A10 LOW: BA0-BA1 determine which bank is precharged. A10 HIGH: all banks are precharged and BA0-BA1 are "Don't Care." - 6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW. - 7. Internal refresh counter controls row addressing; all inputs and I/Os are "Don't Care" except for CKE. - 8. Applies only to read bursts with auto precharge disabled; this command is undefined (and should not be used) for READ bursts with auto precharge enabled and for WRITE bursts. - 9. DESELECT and NOP are functionally interchangeable. - 10. This command is a BURST TERMINATE if CKE is HIGH. - 11. All states and sequences not shown are reserved and/or illegal. #### Table 8: **Truth Table - DM Operation** | Name (Function) | DM | DQ | |-----------------|----|-------| | Write enable | L | Valid | | Write inhibit | Н | Х | Used to mask write data; provided coincident with corresponding data. Note: # 128Mb: 8 Meg x 16 Mobile DDR SDRAM Commands ### **DESELECT** The DESELECT function (CS# HIGH) prevents new commands from being executed by the Mobile DDR SDRAM. The Mobile DDR SDRAM is effectively deselected. Operations already in progress are not affected. # **NO OPERATION (NOP)** The NO OPERATION (NOP) command is used to instruct the selected DDR SDRAM to perform a NOP (CS# = LOW, RAS# = CAS# = WE# = HIGH). This prevents unwanted commands from being registered during idle or wait states. Operations already in progress are not affected. ## **LOAD MODE REGISTER** The mode registers are loaded via inputs A0–A11. See mode register descriptions in "Register Definition" on page 9. The LOAD MODE REGISTER command can only be issued when all banks are idle, and a subsequent executable command cannot be issued until ^tMRD is met. ### **ACTIVE** The ACTIVE command is used to open (or activate) a row in a particular bank for a subsequent access. The value on the BA0, BA1 inputs selects the bank, and the address provided on inputs A0–A11 selects the row. This row remains active (or open) for accesses until a PRECHARGE command is issued to that bank. A PRECHARGE command must be issued before opening a different row in the same bank. ## **READ** The READ command is used to initiate a burst read access to an active row. The value on the BA0, BA1 inputs selects the bank, and the address provided on inputs A0–A8 selects the starting column location. The value on input A10 determines whether or not auto precharge is used. If auto precharge is selected, the row being accessed will be precharged at the end of the READ burst; if auto precharge is not selected, the row will remain open for subsequent accesses. ### WRITE The WRITE command is used to initiate a burst write access to an active row. The value on the BA0, BA1 inputs selects the bank, and the address provided on inputs A0-Ai (where i=9 for x16) selects the starting column location. The value on input A10 determines whether or not auto precharge is used. If auto precharge is selected, the row being accessed will be precharged at the end of the WRITE burst; if auto precharge is not selected, the row will remain open for subsequent accesses. Input data appearing on the DQs is written to the memory array subject to the DM input logic level appearing coincident with the data. If a given DM signal is registered LOW, the corresponding data will be written to memory; if the DM signal is registered HIGH, the corresponding data inputs will be ignored, and a WRITE will not be executed to that byte/column location. ### **PRECHARGE** The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. The bank(s) will be available for a subsequent row access a specified time (^tRP) after the precharge command is issued. Except in the case of # 128Mb: 8 Meg x 16 Mobile DDR SDRAM Commands concurrent auto precharge, where a READ or WRITE command to a different bank is allowed as long as it does not interrupt the data transfer in the current bank and does not violate any other timing parameters. Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is to be precharged, inputs BA0, BA1 select the bank. Otherwise BA0, BA1 are treated as "Don't Care." Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank. A PRECHARGE command will be treated as a NOP if there is no open row in that bank (idle state), or if the previously open row is already in the process of precharging. # **Auto Precharge** Auto precharge is a feature which performs the same individual-bank precharge function described above, but without requiring an explicit command. This is accomplished by using A10 to enable auto precharge in conjunction with a specific READ or WRITE command. A precharge of the bank/row that is addressed with the READ or WRITE command is automatically performed upon completion of the READ or WRITE burst. Auto precharge is nonpersistent in that it is either enabled or disabled for each individual READ or WRITE command. This device supports concurrent auto precharge if the command to the other bank does not interrupt the data transfer to the current bank. Auto precharge ensures that the precharge is initiated at the earliest valid stage within a burst. This "earliest valid stage" is determined as if an explicit PRECHARGE command was issued at the earliest possible time, without violating ^tRAS (MIN), as described for each burst type in "Operations" on page 19. The user must not issue another command to the same bank until the precharge time (^tRP) is completed. ## **BURST TERMINATE** The BURST TERMINATE command is used to truncate READ bursts (with auto precharge disabled). The most recently registered READ command prior to the BURST TERMINATE command will be truncated, as shown in "Operations" on page 19. The open page which the READ burst was terminated from remains open. ### **AUTO REFRESH** AUTO REFRESH is used during normal operation of the Mobile DDR SDRAM and is analogous to CAS#-BEFORE-RAS# (CBR) REFRESH in FPM/EDO DRAMs. This command is nonpersistent, so it must be issued each time a refresh is required. The addressing is generated by the internal refresh controller. This makes the address bits a "Don't Care" during an AUTO REFRESH command. The 128Mb Mobile DDR SDRAM requires AUTO REFRESH cycles at an average interval of 15.625µs (maximum). To allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is provided. Although not a JEDEC requirement, to provide for future functionality features, CKE must be active (HIGH) during the auto refresh period. The auto refresh period begins when the AUTO REFRESH command is registered and ends ^tRFC later. ### **SELF REFRESH** The SELF REFRESH command can be used to retain data in the Mobile DDR SDRAM, even if the rest of the system is powered down. When in the self refresh mode, the Mobile DDR SDRAM retains data without external clocking. The SELF REFRESH # 128Mb: 8 Meg x 16 Mobile DDR SDRAM Commands command is initiated like an AUTO REFRESH command except CKE is disabled (LOW). All command and address input signals except CKE are "Don't Care" during SELF REFRESH. During SELF REFRESH, the device is refreshed as identified in the external mode register (see PASR setting). For a full array refresh, all four banks are refreshed simultaneously with the refresh frequency set by an internal self refresh oscillator. This oscillator changes due to the temperature sensors input. As the case temperature of the Mobile DDR SDRAM increases, the oscillation frequency will change to accommodate the change of temperature. This happens because the DRAM capacitors lose charge faster at higher temperatures. To ensure efficient power dissipation during self refresh, the oscillator will change to refresh at the slowest rate possible to maintain the devices data. The procedure for exiting SELF REFRESH requires a sequence of commands. First, CK must be stable prior to CKE going back HIGH. Once CKE is HIGH, the Mobile DDR SDRAM must have NOP commands issued for ^tXSR is required for the completion of any internal refresh in progress. # **Operations** ## **Bank/row Activation** Before any READ or WRITE commands can be issued to a bank within the Mobile DDR SDRAM, a row in that bank must be "opened." This is accomplished via the ACTIVE command, which selects both the bank and the row to be activated, as shown in Figure 7. After a row is opened with an ACTIVE command, a READ or WRITE command may be issued to that row, subject to the tRCD specification. tRCD (MIN) should be divided by the clock period and rounded up to the next whole number to determine the earliest clock edge after the ACTIVE command on
