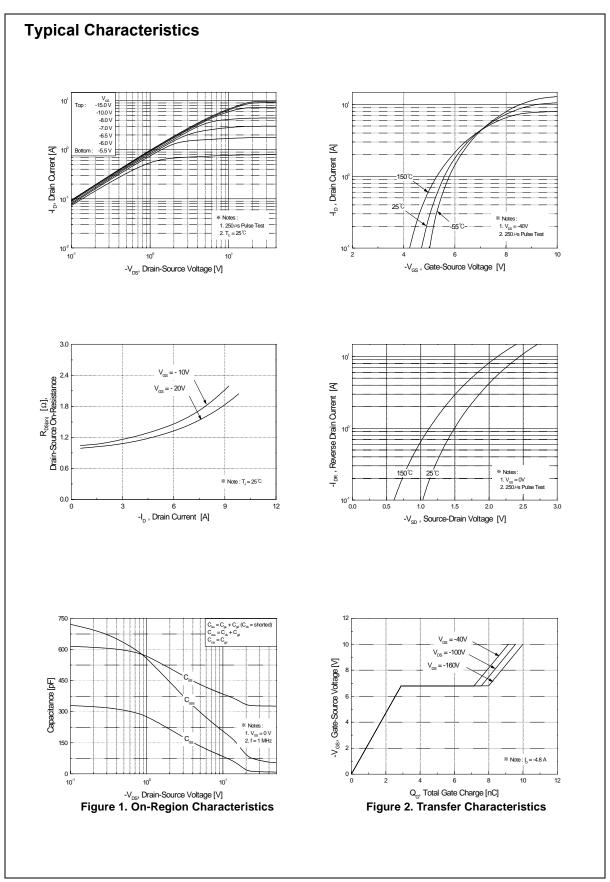
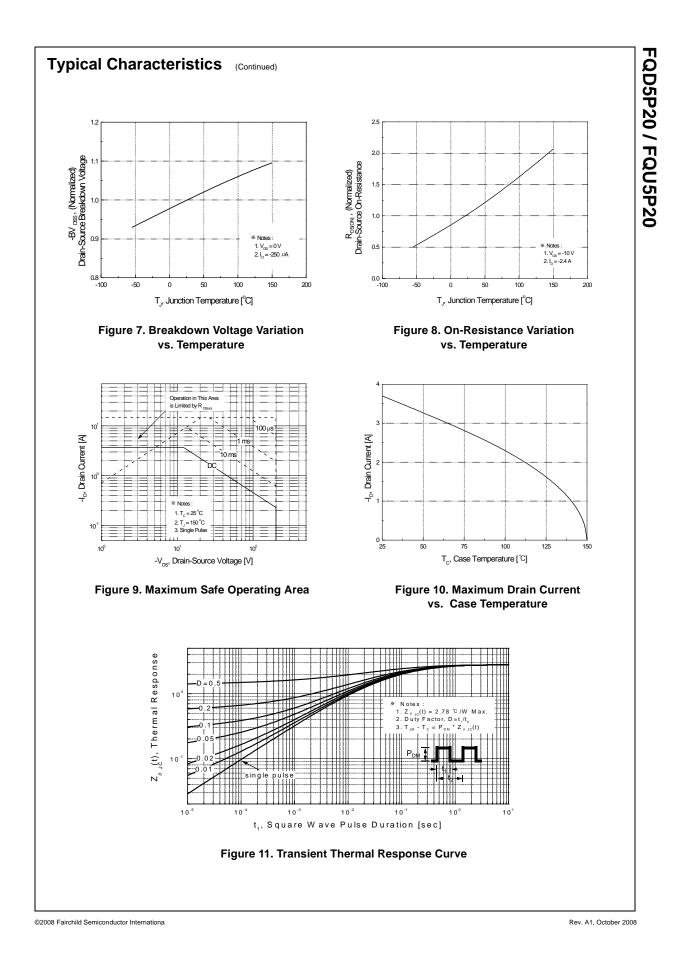
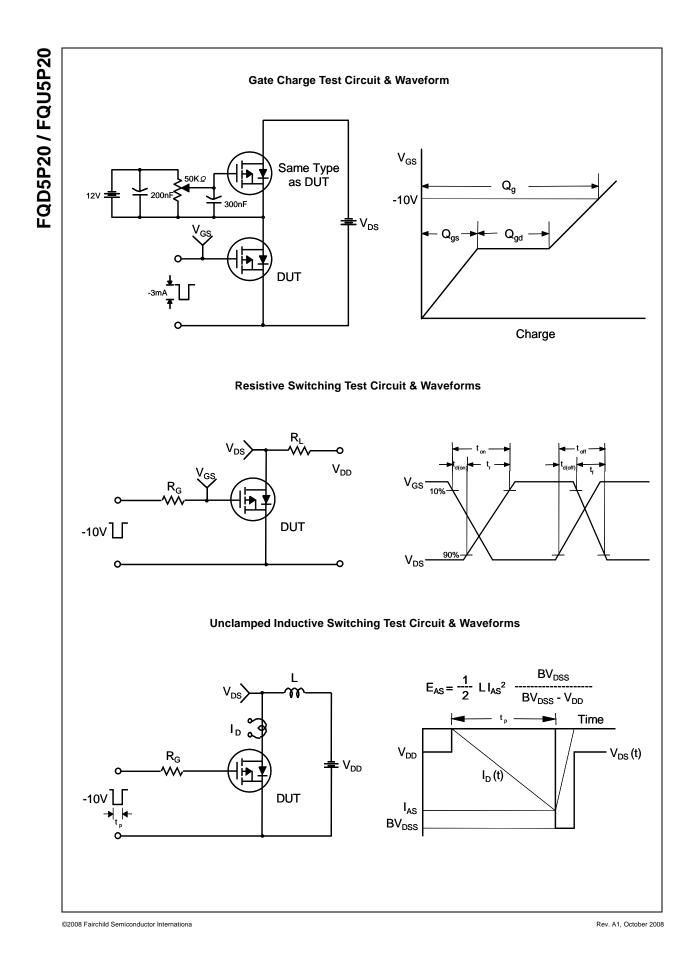


