

Downloaded from Elcodis.com electronic components distributor

1

www.fairchildsemi.com

Quantity

2500 units

Units

V

V

А

mJ

\٨/

°C

°C/W

October 2006

FDD4685 40V P-Channel PowerTrench[®] MOSFET **-40V, -32A, 27m**Ω

Features

FAIRCHILD

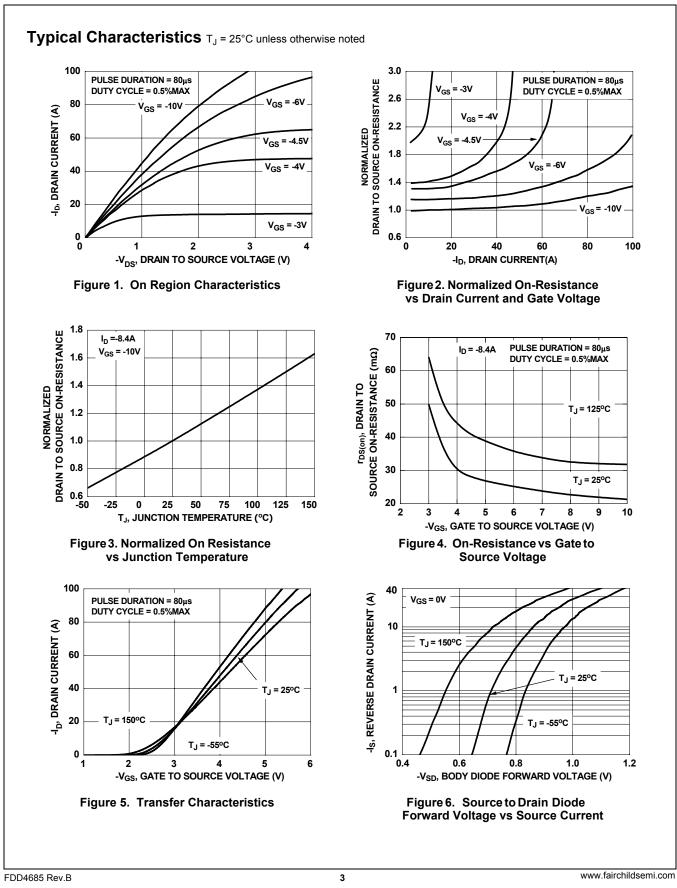
SEMICONDUCTOR

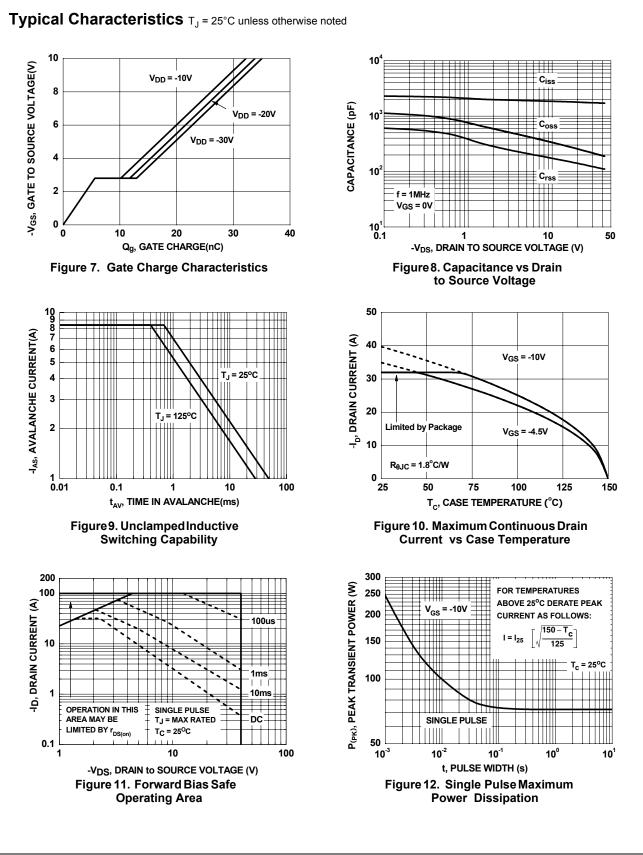
- Max $r_{DS(on)}$ = 27m Ω at V_{GS} = -10V, I_D = -8.4A
- Max $r_{DS(on)}$ = 35m Ω at V_{GS} = -4.5V, I_D = -7A
- High performance trench technology for extremely low r_{DS(on)}
- RoHS Compliant