which a READ or WRITE command can be entered. For example, a tRCD specification of 20ns with a 133 MHz clock (7.5ns period) results in 2.7 clocks rounded to 3. This is reflected in Figure 8 on page 20, which covers any case where $2 < {}^tRCD$ (MIN)/ ${}^tCK \le 3$. (Figure 8 also shows the same case for tRCD ; the same procedure is used to convert other specification limits from time units to clock cycles.) A subsequent ACTIVE command to a different row in the same bank can only be issued after the previous active row has been "closed" (precharged). The minimum time interval between successive ACTIVE commands to the same bank is defined by ^tRC. A subsequent ACTIVE command to another bank can be issued while the first bank is being accessed, which results in a reduction of total row-access overhead. The minimum time interval between successive ACTIVE commands to different banks is defined by ^tRRD. Figure 7: Activating a Specific Row in a Specific Bank PDF: 09005aef822b7e27/Source: 09005aef822b7dd6 MT46H8M16LFB_2.fm - Rev. A 5/06 EN Figure 8: Example: Meeting ^tRCD (^tRRD) MIN When 2 < ^tRCD (^tRRD) MIN/^tCK ≤ 3 ### **READs** READ bursts are initiated with a READ command, as shown in Figure 9 on page 21. The starting column and bank addresses are provided with the READ command and auto precharge is either enabled or disabled for that burst access. If auto precharge is enabled, the row being accessed is precharged at the completion of the burst. For the READ commands used in the following illustrations, auto precharge is disabled. During READ bursts, the valid data-out element from the starting column address will be available following the CAS latency after the READ command. Each subsequent data-out element will be valid nominally at the next positive or negative clock edge (i.e., at the next crossing of CK and CK#). Figure 10 on page 22 shows general timing for each possible CAS latency setting. DQS is driven by the Mobile DDR SDRAM along with output data. The initial LOW state on DQS is known as the read preamble; the LOW state coincident with the last data-out element is known as the read postamble. Upon completion of a burst, assuming no other commands have been initiated, the DQs will go High-Z. A detailed explanation of ^tDQSQ (valid data-out skew), ^tQH (data-out window hold), the valid data window are depicted in Figure 32 on page 55. A detailed explanation of ^tDQSCK (DQS transition skew to CK) and ^tAC (data-out transition skew to CK) is depicted in Figure 33 on page 56. Data from any READ burst may be concatenated with or truncated with data from a subsequent READ command. In either case, a continuous flow of data can be maintained. The first data element from the new burst follows either the last element of a completed burst or the last desired data element of a longer burst which is being truncated. The new READ command should be issued **x** cycles after the first READ command, where *x* equals the number of desired data element pairs (pairs are required by the 2*n*-prefetch architecture). This is shown in Figure 11 on page 23. A READ command can be initiated on any clock cycle following a previous READ command. Nonconsecutive read data is shown for illustration in Figure 12 on page 24. Full-speed random read accesses within a page (or pages) can be performed as shown in Figure 13 on page 25. Figure 9: READ Command Notes: 1. DIS AP = Disable auto precharge EN AP = Enable auto precharge BA = Bank address CA = Column address Figure 10: READ Burst - 1. Dout n = data-out from column n. - 2. BL = 4. - 3. Shown with nominal ^tAC, ^tDQSCK, and ^tDQSQ. Figure 11: Consecutive READ Bursts - 1. Dout n (or b) = data-out from column n (or column b). - 2. BL = 4 in the cases shown (applies for bursts of 8 as well). - 3. Shown with nominal ^tAC, ^tDQSCK, and ^tDQSQ. - 4. This example represents consecutive READ commands issued to the device. Figure 12: Nonconsecutive READ Bursts - 1. Dout n (or b) = data-out from column n (or column b). - 2. BL = 4 in the cases shown (applies for bursts of 8 as well). - 3. Shown with nominal ^tAC, ^tDQSCK, and ^tDQSQ. - 4. This example represents nonconsecutive READ commands issued to the device. Figure 13: Random READ Accesses Notes: - 1. Dout n (or x, b, g) = data-out from column n (or column x, column b, column g). - 2. BL = 4 in the cases shown (applies for bursts of 8 as well). - 3. READs are to an active row in any bank. - 4. Shown with nominal ^tAC, ^tDQSCK, and ^tDQSQ. ## **Truncated READs** Data from any READ burst may be truncated with a BURST TERMINATE command, as shown in Figure 14 on page 26. The BURST TERMINATE latency is equal to the READ (CAS) latency, i.e., the BURST TERMINATE command should be issued x cycles after the READ command, where x equals the number of desired data element pairs (pairs are required by the 2n-prefetch architecture). Data from any READ burst must be completed or truncated before a subsequent WRITE command can be issued. If truncation is necessary, the BURST TERMINATE command must be used, as shown in Figure 15 on page 27. The ^tDQSS (MIN) case is shown; the ^tDQSS (MAX) case has a longer bus idle time. (^tDQSS [MIN] and ^tDQSS [MAX] are defined in the section on WRITES.) A READ burst may be followed by, or truncated with, a PRECHARGE command to the same bank provided that auto precharge was not activated. The PRECHARGE command should be issued *x* cycles after the READ command, where *x* equals the number of desired data element pairs (pairs are required by the *n*-prefetch architecture). This is shown in Figure 16 on page 28. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until ^tRP is met. Note: Part of the row precharge time is hidden during the access of the last data elements. Figure 14: Terminating a READ Burst - 1. DOUT n = data-out from column n. - 2. Only valid for BL = 4 and BL = 8. - 3. Shown with nominal ^tAC, ^tDQSCK, and ^tDQSQ. - 4. BST = BURST TERMINATE command; page remains open. - 5. CKE = HIGH. Figure 15: READ-to-WRITE - 1. DOUT n = data-out from column n. - 2. DIN b = data-in from column b. - 3. BL = 4 in the cases shown (applies for bursts of 8 as well; if BL = 2, the BST command shown can be a NOP). - 4. Shown with nominal ^tAC, ^tDQSCK, and ^tDQSQ. - 5. BST = BURST TERMINATE command; page remains open. - 6. CKE = HIGH. Figure 16: READ-to-PRECHARGE - 1. Dout n = data-out from column n. - 2. BL = 4 or an interrupted burst of 8. - 3. Shown with nominal ^tAC, ^tDQSCK, and ^tDQSQ. - 4. READ-to-PRECHARGE equals 2 clocks, which allows 2 data pairs of data-out. - 5. A READ command with auto precharge enabled, provided [†]RAS (MIN) is met, would cause a precharge to be performed at x number of clock cycles after the READ command, where x =BL / 2. - 6. PRE = PRECHARGE command; ACT = ACTIVE command. ## **WRITEs** WRITE bursts are initiated with a WRITE command, as shown in Figure 17 on page 30. The starting column and bank addresses are provided with the WRITE command, and auto precharge is either enabled