
INTERNATIONAL RECTIFIER

REPETITIVE AVALANCHE RATED AND dv/dt RATED

HEXFET® TRANSISTOR

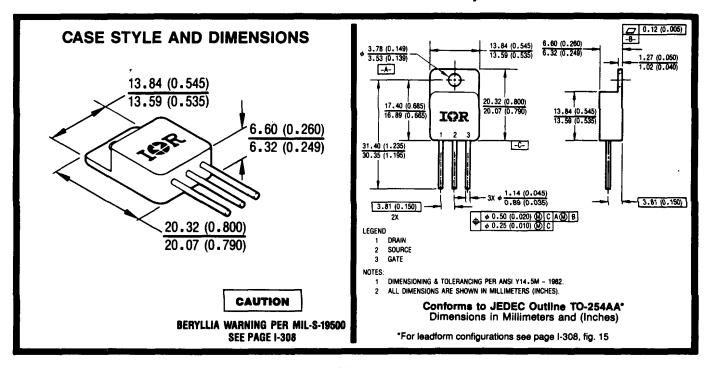
N-CHANNEL

IRFM150 2N7224 JANTX2N7224 JANTXV2N7224 (REF: MIL-8-19500/592)

100 Volt, 0.07 Ohm HEXFET

The HEXFET® technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance.

The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.


They are well suited for applications such as switching power supplies and virtually any application where military and/or high reliability is required.

Product Summary

Part Number	BVDSS	R _{DS(on)}	ΙD
IRFM150	100V	0.07Ω	34A

FEATURES:

- Repetitive Avalanche Rating
- Isolated and Hermetically Sealed
- Alternative to TO-3 Package
- Simple Drive Requirements
- Ease of Paralleling
- Ceramic Eyelets

IRFM150, JANTXV, JANTX-, 2N7224 Devices

Absolute Maximum Ratings

Parame	iter	IRFM150, JANTXV, JANTX-, 2N7224	Units	
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	34		
ID @ VGS = 10V, TC = 100°C	Continuous Drain Current	21		
рм	Pulsed Drain Current ①	136		
PD @ T _C = 25°C	Max. Power Dissipation	150	w	
	Linear Derating Factor	1.2	W/K ⑤	
V _{GS}	Gate-to-Source Voltage	±20	V	
EAS	Single Pulse Avalanche Energy 2	150 (See Fig. 12)	mJ	
AR	Avalanche Current ①	34 (See E _{AR})	٨	
E _{AR}	Repetitive Avalanche Energy ①	15 (See Fig. 13)	mJ	
dv/dt	Peak Diode Recovery dv/dt 3	5.5 (See Fig. 13)	V/ns	
T _J TSTG	Operating Junction Storage Temperature Range	-55 to 150	•c	
	Lead Temperature	300 (0.063 in. (1.6 mm) from case for 10s)		
	Weight	9.3 (typical)	9	

Electrical Characteristics @ T_J = 25°C (Unless Otherwise Specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	100		_	٧	V _{GS} = 0V, I _D = 1.0 mA
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	0.13	_	V/°C	Reference to 25°C, I _D = 1.0 mA
R _{DS(on)}	Static Drain-to-Source On-State Resistance	_		0.07	Ω	V _{GS} = 10V, I _D = 21A
	On-State nesistance	_	_	0.081		V _{GS} = 10V, I _D = 34A
V _{GS(th)}	Gate Threshold Voltage	2.0	_	4.0	٧	V _{DS} = V _{GS} , I _D = 250 μA
9fs	Forward Transconductance	9.0	_	_	S (0)	V _{DS} ≥ 15V, I _{DS} = 21A ④
IDSS	Zero Gate Voltage Drain Current	-	_	25		V _{DS} = 0.8 x Max. Rating, V _{GS} = 0V
		_	-	250	μΑ	V _{DS} = 0.8 x Max. Rating
						V _{GS} = 0V, T _J = 125°C
lgss	Gate-to-Source Leakage Forward			100	nA	V _{GS} = 20V
lgss	Gate-to-Source Leakage Reverse	_	_	-100] "	V _{GS} = -20V
Qg	Total Gate Charge	50	_	125		V _{GS} = 10V, I _D = 34A
Q _{gs}	Gate-to-Source Charge	8		22	nC	V _{DS} = 0.5 x Max. Rating
Q _{gd}	Gate-to-Drain ("Miller") Charge	15	_	65		See Fig. 6 and 14
^t d(on)	Turn-On Delay Time	-	_	35		V _{DD} = 50V, I _D = 34A, R _G = 2.35Ω
t _r	Rise Time	_	_	190	ns	
^t d(off)	Turn-Off Delay Time	_	_	170	1 "	See Fig. 11
t _f	Fall Time			130	1	
LD	Internal Drain Inductance	_	8.7	-	nH	Measured from the drain lead, 6 mm (0.25 in.) from package to center of die. Modified MOSFET symbol showing the internal inductances.
LS	Internal Source Inductance	_	8.7	_	'"'	Measured from the source lead, 6 mm (0.25 in.) from package to source bonding pad.
C _{iss}	Input Capacitance	_	3700	_		V _{GS} = 0V, V _{DS} = 25V
C _{OSS}	Output Capacitance	-	1100	_	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance	_	200	-	, P'	See Fig. 5
CDC	Drain-to-Case Capacitance	_	12	<u> </u>	1	