General Description

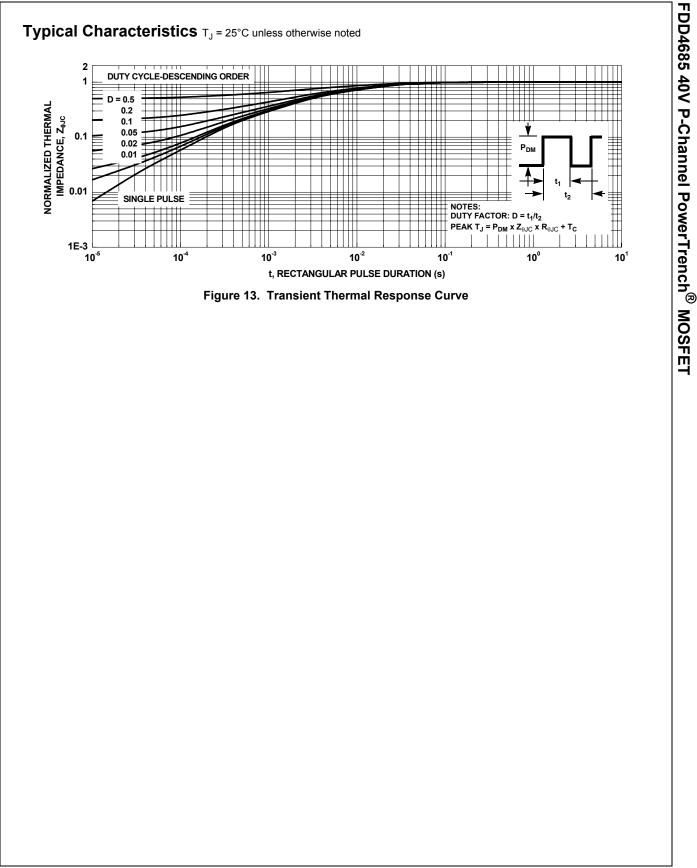
This P-Channel MOSFET has been produced using Fairchild Semiconductor's proprietary PowerTrench® technology to deliver low $r_{\text{DS}(\text{on})}$ and good switching characteristic offering superior performance in application.