or disabled for that access. If auto precharge is enabled, the row being accessed is precharged at the completion of the burst. For the WRITE commands used in the following illustrations, auto precharge is disabled. During WRITE bursts, the first valid data-in element will be registered on the first rising edge of DQS following the WRITE command, and subsequent data elements will be registered on successive edges of DQS. The LOW state on DQS between the WRITE command and the first rising edge is known as the write preamble; the LOW state on DQS following the last data-in element is known as the write postamble. The time between the WRITE command and the first corresponding rising edge of DQS (^tDQSS) is specified with a relatively wide range (from 75 percent to 125 percent of one clock cycle). All of the WRITE diagrams show the nominal case, and where the two extreme cases (i.e., ^tDQSS [MIN] and ^tDQSS [MAX]) might not be intuitive, they have also been included. Figure 18 on page 31 shows the nominal case and the extremes of ^tDQSS for a burst of 4. Upon completion of a burst, assuming no other commands have been initiated, the DQs will remain High-Z and any additional input data will be ignored. Data for any WRITE burst may be concatenated with or truncated with a subsequent WRITE command. In either case, a continuous flow of input data can be maintained. The new WRITE command can be issued on any positive edge of clock following the previous WRITE command. The first data element from the new burst is applied after either the last element of a completed burst or the last desired data element of a longer burst which is being truncated. The new WRITE command should be issued *x* cycles after the first WRITE command, where *x* equals the number of desired data element pairs (pairs are required by the 2*n*-prefetch architecture). Figure 19 on page 32 shows concatenated bursts of 4. An example of nonconsecutive WRITEs is shown in Figure 20 on page 32. Full-speed random write accesses within a page or pages can be performed, as shown in Figure 21 on page 33. Data for any WRITE burst may be followed by a subsequent READ command. To follow a WRITE without truncating the WRITE burst, ^tWTR should be met, as shown in Figure 22 on page 34. Data for any WRITE burst may be truncated by a subsequent READ command, as shown in Figure 23 on page 35. Note that only the data-in pairs that are registered prior to the ^tWTR period are written to the internal array, and any subsequent data-in should be masked with DM, as shown in Figure 24 on page 36. Data for any WRITE burst may be followed by a subsequent PRECHARGE command. To follow a WRITE without truncating the WRITE burst, ^tWR should be met, as shown in Figure 25 on page 37. Data for any WRITE burst may be truncated by a subsequent PRECHARGE command, as shown in Figure 26 on page 38 and Figure 27 on page 39. Note that only the data-in pairs
that are registered prior to the ^tWR period are written to the internal array, and any subsequent data-in should be masked with DM, as shown in Figure 26 on page 38 and Figure 27 on page 39. After the PRECHARGE command, a subsequent command to the same bank cannot be issued until ^tRP is met. Figure 17: WRITE Command Notes: 1. DIS AP = Disable auto precharge EN AP = Enable auto precharge > BA = Bank address CA = Column address Figure 18: WRITE Burst - 1. DIN b = data-in for column b. - 2. An uninterrupted burst of 4 is shown. - 3. A10 is LOW with the WRITE command (auto precharge is disabled). Figure 19: Consecutive WRITE-to-WRITE - Notes: 1. DIN b(n) = data-in for column b(n). - 2. An uninterrupted burst of 4 is shown. - 3. Each WRITE command may be to any bank. Figure 20: **Nonconsecutive WRITE-to-WRITE** - Notes: 1. DIN b(n) = data-in for column b(n). - 2. An uninterrupted burst of 4 is shown. - 3. Each WRITE command may be to any bank. Figure 21: Random WRITE Cycles - Notes: 1. Din b (or x, n, a, g) = data-in for column b (or x, n, q, g) - 2. b' (or x, n, a, g) = the next data-in following DIN b (x, n, a, g), according to the programmed burst order. - 3. Programmed BL = 2, 4, or 8 in cases shown. - 4. Each WRITE command may be to any bank. WRITE-to-READ - Uninterrupting Figure 22: Notes: 1. DIN b = data-in for column b; DOUT n = data-out for column n. 2. An uninterrupted burst of 4 is shown. - 3. ^tWTR is referenced from the first positive CK edge after the last data-in pair. - 4. The READ and WRITE commands are to same device. However, the READ and WRITE commands may be to different devices, in which case ^tWTR is not required and the READ command could be applied earlier. - 5. A10 is LOW with the WRITE command (auto precharge is disabled). Figure 23: **WRITE-to-READ - Interrupting** - 1. DIN b = data-in for column b; DOUT n = data-out for column n. - 2. An interrupted burst of 4 is shown; two data elements are written. - 3. ^tWTR is referenced from the first positive CK edge after the last data-in pair. - 4. A10 is LOW with the WRITE command (auto precharge is disabled). - 5. DQS is required at T2 and T2n (nominal case) to register DM. - 6. If the burst of 8 was used, DM and DQS would be required at T3 and T3n because the READ command would not mask these two data elements. WRITE-to-READ - Odd Number of Data, Interrupting Figure 24: - 1. DIN b = data-in for column b; DOUT n = data-out for column n. - 2. An interrupted burst of 4 is shown; two data elements are written, three are masked. - 3. ^tWTR is referenced from the first positive CK edge after the last data-in pair. - 4. A10 is LOW with the WRITE command (auto precharge is disabled). - 5. DQS is required at T2 and T2n (nominal case) to register DM. - 6. If the burst of 8 was used, DM and DQS would be required at T3 and T3n because the READ command would not mask these two data elements. ## 128Mb: 8 Meg x 16 Mobile DDR SDRAM **Operations** **WRITE-to-PRECHARGE - Uninterrupting** Figure 25: - 1. DIN b = data-in for column b. - 2. An uninterrupted burst of 4 is shown. - 3. ^tWR is referenced from the first positive CK edge after the last data-in pair. - 4. The READ and WRITE commands are to same device. However, the READ and WRITE commands may be to different devices, in which case ^tWR is not required and the READ command could be applied earlier. - 5. A10 is LOW with the WRITE command (auto precharge is disabled). - 6. PRE = PRECHARGE command. ## 128Mb: 8 Meg x 16 Mobile DDR SDRAM **Operations** WRITE-to-PRECHARGE - Interrupting Figure 26: - 1. DIN b = data-in for column b. - 2. An uninterrupted burst of 4 is shown. - 3. ^tWR is referenced from the first positive CK edge after the last data-in pair. - 4. The READ and WRITE commands are to same device. However, the READ and WRITE commands may be to different devices, in which case ^tWR is not required and the READ command could be applied earlier. - 5. A10 is LOW with the WRITE command (auto precharge is disabled). - 6. PRE = PRECHARGE command. Figure 27: WRITE-to-PRECHARGE - Odd Number of Data, Interrupting - 1. DIN b = data-in for column b. - 2. An interrupted burst of 8 is shown. - 3. ^tWR is referenced from the first positive CK edge after the last data-in pair. - 4. The READ and WRITE commands are to same device. However, the READ and WRITE commands may be to different devices, in which case ^tWR is not required and the READ command could be applied earlier. - 5. A10 is LOW with the WRITE command (auto precharge is disabled). - 6. PRE = PRECHARGE command. #### **PRECHARGE** The PRECHARGE command (see Figure 28) is used to deactivate the open row in a particular bank or the open row in all banks. The bank(s) will be available for a subsequent row access some specified time (^tRP) after the PRECHARGE command is issued. Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is to be precharged, inputs BA0, BA1 select the bank. When all banks are to be precharged, inputs BA0, BA1 are treated as "Don't Care." Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank. Figure 28: PRECHARGE Command Notes: 1. CA = Column Address. BA = Bank Address. All = All banks to be Precharged, BA1, BA0 are "Don't Care." Single = Only bank selected by BA1 and BA0 will be precharged. ## **Power-Down (CKE Not Active)** Unlike SDR SDRAMs, DDR SDRAMs require CKE to be active at all times an access is in progress: from the issuing of a READ or WRITE command until completion of the burst; thus a clock suspend is not supported. For READs, a burst completion is defined when the read postamble is satisfied; for WRITEs, a burst completion is defined when the write postamble is satisfied. ## Power-Down (Active or Precharge) Power-down (see Figure 30) is entered when CKE is registered LOW. If power-down occurs when all banks are idle, this mode is referred to as precharge power-down; if power-down occurs when there is a row active in any bank, this mode is referred to as active power-down. Entering power-down deactivates the input and output buffers, including CK and CK#. Exiting power-down requires the device to be at the same voltage as when it entered power-down and a stable clock. Note: The power-down duration is limited by the refresh requirements of the device. While in power-down, CKE LOW must be maintained at the inputs of the Mobile DDR SDRAM, while all other input signals are "Don't Care." The power-down state is synchronously exited when CKE is registered HIGH (in conjunction with a NOP or DESELECT command). NOP or DESELECT commands must be maintained on the command bus until ^tPDX is satisfied. Figure 29: Power-Down Command (Active or Precharge) Figure 30: Power-Down (Active or Precharge) Notes: 1. Clock must toggle a minimum of once during this time. ## **Truth Tables** Table 9: Truth Table - CKE Notes: 1-5 | CKE _{n-1} | CKE _n | Current State | COMMAND _n | ACTION _n | Notes | |--------------------|------------------|------------------------|-------------------------|---------------------------------|-------| | L | L | (Active) Power-Down | Х | Maintain (active) power-down | | | L | L | (Precharge) Power-Down | Х | Maintain (precharge) power-down | | | L | L | Self refresh | X | Maintain self refresh | | | L | Н | (Active) Power-Down | DESELECT or NOP | Exit (active) power-down | 6, 7 | | L | Н | (Precharge) Power-Down | DESELECT or NOP | Exit (precharge) power-down | 6, 7 | | L | Н | Self refresh | DESELECT or NOP | Exit self refresh | 8, 9 | | Н | L | Bank(s) active | DESELECT or NOP | (Active) power-down entry | | | Н | L | All banks idle | DESELECT or NOP | (Precharge) power-down entry | | | Н | L | All banks idle | AUTO REFRESH | Self refresh entry | | | Н | Н | | See Table 11 on page 45 | | | | Н | Н | | See Table 11 on page 45 | | | - CKE_n is the logic state of CKE at clock edge n; CKE_{n-1} was the state of CKE at the previous clock edge. - 2. Current state is the state of the DDR SDRAM immediately prior to clock edge n. - COMMAND_n is the command registered at clock edge n, and ACTION_n is a result of COMMAND_n. - 4. All states and sequences not shown are illegal or reserved. - 5. ^tCKE pertains. - 6. DESELECT or NOP commands should be issued on any clock edges occurring during the ^tPDX period. - 7. The clock must toggle at least once during the ^tPDX period. - 8. DESELECT or NOP commands should be issued on any clock edges occurring during the ^tXSR period. - 9. The clock must toggle at least once during the ^tXSR period. Truth Table - Current State Bank n - Command to Bank n Table 10: Notes: 1-6; notes appear below and on next page | Current State | CS# | RAS# | CAS# | WE# | Command/Action | Notes | |-----------------|-----|------|------|-----|---|--------| | Any | Н | Х | Х | Χ | DESELECT (NOP/continue previous operation) | | | | L | Н | Н | Н | NO OPERATION (NOP/continue previous operation) | | | Idle | L | L | Н | Н | ACTIVE (select and activate row) | | | | L | L | L | Н | AUTO REFRESH | 7 | | | L | L | L | L | LOAD MODE REGISTER | 7 | | Row active | L | Н | L | Н | READ (select column and start READ burst) | 10 | | | L | Н | L | L | WRITE (select column and start WRITE burst) | 10 | | | L | L | Н | L | PRECHARGE (deactivate row in bank or banks) | 8 | | Read | L | Н | L | Н | READ (select column and start new READ burst) | 10 | | (auto precharge | L | Н | L | L | WRITE (select column and start WRITE burst) | 10, 12 | | disabled) | L | L | Н | L | PRECHARGE (truncate READ burst, start PRECHARGE) | 8 | | | L | Н | Н | L | BURST TERMINATE | 9 | | Write | L | Н | L | Н | READ (select column and start READ burst) | 10, 11 | | (auto precharge | L | Н | L | L | WRITE (select column and start new WRITE burst) | 10 | | disabled) | Ĺ | L | Н | L | PRECHARGE (truncate WRITE burst, start PRECHARGE) | 8, 11 | - Notes: 1. This
table applies when CKE_{n-1} was HIGH and CKE_n is HIGH and after ^tXSR has been met (if the previous state was self refresh) and after ^tPDX has been met (if the previous state was power-down). - 2. This table is bank-specific, except where noted (i.e., the current state is for a specific bank and the commands shown are those allowed to be issued to that bank when in that state). Exceptions are covered in the notes below. - 3. Current state definitions: Idle: The bank has been precharged, and ^tRP has been met. Row active: A row in the bank has been activated, and ^tRCD has been met. No data bursts/accesses and no register accesses are in progress. Read: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated or been terminated. Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated or been terminated. 4. The following states must not be interrupted by a command issued to the same bank. COM-MAND INHIBIT or NOP commands, or allowable commands to the other bank should be issued on any clock edge occurring during these states. Allowable commands to the other bank are determined by its current state and Table 10, and according to Table 11. Precharging: Starts with registration of a PRECHARGE command and ends when ^tRP is met. Once ^tRP is met, the bank will be in the idle state. Row activating: Starts with registration of an ACTIVE command and ends when ^tRCD is met. Once ^tRCD is met, the bank will be in the row active Read w/auto- Starts with registration of a READ command with auto precharge precharge enabled: enabled and ends when ^tRP has been met. Once ^tRP is met, the bank will be in the idle state. Write w/auto- Starts with registration of a WRITE command with auto precharge precharge enabled: enabled and ends when ^tRP has been met. Once ^tRP is met, the bank will be in the idle state. 