IRFM150, JANTXV, JANTX-, 2N7224 Devices

Source-Drain Diode Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Is	Continuous Source Current (Body Diode)	_		34	A	Modified MOSFET symbol showing the integral Reverse p-n junction rectifier.
ISM	Pulsed Source Current (Body Diode) ①	_	_	136		
V _{SD}	Diode Forward Voltage		_	1.8	V	T _J = 25°C, I _S = 34A, V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time	_	_	500	nS	$T_{J} = 25^{\circ}\text{C}, I_{F} = 34\text{A}, di/dt \le 100 \text{ A}/\mu\text{s}$
QRR	Reverse Recovery Charge	_	_	2.9	μC	V _{DD} ≤ 50V
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.				

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
RthJC	Junction-to-Case	_	_	0.83		
RthCS	Case-to-Sink	_	0.21	_	k/w (5)	Mounting surface flat, smooth, and greased
RthJA	Junction-to-Ambient	-	_	48]	Typical socket mount

Repetitive Rating; Pulse width limited by maximum junction temperature (see figure 9) Refer to current HEXFET reliability report

⑤ K/W = °C/W W/K = W/°C

② ϕ V_{DD} = 25V, Starting T_J = 25°C, L \geq 200 μ H, R_G = 25 Ω , Peak I_L = 34A

³ I_{SD} ≤ 34A, di/dt ≤ 70 A/μs, V_{DD} ≤ BV_{DSS}, T_J ≤ 150°C Suggested R_G = 2.35 Ω