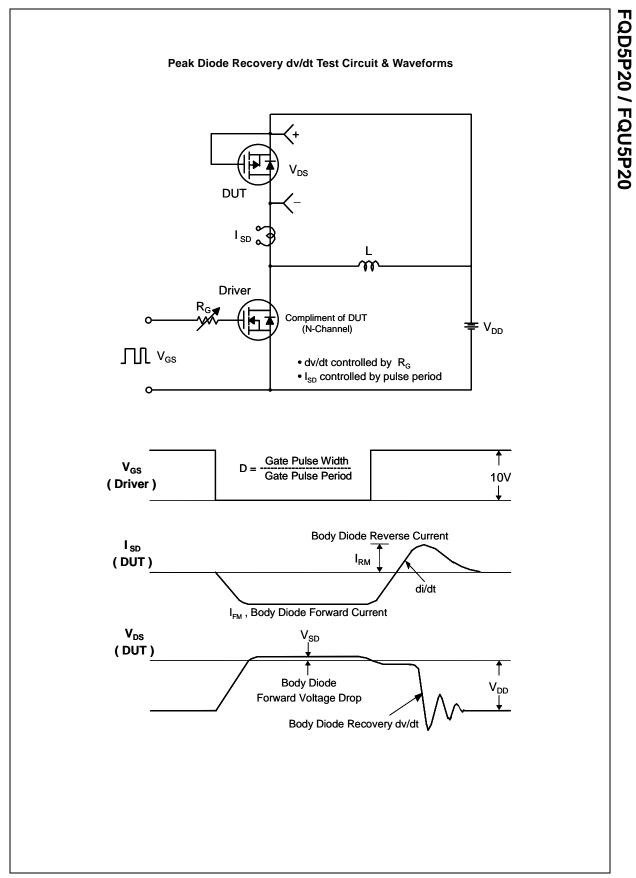
Symbol	Parameter		FQD5P20 / FQU5P20	Units
V _{DSS}	Drain-Source Voltage		-200	V
I _D	Drain Current - Continuous ($T_C = 25^\circ$	C)	-3.7	А
	- Continuous (T _C = 100°C)		-2.34	А
I _{DM}	Drain Current - Pulsed	(Note 1)	-14.8	Α
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	330	mJ
I _{AR}	Avalanche Current	(Note 1)	-3.7	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	4.5	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-5.5	V/ns
P _D	Power Dissipation ($T_A = 25^{\circ}C$) *		2.5	W
	Power Dissipation ($T_C = 25^{\circ}C$)		45	W
	- Derate above 25°C		0.36	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
Τ _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