5. The following states must not be interrupted by any executable command; DESELECT or NOP commands must be applied on each positive clock edge during these states. Refreshing: Starts with registration of an AUTO REFRESH command and ends when ^tRFC is met. Once ^tRFC is met, the DDR SDRAM will be in the all banks idle state. Accessing mode Starts with registration of a LOAD MODE REGISTER command and register: ends when ^tMRD has been met. Once ^tMRD is met, the Mobile DDR SDRAM will be in the all banks idle state. Precharging all: Starts with registration of a PRECHARGE ALL command and ends when ^tRP is met. Once ^tRP is met, all banks will be in the idle state. - 6. All states and sequences not shown are illegal or reserved. - 7. Not bank-specific; requires that all banks are idle, and bursts are not in progress. - 8. May or may not be bank-specific; if multiple banks are to be precharged, each must be in a valid state for precharging. - Not bank-specific; BURST TERMINATE affects the most recent READ burst, regardless of bank. - 10. READs or WRITEs listed in the Command/Action column include READs or WRITEs with auto precharge enabled and READs or WRITEs with auto precharge disabled. - 11. Requires appropriate DM masking. - 12. A WRITE command may be applied after the completion of the READ burst; otherwise, a BURST TERMINATE must be used to end the READ burst prior to asserting a WRITE command. Table 11: Truth Table - Current State Bank n - Command to Bank m Notes: 1-6; notes appear below and on next page | Current State | CS# | RAS# | CAS# | WE# | Command/Action | Notes | |------------------------|-----|------|------|-----|---|----------| | Any | Н | Х | Х | Х | DESELECT (NOP/continue previous operation) | | | | L | Н | Н | Н | NO OPERATION (NOP/continue previous operation) | | | ldle | Χ | Х | Х | Х | Any command allowed to bank m | | | Row | L | L | Н | Н | ACTIVE (select and activate row) | | | activating, | L | Н | L | Ι | READ (select column and start READ burst) | 7 | | active, or precharging | L | Н | L | L | WRITE (select column and start WRITE burst) | 7 | | precharging | L | L | Н | L | PRECHARGE | | | Read | L | L | Н | Н | ACTIVE (select and activate row) | | | (auto precharge | L | Н | L | Н | READ (select column and start new READ burst) | 7 | | disabled) | L | Н | L | L | WRITE (select column and start WRITE burst) | 7, 9 | | | L | L | Н | L | PRECHARGE | | | Write | L | L | Н | Н | ACTIVE (select and activate row) | | | (auto precharge | L | Н | L | Н | READ (select column and start READ burst) | 7, 8 | | disabled) | L | Н | L | L | WRITE (select column and start new WRITE burst) | 7 | | | L | L | Н | L | PRECHARGE | | | Read | L | L | Н | Н | ACTIVE (select and activate row) | | | (with auto | L | Н | L | Н | READ (select column and start new READ burst) | 7, 3a | | precharge) | L | Н | L | L | WRITE (select column and start WRITE burst) | 7, 9, 3a | | | L | L | Н | L | PRECHARGE | | | Write | L | L | Н | Н | ACTIVE (select and activate row) | | | (with auto | L | Н | L | Н | READ (select column and start READ burst) | 7, 3a | | precharge) | L | Н | L | L | WRITE (select column and start new WRITE burst) | 7, 3a | | | L | L | Н | L | PRECHARGE | | Notes: - 1. This table applies when CKE_{n-1} was HIGH and CKE_n is HIGH and after ^tXSR has been met (if the previous state was self refresh) or after ^tPDX has been met (if the previous state was power-down). - 2. This table describes alternate bank operation, except where noted (i.e., the current state is for bank *n* and the commands shown are those allowed to be issued to bank *m*, assuming that bank *m* is in such a state that given command is allowable). Exceptions are covered in the notes below. - 3. Current state definitions: - Idle: The bank has been precharged, and ^tRP has been met. - Row active: A row in the bank has been activated, and ^tRCD has been met. No data bursts/accesses and no register accesses are in progress. - Read: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated or been terminated. - Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated or been terminated. Read with auto precharge enabled: See following text – 3a Write with auto precharge enabled: See following text – 3a 3a. The read with auto precharge enabled or WRITE with auto precharge enabled states can each be broken into two parts: the access period and the precharge period. For read with auto precharge, the precharge period is defined as if the same burst was executed with auto precharge disabled and then followed with the earliest possible PRECHARGE command that still accesses all of the data in the burst. For write with auto precharge, the precharge period begins when ^tWR ends, with ^tWR measured as if auto precharge was disabled. The access period starts with registration of the command and ends where the precharge period (or ^tRP) begins. This device supports concurrent auto precharge such that when a read with auto precharge enabled or a write with auto precharge is enabled any command to other banks is allowed, long as that command does not interrupt the read or write data transfer already in process. either case, all other related limitations apply (e.g., contention between read data and write data must be avoided). 3b. The minimum delay from a READ or WRITE command with auto precharge enabled, to a command to a different bank is summarized below. | From Command | To Command | Minimum Delay
(with Concurrent Auto
Precharge) | |--------------|---|---| | WRITE w/AP | READ or READ w/AP
WRITE or WRITE w/AP
PRECHARGE
ACTIVE | [1 + (BL/2)] [†] CK + [†] WTR
(BL/2) [†] CK
1 [†] CK
1 [†] CK | | READ w/AP | READ or READ w/AP
WRITE or WRITE w/AP
PRECHARGE
ACTIVE | (BL/2) × [†] CK
[CL _{RU} + (BL/2)] [†] CK
1 [†] CK
1 [†] CK | ${\rm CL}_{\rm RU}$ = CAS latency (CL) rounded up to the next integer BL = Bust length - AUTO REFRESH and LOAD MODE REGISTER commands may only be issued when all banks are idle. - 5. A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current state only. - 6. All states and sequences not shown are illegal or reserved. - 7. READs or WRITEs listed in the Command/Action column include READs or WRITEs with auto precharge enabled and READs or WRITEs with auto precharge disabled. - 8. Requires appropriate DM masking. - A WRITE command may be applied after the completion of the READ burst; otherwise, a BURST TERMINATE must be used to end the READ burst prior to asserting a WRITE command. ## **Electrical Specifications** Stresses greater than those listed in Table 12 may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. **Table 12: Absolute Maximum DC Ratings** | Parameter | Symbol | Min | Max | Units | Notes | |--------------------------------------|-----------|------|-----|-------|-------| | VDD supply voltage relative to Vss | VDD | -1.0 | 2.3 | V | 1 | | VDDQ supply voltage relative to VssQ | VDDQ | -0.5 | 2.3 | V | 1 | | Voltage on any ball relative to Vss | VIN, VOUT | -0.5 | 2.3 | V | 2 | Notes: 1. VDD, VDDQ, and VDDL must be within 300mV of each other at all times. 2. Voltage on any I/O may not exceed voltage on VDDQ. Table 13: AC/DC Electrical Characteristics and Operating Conditions Notes: 1–5; notes appear on pages 52–54; $VDD = +1.8 \pm 0.1V$, $VDDQ = +1.8 \pm 0.1V$ | Parameter/Condition | Symbol | Min | Max | Units | Notes |
--|---------|-------------------|-------------------|-------|------------| | Supply voltage | VDD | 1.7 | 1.9 | V | | | I/O supply voltage | VDDQ | 1.7 | 1.9 | V | | | Address and Command Inputs | | | | • | | | Input voltage high | VIH | OddV × 8.0 | VDDQ + 0.3 | V | 25, 33 | | Input voltage low | VIL | -0.3 | 0.2 × VDDQ | V | 25, 33 | | Clock Inputs (CK, CK#) | • | | | | | | DC input voltage | VIN | -0.3 | VDDQ + 0.3 | V | 27 | | DC input differential voltage | VID(DC) | $0.4 \times VDDQ$ | VDDQ + 0.3 | V | 8, 27 | | AC input differential voltage | VID(AC) | 0.6 × VDDQ | VDDQ + 0.3 | V | 8, 27 | | AC differential crossing voltage | Vıx | $0.4 \times VDDQ$ | 0.6 × VDDQ | V | 9, 27 | | Data Inputs | | | | • | | | DC input high voltage | VIH(DC) | 0.7 × VDDQ | VDDQ + 0.3 | V | 25, 28, 33 | | AC input high voltage | Vih(AC) | OddV × 8.0 | VDDQ + 0.3 | V | 25, 28, 33 | | DC input low voltage | VIL(DC) | -0.3 | $0.3 \times VDDQ$ | V | 25, 28, 33 | | AC input low voltage | VIL(AC) | -0.3 | 0.2 × VDDQ | V | 25, 28, 33 | | Data Outputs | | | | • | | | DC output high voltage: Logic 1 (Іон = -0.1mA) | Vон | $0.9 \times VDDQ$ | - | V | | | DC output low voltage: Logic 0 (loL = 0.1mA) | Vol | - | 0.1 × VDDQ | V | | | Leakage Current | | | | | | | Input leakage current Any input $0V \le VIN \le VDD$ (All other balls not under test = $0V$) | II | -1 | 1 | μA | | | Output leakage current (DQs are disabled; 0V ≤ VOUT ≤ VDDQ) | loz | -5 | 5 | μA | | | Output levels: Full drive option | Іон | -1 | 1 | mA | 32 | | High current (Vout = VddQ - 0.373V, minimum VREF)