Application


- Inverter
- Power Supplies



Cteristics Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current	$I_{D} = -250\mu A, V_{GS} = 0V$ $I_{D} = -250\mu A, referenced to 25°C$ $V_{DS} = -32V, V_{GS} = 0V$	-40	-33		V
Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	$I_D = -250\mu$ A, referenced to 25°C $V_{DS} = -32V$, $V_{GS} = 0V$	-40	-33		V
Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	$I_D = -250\mu$ A, referenced to 25°C $V_{DS} = -32V$, $V_{GS} = 0V$	-	-33		
-					mV/°C
Gate to Source Leakage Current				-1	μA
	$V_{GS} = \pm 20V, V_{GS} = 0V$			±100	nA
cteristics (Note 2)					•
	$V_{CS} = V_{DS}$, $I_{D} = -250 \mu A$	-1	-1.6	-3	V
Gate to Source Threshold Voltage	$I_D = -250\mu$ A, referenced to 25°C		4.9		mV/°C
	$V_{GS} = -10V, I_{D} = -8.4A$		23	27	
Static Drain to Source On Resistance			30	35	mΩ
	$V_{GS} = -10V, I_D = -8.4A, T_J = 125^{\circ}C$		33	42	1
Forward Transconductance	$V_{DS} = -5V, I_{D} = -8.4A$		23		S
Characteristics	1 1		1700		
1 1	$-V_{DS} = -20V, V_{GS} = 0V,$				pF
	f = 1MHz				pF
,	6 - 4MU -			205	pF
Gate Resistance	I = IMHZ		4		Ω
g Characteristics					
Turn-On Delay Time			8	16	ns
Rise Time			15	27	ns
Turn-Off Delay Time	$V_{GS} = -10V, R_{GEN} = 6\Omega$		34	55	ns
Fall Time			14	26	ns
Total Gate Charge	V _{DD} =–20V, I _D = –8.4A		19	27	nC
Gate to Source Gate Charge	$V_{GS} = -5V$		5.6		nC
Oute to obtilite Oute Onlarge			6.1		nC
Gate to Drain "Miller" Charge				-	
					1
Gate to Drain "Miller" Charge	V _{GS} = 0V, I _S = -8.4A (Note 2)		-0.85	-1.2	V
Gate to Drain "Miller" Charge	$V_{GS} = 0V, I_S = -8.4A$ (Note 2) $I_F = -8.4A, di/dt = 100A/\mu s$			-1.2 45	V
	Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance Characteristics Input Capacitance Output Capacitance Gate Resistance John Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time		$ \begin{array}{ c c c c } \hline Gate to Source Threshold Voltage Temperature Coefficient & I_D = -250 \mu A, referenced to 25°C & \\ \hline I_D = -250 \mu A, referenced to 25°C & \\ \hline V_{GS} = -10V, I_D = -8.4A & \\ \hline V_{GS} = -10V, I_D = -8.4A & \\ \hline V_{GS} = -10V, I_D = -8.4A & \\ \hline V_{GS} = -10V, I_D = -8.4A & \\ \hline V_{DS} = -5V, I_D = -8.4A & \\ \hline \hline Characteristics & \\ \hline Input Capacitance & \\ Output Capacitance & \\ Output Capacitance & \\ Gate Resistance & f = 1MHz & \\ \hline \hline Gate Resistance & \\ \hline Ium-On Delay Time & \\ \hline Turn-On Delay Time & \\ \hline Turn-Off Delay Time & \\ \hline Fall Time & \\ \hline \hline \hline Fall Time & \\ \hline \hline \end{array} $	$ \begin{array}{ c c c c } \hline Gate to Source Threshold Voltage Temperature Coefficient & I_D = -250 \mu A, referenced to 25°C & 4.9 \\ \hline I_D = -250 \mu A, referenced to 25°C & 4.9 \\ \hline V_{GS} = -10V, I_D = -8.4A & 23 \\ \hline V_{GS} = -4.5V, I_D = -7A & 30 \\ \hline V_{GS} = -10V, I_D = -8.4A, T_J = 125°C & 33 \\ \hline Forward Transconductance & V_{DS} = -5V, I_D = -8.4A & 23 \\ \hline Characteristics & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{ c c c c c c c c } \hline Gate to Source Threshold Voltage Temperature Coefficient & I_D = -250 \mu A, referenced to 25°C & 4.9 & \\ \hline I_D = -250 \mu A, referenced to 25°C & 4.9 & \\ \hline V_{GS} = -10V, I_D = -8.4A & 23 & 27 & \\ \hline V_{GS} = -4.5V, I_D = -7A & 30 & 35 & \\ \hline V_{GS} = -10V, I_D = -8.4A, T_J = 125°C & 33 & 42 & \\ \hline Forward Transconductance & V_{DS} = -5V, I_D = -8.4A & 23 & \\ \hline Characteristics & & & & & & & & & & & \\ \hline Input Capacitance & & & & & & & & & & & & & & & \\ \hline Input Capacitance & & & & & & & & & & & & & & & & & & &$


FDD4685 Rev.B

www.fairchildsemi.com

FDD4685 40V P-Channel PowerTrench[®] MOSFET

FDD4685 Rev.B

www.fairchildsemi.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	OCX™	SILENT SWITCHER®	UniFET™
ActiveArray™	GlobalOptoisolator™	OCXPro™	SMART START™	UltraFET [®]
Bottomless™	GTO™	OPTOLOGIC®	SPM™	VCX™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™	Wire™
CoolFET™	I ² C™	PACMAN™	SuperFET™	
CROSSVOLT™	i-Lo™	POP™	SuperSOT™-3	
DOME™	ImpliedDisconnect [™]	Power247™	SuperSOT™-6	
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8	
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™	
EnSigna™	LittleFET™	PowerTrench [®]	TCM™	
FACT™	MICROCOUPLER™	QFET [®]	TinyBoost™	
FAST [®]	MicroFET™	QS™	TinyBuck™	
FASTr™	MicroPak™	QT Optoelectronics [™]	TinyPWM™	
FPS™	MICROWIRE™	Quiet Series™	TinyPower™	
FRFET™	MSX™	RapidConfigure™	TinyLogic [®]	
	MSXPro™	RapidConnect™	TINYOPTO™	
Across the board. Aroun	d the world.™	µSerDes™	TruTranslation™	
The Power Franchise $^{\mathbb{R}}$		ScalarPump™	UHC™	
Programmable Active Dr	roop™			

DISCLAIMER

DISCLAIMEN FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.		

Rev 120

FDD4685 Rev. B