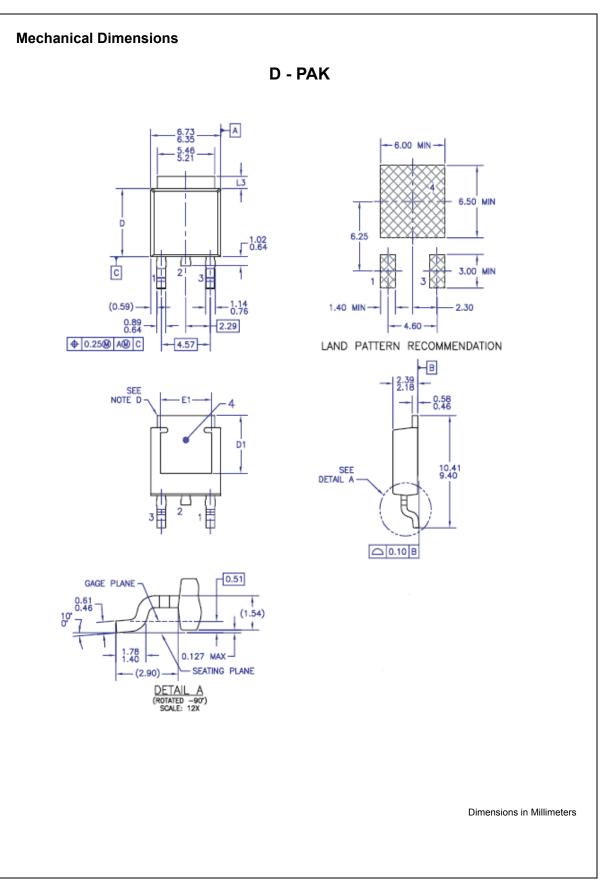

Thermal Characteristics


Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		2.78	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W

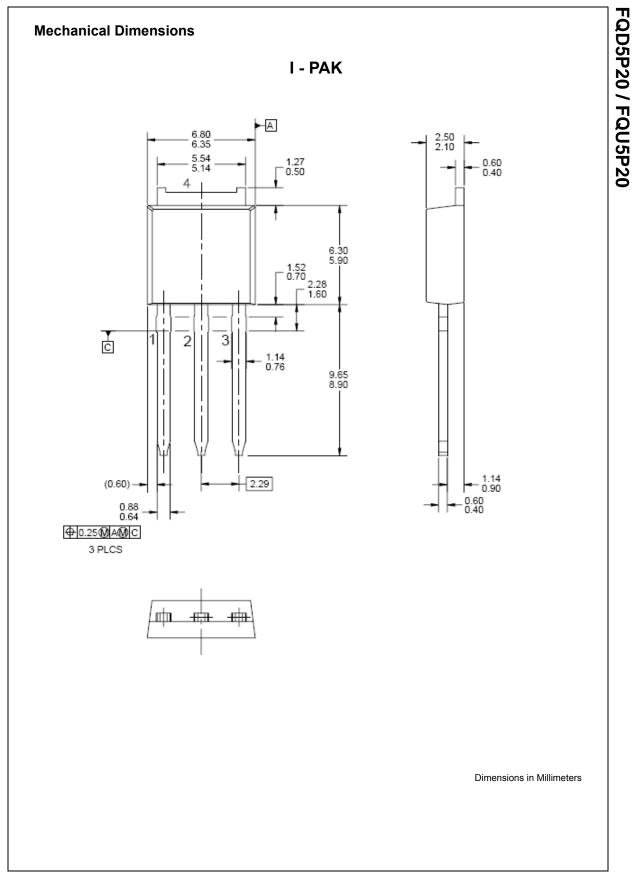
©2008 Fairchild Semiconductor Internationa