Low current (Vout = 0.373V, maximum VREF) | lol | 3 | 3 | mA | | | Output levels: Reduced drive option | IOHR | -1.5 | - | mA | 32 | | High current (Vout = VddQ - 0.763V, minimum VREF)
Low current (Vout = 0.763V, maximum VREF) | IOLR | _ | -1.5 | mA | | Table 14: Capacitance Notes: 13; notes appear on pages 52-54 | Parameter | Symbol | Min | Max | Units | Notes | |--|--------|-----|-----|-------|-------| | Delta input/output capacitance: DQs, DQS, DM | CDIO | TBD | TBD | рF | 21 | | Delta input capacitance: Command and address | CDI | TBD | TBD | pF | 26 | | Delta input capacitance: CK, CK# | CDCK | TBD | TBD | рF | 26 | | Input/output capacitance: DQs, DQS, DM | CIO | TBD | TBD | рF | | | Input capacitance: Address | CI | TBD | TBD | рF | | | Input capacitance: Command | CI | TBD | TBD | pF | | | Input capacitance: CK, CK# | CCK | TBD | TBD | pF | | ## **Table 15: IDD Specifications and Conditions** Notes: 1–5, 7, 10, 12, 14 notes appear on pages 52–54; $VDDQ = +1.8 \pm 0.1V$, $VDD = +1.8 \pm 0.1V$ | | | Max | | | | |--|--------|-----|-----|-------|--------| | Parameter/Condition | Symbol | -75 | -10 | Units | Notes | | Operating one bank active precharge current: ^t RC = ^t RC (MIN); ^t CK = ^t CK (MIN); CKE is HIGH; CS is HIGH between valid commands; Address inputs are switching every two clock cycles; Data bus inputs are stable | IDD0 | 80 | 75 | mA | 19, 36 | | Operating current: One bank; Active-Read-Precharge; Burst = 4;
^t RC = ^t RC (MIN); ^t CK = ^t CK (MIN); IOUT = 0mA; Address and control inputs changing once per clock cycle | IDD1 | 105 | 100 | mA | 19, 36 | | Precharge power-down standby current: All banks idle; CKE is LOW; CS is HIGH; ^t CK = ^t CK (MIN); Address and control inputs are switching every two clock cycles; Data bus inputs are stable | IDD2P | 200 | 200 | μΑ | | | Precharge power-down standby current with clock stopped: All banks idle; CKE is LOW; CS is HIGH; CK = LOW, CK# = HIGH; Address and control inputs are switching every two clock cycles; Data bus inputs are stable | IDD2PS | 200 | 200 | μА | | | Precharge non power-down standby current: All banks idle; CKE = HIGH; CS = HIGH; ^t CK = ^t CK (MIN); Address and control inputs are switching every two clock cycles; Data bus inputs are stable | IDD2N | 25 | 25 | mA | 35 | | Precharge non power-down standby current: Clock stopped; All banks idle; CKE = HIGH; CS = HIGH; CK = LOW; CK# = HIGH Address and control inputs are switching every two clock cycles; Data bus inputs are stable | IDD2NS | 15 | 15 | mA | 35 | | Active power-down standby current: One bank active; CKE = LOW; CS = HIGH; ^t CK = ^t CK (MIN); Address and control inputs are switching every two clock cycles; Data bus inputs are stable | IDD3P | 3 | 3 | mA | | | Active power-down standby current: Clock stopped; One bank active; CKE = LOW; CS = HIGH; CK = LOW; CK# = HIGH; Address and control inputs are switching every two clock cycles; Data bus inputs are stable | IDD3PS | 3 | 3 | mA | | | Active non power-down standby: One bank active; CKE = HIGH; CS = HIGH; [†] CK = [†] CK (MIN); Address and control inputs are switching every two cycles; Data bus inputs are stable | IDD3N | 25 | 25 | mA | 19 | | Active non-power-down standby: Clock stopped; One bank active; CKE = HIGH; CS = HIGH; CK = LOW; CK# = HIGH; Address and control inputs are switching every two clock cycles; Data bus inputs are stable. | IDD3NS | 20 | 20 | mA | 19 | | Operating burst read: One bank active; BL = 4; [†] CK = [†] CK (MIN);
Continuous read bursts; IouT = 0mA; Address inputs are switching;
50% data changing each burst | IDD4R | 95 | 90 | mA | 19, 36 | ## Table 15: IDD Specifications and Conditions (continued) Notes: 1–5, 7, 10, 12, 14 notes appear on pages 52–54; $VDDQ = +1.8 \pm 0.1V$, $VDD = +1.8 \pm 0.1V$ | | | | Max | | | | |--|-------------------------------------|-------|-----|-----|-------|--------| | Parameter/Condition | | | -75 | -10 | Units | Notes | | Operating burst write: One bank active; BL = 4; ^t CK = ^t CK (MIN);
Continuous WRITE bursts; Address inputs are switching; 50 percent
data changing each burst | | | 95 | 90 | mA | 19 | | Auto refresh: Burst refresh; CKE = HIGH; Address and control inputs are switching; Data bus inputs are stable | ${}^{t}RC = {}^{t}RC \text{ (MIN)}$ | IDD5 | 105 | 100 | mA | 38 | | Precharge power-down standby current: All banks idle, CKE is LOW; CS is HIGH; ^t CK = ^t CK (MIN); Address and control inputs are switching every two clock cycles; Data bus inputs are stable | ^t RC = 15.625µs | IDD5a | 5 | 5 | mA | 24, 38 | | Self refresh: CKE = LOW; ^t CK = ^t CK (MIN); Address | Full array, 85°C | Idd6a | 300 | | μΑ | 11, 39 | | and control inputs are stable; Data bus inputs are | Full array, 70°C | IDD6b | 220 | | μΑ | 11, 39 | | stable | Full array, 45°C | IDD6c | 18 | 30 | μΑ | 11, 39 | | | Full array, 15°C | IDD6d | 16 | 60 | μΑ | 11, 39 | | | Half array, 85°C | IDD6a | 22 | 20 | μΑ | 11, 39 | | | Half array, 70°C | IDD6b | 18 | 30 | μΑ | 11, 39 | | | Half array, 45°C | IDD6c | 10 | 50 | μΑ | 11, 39 | | | Half array, 15°C | IDD6d | 1! | 50 | μΑ | 11, 39 | | | 1/4 array, 85°C | IDD6a | 18 | 30 | μΑ | 11, 39 | | | 1/4 array, 70°C | IDD6b | 16 | 50 | μΑ | 11, 39 | | | 1/4 array, 45°C | IDD6c | 15 | 50 | μΑ | 11, 39 | | | 1/4 array, 15°C | IDD6d | 14 | 15 | μΑ | 11, 39 | Figure 31: Typical Self Refresh Current vs. Temperature Table 16: Electrical Characteristics and Recommended AC Operating Conditions Notes: 1-6, 27; notes appear on pages 52-54; $VDDQ = +1.8 \pm 0.1V$, $VDD = +1.8 \pm 0.1V$ | AC Characteristics | | -7 | ' 5 | -1 | 10 | | | | |---|------------------|----------------------------------|---------------------------------------|----------------------------------|---------------------------------------|-------------------|-----------------|------------| | Parameter | Symbol | Min | Max | Min | Max | Units | Notes | | | Access window of DQs from CK/CK# | CL = 3 | tAC(3) | 2.5 | 6.0 | 2.0 | 7.0 | ns | | | | CL = 2 | | 2.0 | 6.5 | 2.0 | 7.0 | | | | CK high-level width | | ^t CH | 0.45 | 0.55 | 0.45 | 0.55 | ^t CK | | | CK low-level width | | ^t CL | 0.45 | 0.55 | 0.45 | 0.55 | ^t CK | | | Clock cycle time | CL = 3 | tCK(3) | 7.5 | - | 9.6 | - | ns | 7 | | | CL = 2 | tCK(2) | 12 | - | 15 | - | | | | Auto precharge write recovery + precha | rge time | ^t DAL | - | - | - | - | | 41 | | DQ and DM input hold time relative to [| OQS | ^t DH | 0.75 | - | 1.1 | - | ns | 23, 28, 40 | | DQ and DM input setup time relative to | DQS | ^t DS | 0.75 | - | 1.1 | - | ns | 23, 28, 40 | | DQ and DM input pulse width (for each | input) | ^t DIPW | ^t DS + | - ^t DH | ^t DS + | - ^t DH | ns | 42 | | Access window of DQS from CK/CK# | | ^t DQSCK | 2.5 | 6.0 | 2.5 | 7.0 | ns | | | DQS input high-pulse width | | ^t DQSH | 0.4 | 0.6 | 0.4 | 0.6 | ^t CK | | | DQS input low-pulse width | | ^t DQSL | 0.4 | 0.6 | 0.4 | 0.6 | ^t CK | | | DQS-DQ skew, DQS to last DQ valid, per per access | group, | ^t DQSQ | _ | 0.6 | _ | 0.7 | ns | 22, 23 | | WRITE command to first DQS latching tr | ansition | ^t DQSS | 0.75 | 1.25 | 0.75 | 1.25 | ^t CK | | | DQS falling edge to CK rising – setup tin | ne | ^t DSS | 0.2 | _ | 0.2 | - | ^t CK | | | DQS falling edge from CK rising – hold t | ime | ^t DSH | 0.2 | - | 0.2 | - | ^t CK | | | Half-clock period | ^t HP | ^t CH, ^t CL | - | ^t CH, ^t CL | - | ns | 29 | | | Data-out High-Z window from CK/CK# | | ^t HZ | _ | 6.0 | _ | 7.0 | ns | 15, 34 | | Data-out Low-Z window from CK/CK# | | ^t LZ | 1.0 | _ | 1.0 | _ | ns | 15, 34 | | Address and control input hold time (fast slew rate) | | ^t IH _F | 1.3 | - | 1.5 | _ | ns | 14, 40 | | Address and control input setup time (fast slew rate) | | ^t IS _F | 1.3 | - | 1.5 | _ | ns | 14, 40 | |