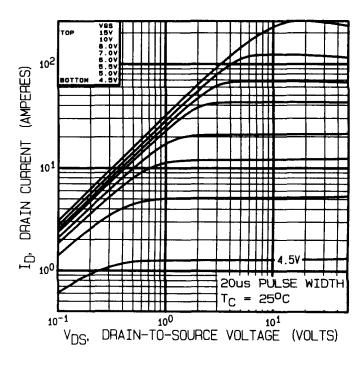


Fig. 1 — Typical Output Characteristics, T_C = 25°C

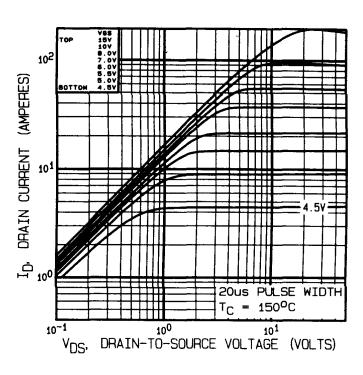


Fig. 2 — Typical Output Characteristics, T_C = 150°C

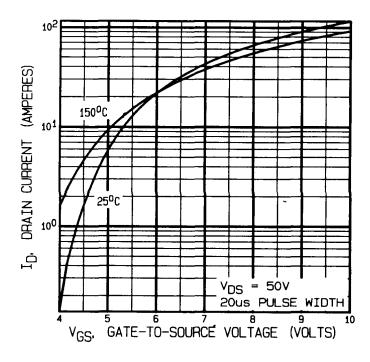


Fig. 3 — Typical Transfer Characteristics

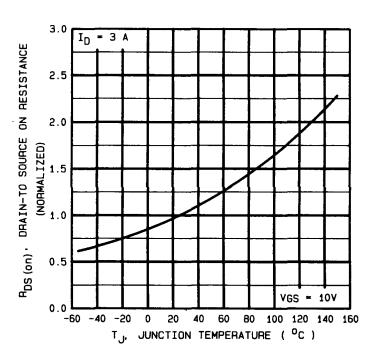


Fig. 4 — Normalized On-Resistance Vs. Temperature

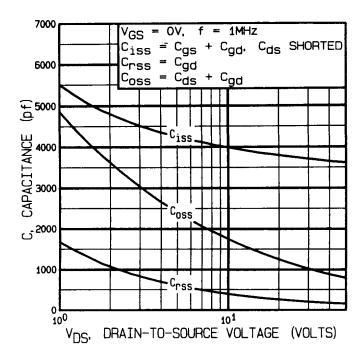


Fig. 5 — Typical Capacitance Vs. Drain-to-Source Voltage

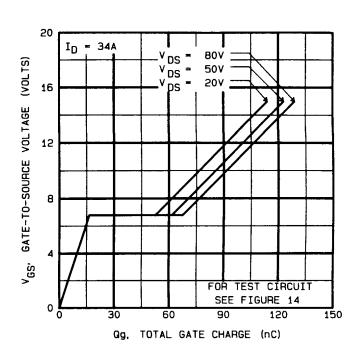


Fig. 6 — Typical Gate Charge Vs. Gate-to-Source Voltage

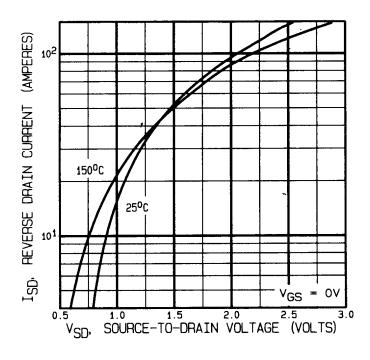


Fig. 7 — Typical Source-Drain Diode Forward Voltage

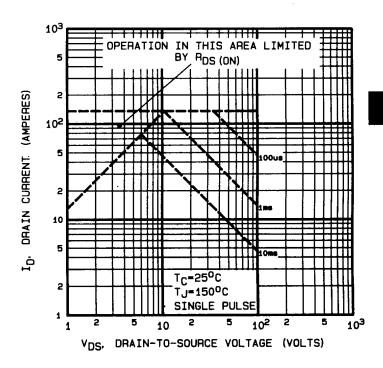


Fig. 8 — Maximum Safe Operating Area

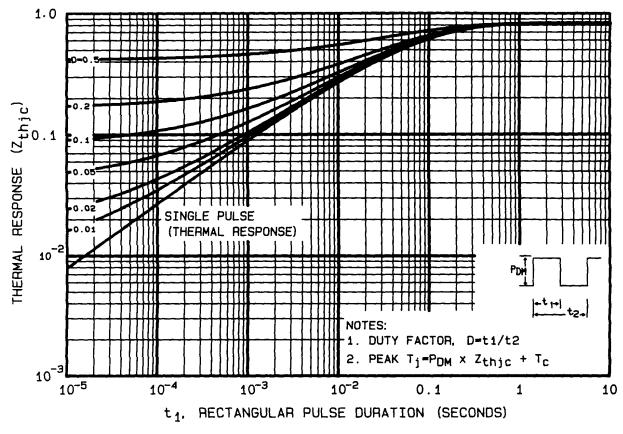


Fig. 9 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

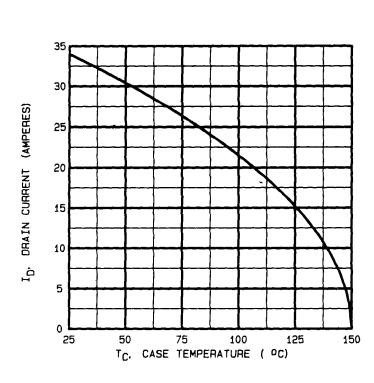


Fig. 10 — Maximum Drain Current Vs. Case Temperature

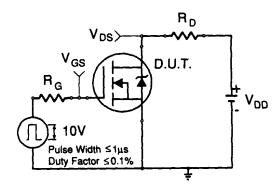