	Parameter	Test Conditions	Min	Тур	Max	Units
	restariation					
Sh Cha BV _{DSS}	racteristics Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = -250 μA	-200			V
ABV _{DSS}	Breakdown Voltage Temperature	$I_D = -250 \mu\text{A}$, Referenced to 25°C		-0.17		V/°C
ΔT_{J}	Coefficient	V _{DS} = -200 V, V _{GS} = 0 V			1	
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -200 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -160 \text{ V}, T_{C} = 125^{\circ}\text{C}$			-1 -10	μΑ μΑ
GSSF	Gate-Body Leakage Current, Forward	$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-100	nA
GSSR	Gate-Body Leakage Current, Reverse	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
		00 00				
	racteristics		1			
/ _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-3.0		-5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = -10•V, I _D = -1.85 A		1.1	1.4	Ω
JFS	Forward Transconductance	$V_{DS} = -40 \text{ V}, I_D = -1.85 \text{ A}$ (Note 4)		2.2		S
· · · · · · · ·						
	c Characteristics			220	400	~ -
C _{iss} C _{oss}	Input Capacitance Output Capacitance	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$		330 75	430	рF
	Output Capacitance	f = 1.0 MHz			98	pF
C _{rss} Switchi	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time	V - 100 V I - 48 A		12 9	15 28	pF ns
C _{rss} Switchi	ng Characteristics					
Srss	ng Characteristics	$V_{DD} = -100 \text{ V}, \text{ I}_{D} = -4.8 \text{ A},$ Bo = 25 0				
C _{rss} Switchi d(on)	ng Characteristics Turn-On Delay Time	V_{DD} = -100 V, I _D = -4.8 A, R _G = 25 Ω		9	28	ns
C _{rss} Switchi d(on) r	ng Characteristics Turn-On Delay Time Turn-On Rise Time			9 70	28 150	ns ns
Crss Switchi d(on) r d(off) f	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	R _G = 25 Ω (Note 4, 5)		9 70 12	28 150 35	ns ns ns
Switchi d(on) r d(off) f Q _g	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$R_{G} = 25 \Omega$	 	9 70 12 25	28 150 35 60	ns ns ns ns
Crss Switchi d(on) r d(off) f	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$R_{G} = 25 \Omega$ (Note 4, 5) V _{DS} = -160 V, I _D = -4.8 A,	 	9 70 12 25 10	28 150 35 60 13	ns ns ns ns nC
\sum_{rss} Switchi d(on) r d(off) f λ_{g} λ_{gs} λ_{gd} Drain-S s	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics ar Maximum Continuous Drain-Source Dio	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -160 V, I_{D} = -4.8 A,$ $V_{GS} = -10 V$ (Note 4, 5) (Note 4, 5	 	9 70 12 25 10 2.8 5.2	28 150 35 60 13 	ns ns ns nC nC nC
Crss Switchi d(on) r d(off) f Δg Δg Δg Δgg Δgg Drain-S S SM	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics ar Maximum Continuous Drain-Source Diode F	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -160 V, I_{D} = -4.8 A,$ $V_{GS} = -10 V$ (Note 4, 5) (Note 4, 5	 	9 70 12 25 10 2.8 5.2	28 150 35 60 13 	ns ns ns nC nC nC A A
C_{rss} Switchi d(on) r d(off) f Q_g Q_{gs} Q_{gd} Drain-S s SM /SD	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics ar Maximum Continuous Drain-Source Diode F Drain-Source Diode Forward Voltage	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -160 V, I_{D} = -4.8 A,$ $V_{GS} = -10 V$ (Note 4, 5) (Note 4, 5	 	9 70 12 25 10 2.8 5.2 	28 150 35 60 13 	ns ns ns nC nC nC A A V
Crss Switchi d(on) r d(off) f Δg Δg Δg Δgg Δgg Drain-S S SM	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics ar Maximum Continuous Drain-Source Diode F	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -160 V, I_{D} = -4.8 A,$ $V_{GS} = -10 V$ (Note 4, 5) (Note 4, 5	 	9 70 12 25 10 2.8 5.2	28 150 35 60 13 	ns ns ns nC nC nC A A





Downloaded from Elcodis.com electronic components distributor



FQD5P20 / FQU5P20

©2008 Fairchild Semiconductor Internationa

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTI ™ Current Transfer Logic™ EcoSPARK[®] EfficentMax™ EZSWITCH™ *

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FlashWriter[®] * **FPS™** F-PFS™

IntelliMAX™ ISOPI ANARTM MegaBuck[™] MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC[®] OPTOPLANAR[®] PDP SPM™ Power-SPM™ PowerTrench[®]

PowerXS™

FRFET®

GTO™

Green FPS™

Global Power ResourceSM

Green FPS™ e-Series™

Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW /W /kW at a time™ SmartMax™ SMART START™ SPM[®]

STEALTH™

SuperFET™

SuperSOT™-3

SuperSOT™-6

SuperSOT™-8

The Power Franchise[®]

SupreMOS™

SyncFET™

franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™

UHC® Ultra FRFET™ UniFET™ VCX[™] VisualMax™ XS™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. /

FQD5P20 / FQU5P20 Rev. A1