Address and control input hold time (slow slew rate) | | ^t IH _S | 1.5 | - | 1.7 | _ | ns | 14, 40 | | Address and control input setup time (slow slew rate) | | ^t IS _S | 1.5 | - | 1.7 | - | ns | 14, 40 | | Address and control input pulse width | | ^t IPW | 3.0 | - | 3.4 | - | ns | 42 | | LOAD MODE REGISTER command cycle t | ime | ^t MRD | 2 | - | 2 | - | ^t CK | | | DQ-DQS hold, DQS to first DQ to go nor per access | n-valid, | ^t QH | ^t HP
- ^t QHS | _ | ^t HP
- ^t QHS | _ | ns | 22, 23 | | Data hold skew factor | | ^t QHS | - | 0.75 | - | 1 | ns | | | ACTIVE-to-PRECHARGE command | | ^t RAS | 45 | 70,000 | 50 | 70,000 | ns | 30 | | ACTIVE-to-ACTIVE/AUTO REFRESH command period | | ^t RC | 75 | - | 80 | _ | ns | | | AUTO REFRESH command period | ^t RFC | 97.5 | _ | 80 | _ | ns | 38 | | | ACTIVE-to-READ or WRITE delay | ^t RCD | 22.5 | - | 30 | - | ns | | | | PRECHARGE command period | ^t RP | 22.5 | _ | 30 | _ | ns | | | | DQS read preamble | CL = 3 | tRPRE(3) | 0.9 | 1.1 | 0.9 | 1.1 | ^t CK | 34 | | , ' | CL = 2 | tRPRE(2) | 0.5 | 1.1 | 0.5 | 1.1 | ^t CK | 34 | | DQS read postamble | 1 | t _{RPST} | 0.4 | 0.6 | 0.4 | 0.6 | ^t CK | | | ACTIVE bank a to ACTIVE bank b comma | and | ^t RRD | 15 | _ | 15 | _ | ns | | ## Table 16: Electrical Characteristics and Recommended AC Operating Conditions (continued) Notes: 1-6, 27; notes appear on pages 52-54; VDDQ = +1.8 ±0.1V, VDD = +1.8 ±0.1V | AC Characteristics | | -75 | | -1 | 10 | | | |---|--------------------|-------|-------------------|-------|------|-----------------|--------| | Parameter | Symbol | Min | Max | Min | Max | Units | Notes | | DQS write preamble | ^t WPRE | 0.25 | - | 0.25 | - | ^t CK | | | DQS write preamble setup time | ^t WPRES | 0 | - | 0 | - | ns | 17, 18 | | DQS write postamble | ^t WPST | 0.4 | 0.6 | 0.4 | 0.6 | ^t CK | 16 | | Write recovery time | ^t WR | 15 | - | 15 | - | ns | | | Internal WRITE to READ command delay | ^t WTR | 1 | - | 1 | - | ^t CK | | | Data valid output window (DVW) | na | tQH - | ^t DQSQ | tQH - | DQSQ | ns | 22 | | Average periodic refresh interval | ^t REFI | - | 15.6 | - | 15.6 | μs | 20 | | Exit SELF REFRESH to first valid command | ^t XSR | 120 | - | 120 | - | ns | 43 | | Exit power-down mode to first valid command | ^t XP | 25 | - | 25 | - | ns | 44 | | Minimum ^t CKE HIGH/LOW time | ^t CKE | 2 | _ | 2 | _ | ^t CK | | #### Notes - 1. All voltages referenced to Vss. - 2. All parameters assume proper device initialization. - 3. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified. - 4. Outputs measured with equivalent load: Half-drive strength Quarter-drive strength - 5. Timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VDDQ/2 (or to the crossing point for CK/CK#). The output timing reference voltage level is VDDQ/2. - 6. All AC timings assume an input slew rate of 1V/ns. - 7. CAS latency definition: for CL = 2, the first data element is valid at (${}^{t}CK + {}^{t}AC$) after the clock at which the READ command was registered; for CL = 3, the first data element is valid at ($2 \times {}^{t}CK + {}^{t}AC$) after the first clock at which the READ command was registered. - 8. VID is the magnitude of the difference between the input level on CK and the input level on CK#. - 9. The value of VIX is expected to equal VDDQ/2 of the transmitting device and must track variations in the DC level of the same. - 10. IDD is dependent on cycle rate, and may be affected by output loading if VDD and VDDQ are supplied from the same source. Specified values are obtained with minimum cycle time for CL = 3 with the outputs open. - 11. Enables on-chip refresh and address counters. - 12. IDD specifications are tested after the device is properly initialized, and is averaged after test condition is met. - 13. This parameter is sampled. VDD = $+1.8 \pm 0.1$ V, VDDQ = $+1.8 \pm 0.1$ V, f = 100 MHz, $T_A = 25$ °C, VOUT(DC) = VDDQ/2, VOUT (peak-to-peak) = 0.2V. DM input is grouped with I/O balls, reflecting the fact that they are matched in loading. - 14. Fast command/address input slew rate ≥ 1V/ns. Slow command/address input slew rate ≥ 0.5V/ns. If the slew rate is less than 0.5V/ns, timing must be derated: ^tIS has **an additional 50ps (pending) per each 100mV/ns** reduction in slew rate from the 0.5V/ns. ^tIH has **0ps added (pending)**; that is, it remains constant. If the slew rate exceeds 4.5V/ns, functionality is uncertain. ## 128Mb: 8 Meg x 16 Mobile DDR SDRAM Notes - 15. ^tHZ and ^tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referenced to a specific voltage level, but specify when the device output is no longer driving (HZ) or begins driving (LZ). - 16. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance (bus turnaround) will degrade accordingly. - 17. This is not a device limit. The device will operate with a negative value, but system performance could be degraded due to bus turnaround. - 18. It is recommended that DQS be valid (HIGH or LOW) on or before the WRITE command. - 19. MIN (^tRC or ^tRFC) for IDD measurements is the smallest multiple of ^tCK that meets the minimum absolute value for the respective parameter. ^tRAS (MAX) for IDD measurements is the largest multiple of ^tCK that meets the maximum absolute value for ^tRAS. - 20. The refresh period equals 64ms. This equates to an average refresh rate of $15.625\mu s$. - 21. The I/O capacitance per DQS and DQ byte/group will not differ by more than this maximum amount for any given device. - 22. The valid data window is derived by achieving other specifications: ^tHP (^tCK/2), ^tDQSQ, and ^tQH (^tHP ^tQHS). The data valid window derates directly proportional with the clock duty cycle and a practical data valid window can be derived. The clock is allowed a maximum duty cycle variation of 45/55. Functionality is uncertain when operating beyond a 45/55 ratio. - 23. Referenced to each output group: LDQS with DQ0-DQ7; and UDQS with DQ8-DQ15. - 24. This limit is actually a nominal value and does not result in a fail value. CKE is HIGH during REFRESH command period (^tRFC [MIN]) else CKE is LOW (i.e., during standby). - 25. To maintain a valid level, the transitioning edge of the input must: - a. Sustain a constant slew rate from the current AC level through to the target AC level, VIL(AC), or VIH(AC). - b. Reach at least the target AC level. - c. After the AC target level is reached, continue to maintain at least the target DC level, VIL(DC) or VIH(DC). - 26. The input capacitance per ball group will not differ by more than this maximum amount for any given device. - 27. CK and CK# input slew rate must be $\geq 1V/ns$ (2V/ns if measured differentially). - 28. DQ and DM input slew rates must not deviate from DQS by more than 10%. If the DQ/DM/DQS slew rate is less than 0.5V/ns, timing must be derated: **50ps (pending) must be added to ^tDS and ^tDH for each 100mv/ns reduction in slew rate.