Fig. 11a — Switching Time Test Circuit

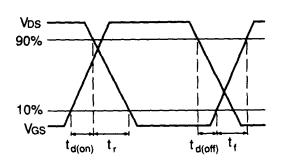


Fig. 11b - Switching Time Waveforms

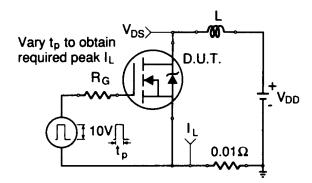


Fig. 12a — Unclamped Inductive Test Circuit

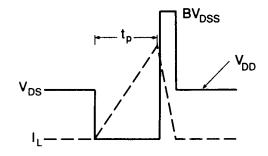


Fig. 12b — Unclamped Inductive Waveforms

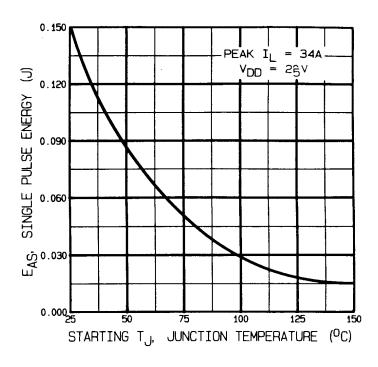


Fig. 12c — Maximum Avalanche Energy Vs. Starting Junction Temperature

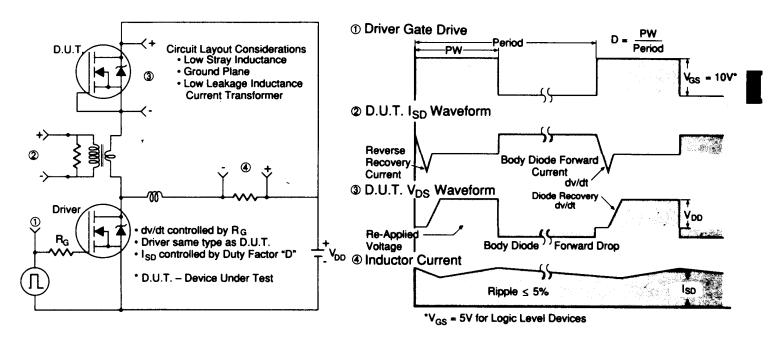
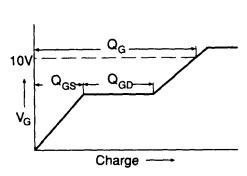



Fig. 13 — Peak Diode Recovery dv/dt Test Circuit

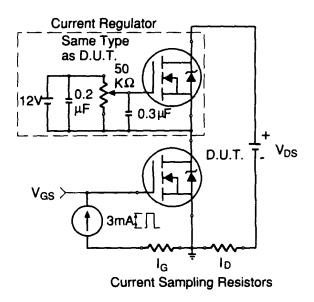


Fig. 14b - Gate Charge Test Circuit

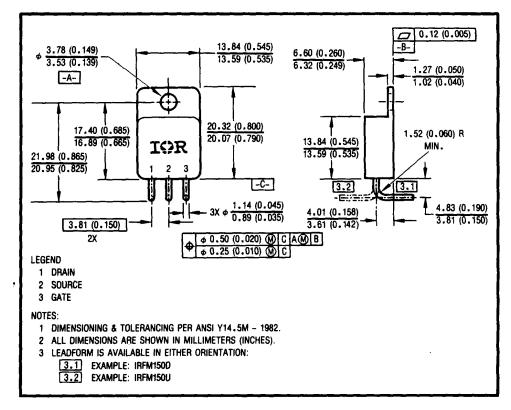


Fig. 15 - Optional Leadforms for Outline TO-254

BERYLLIA WARNING PER MIL-S-19500

Packages containing beryilia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryilia or beryilium dust. Furthermore, beryilium oxide packages shall not be placed in acids that will produce tumes containing beryilium.