** If slew rate exceeds 4V/ns, functionality is uncertain. - 29. ^tHP (MIN) is the lesser of ^tCL minimum and ^tCH minimum actually applied to the device CK and CK# inputs, collectively. - 30. READs and WRITEs with auto precharge are not allowed to be issued until ^tRAS (MIN) can be satisfied prior to the internal PRECHARGE command being issued. - 31. Any positive glitch must be less than 1/3 of the clock cycle and not more than **+200mV or 2.0V (pending)**, whichever is less. Any negative glitch must be less than 1/3 of the clock cycle and not exceed either **-150mV or 1.6V (pending)**, whichever is more positive. - 32. The voltage levels used are derived from a minimum VDD level and the referenced test load. In practice, the voltage levels obtained from a properly terminated bus will provide significantly different voltage values. ### 128Mb: 8 Meg x 16 Mobile DDR SDRAM Notes - 33. VIH overshoot: VIH (MAX) = VDDQ + 0.5V for a pulse width \leq 3ns and the pulse width can not be greater than 1/3 of the cycle rate. VIL undershoot: VIL (MIN) = -0.5V for a pulse width \leq 3ns and the pulse width can not be greater than 1/3 of the cycle rate. - 34. ^tHZ (MAX) will prevail over ^tDQSCK (MAX) + ^tRPST (MAX) condition. - 35. IDD2N specifies DQ, DQS, and DM to be driven to a valid HIGH or LOW logic level. IDD2Q is similar to IDD2F except IDD2Q specifies the address and control inputs to remain stable. Although IDD2F, IDD2N, and IDD2Q are similar, IDD2F is "worst case." - 36. Random addressing changing 50 percent of data changing at every transfer. - 37. Random addressing changing 100 percent of data changing at every transfer. - 38. CKE must be active (HIGH) during the entire time a REFRESH command is executed. That is, from the time the AUTO REFRESH command is registered, CKE must be active at each rising clock edge, until ^tRFC later. - 39. With the inclusion of the temperature sensor on the low-power DDR device, these numbers are shown as examples only, and will change due to the junction temperature that the device is sensing. They are expected to be maximum values at this time. - 40. The transition time for input signals (CAS#, CKE, CS#, DM, DQ, DQS, RAS#, WE#, and addresses) are measured between VIL(DC) to VIH(AC) for rising input signals and VIH(DC) to VIL(AC) for falling input signals. - 41. ${}^{t}DAL = ({}^{t}WR/{}^{t}CK) + ({}^{t}RP/{}^{t}CK)$: for each term, if not already an integer, round to the next higher integer. - 42. These parameters guarantee device timing but they are not necessarily tested on each device. - 43. Clock must be toggled a minimum of two times during this period. - 44. Clock must be toggled a minimum of one
time during this period. ## **Timing Diagrams** Figure 32: x16 Data Output Timing - ^tDQSQ, ^tQH, and Data Valid Window - 1. DQ transitioning after DQS transition define ^tDQSQ window. LDQS defines the lower byte and UDQS defines the upper byte. - 2. DQ0, DQ1,...., DQ29, DQ30, or DQ31. - 3. ^tQSQ is derived at each DQS clock edge and is not cumulative over time and begins with DQS transition and ends with the last valid DQ transition. - 4. ^tQH is derived from ^tHP: ^tQH = ^tHP ^tQHS. - 5. ^tHP is the lesser of ^tCL or ^tCH clock transition collectively when a bank is active. - 6. The data valid window is derived for each DQS transition and is ^tQH minus ^tDQSQ. - 7. Drawing may not be to scale. Data Output Timing - ^tAC and ^tDQSCK Figure 33: 1. DQ transitioning after DQS transition define ^tDQSQ window. - 2. All DQ must transition by ^tDQSQ after DQS transitions, regardless of ^tAC. - 3. [†]AC is the DQ output window relative to CK, and is the "long term" component of DQ skew. Figure 34: **Data Input Timing** - 1. ^tDSH (MIN) generally occurs during ^tDQSS (MIN). - 2. ^tDSS (MIN) generally occurs during ^tDQSS (MAX). - 3. WRITE command issued at T0. - 4. LDQS controls the lower byte and UDQS controls the upper byte. - 5. LDM controls the lower byte and UDM controls the upper byte. Figure 35: **Initialize and Load Mode Registers** - 1. PRE = PRECHARGE command, LMR = LOAD MODE REGISTER command, AR = AUTO REFRESH command, ACT = ACTIVE command, RA = Row address, BA = Bank address. - 2. NOP or DESELECT commands are required for at least 200µs. - 3. Other valid commands are possible. - 4. NOPs or DESELECTs are required during this time. Figure 36: Power-Down Mode (Active or Precharge) - 1. If this command is a PRECHARGE (or if the device is already in the idle state), then the power-down mode shown is precharge power-down. If this command is an ACTIVE (or if at least one row is already active), then the power-down mode shown is active power-down. - 2. No column accesses are allowed to be in progress at the time power-down is entered. - 3. There must be at least one clock pulse during ^tPDX time. Figure 37: Auto Refresh Mode DON'T CARE - PRE = PRECHARGE, ACT = ACTIVE, AR = AUTO REFRESH, RA = Row address, BA = Bank address. - 2. NOP commands are shown for ease of illustration; other valid commands may be possible at these times. CKE must be active during clock positive transitions. - 3. NOP or COMMAND INHIBIT are the only commands allowed until after ^tRFC time, CKE must be active during clock positive transitions. - 4. "Don't Care" if A10 is HIGH at this point; A10 must be HIGH if more than one bank is active (i.e., must precharge all active banks). - 5. DM, DQ, and DQS signals are all "Don't Care"/High-Z for operations shown. - 6. The second AUTO REFRESH is not required and is only shown as an example of two back-to-back AUTO REFRESH commands. Figure 38: Self Refresh Mode - 1. Clock must be stable before exiting self refresh mode. That is, the clock must be cycling within specifications by TaO. - 2. Device must be in the all banks idle state prior to entering self refresh mode. - 3. NOPs or DESELECT are required for ^tXSR time with at least two clock pulses. - 4. AR = AUTO REFRESH command. Figure 39: Bank Read - Without Auto Precharge - 1. DOUT n = data-out from column n. - 2. BL = 4 in the case shown. - 3. Disable auto precharge. - 4. PRE = PRECHARGE, ACT = ACTIVE, RA = Row address, BA = Bank address. - 5. NOP commands are shown for ease of illustration; other commands may be valid at these times. - 6. The PRECHARGE command can only be applied at T5 if ^tRAS minimum is met. - 7. Refer to Figure 32 on page 55 and Figure 33 on page 56 for detailed DQS and DQ timing. Bank Read - With Auto Precharge Figure 40: - 1. Dout n = data-out from column n. - 2. BL = 4 in the case shown. - 3. Enable auto precharge. - 4. PRE = PRECHARGE, ACT = ACTIVE, RA = Row address, BA = Bank address. - 5. NOP commands are shown for ease of illustration; other commands may be valid at these - 6. Refer to Figure 32 on page 55 and Figure 33 on page 56 for detailed DQS and DQ timing. Figure 41: Bank Write - Without Auto Precharge - 1. DI b = data-out from column n. - 2. BL = 4 in the case shown. - 3. Disable auto precharge. - 4. "Don't Care" if A10 is HIGH at T5. - 5. PRE = PRECHARGE, ACT = ACTIVE, RA = Row address, BA = Bank address. - 6. NOP commands are shown for ease of illustration; other commands may be valid at these times - 7. ^tDSH is applicable during ^tDQSS (MIN) and is referenced from CK T4 or T5. - 8. ^tDSH is applicable during ^tDQSS (MIN) and is referenced from CK T5 or T6. Figure 42: Bank Write - With Auto Precharge Notes: 1. D - 1. DI b= data-out from column n. - 2. BL = 4 in the case shown. - 3. Disable auto precharge. - 4. PRE = PRECHARGE, ACT = ACTIVE, RA = Row address, BA = Bank address. - 5. NOP commands are shown for ease of illustration; other commands may be valid at these times. - 6. ^tDSH is applicable during ^tDQSS (MIN) and is referenced from CK T4 or T5. - 7. ^tDSH is applicable during ^tDQSS (MIN) and is referenced from CK T5 or T6. Figure 43: Write - DM Operation - 1. DI b = data-out from column n. - 2. BL = 4 in the case shown. - 3. Disable auto precharge. - 4. "Don't Care" if A10 is HIGH at T5. - 5. PRE = PRECHARGE, ACT = ACTIVE, RA = Row address, BA = Bank address. - 6. NOP commands are shown for ease of illustration; other commands may be valid at these times. - 7. ^tDSH is applicable during ^tDQSS (MIN) and is referenced from CK T4 or T5. - 8. ^tDSH is applicable during ^tDQSS (MIN) and is referenced from CK T5 or T6. ## **Package Dimensions** Figure 44: 60-Ball VFBGA Package 8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 prodmktg@micron.com www.micron.com Customer Comment Line: 800-932-4992 Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners. Advance: This data sheet contains initial descriptions of products still under development.