July 2000

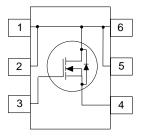
FAIRCHILD SEMICONDUCTOR

FDG315N N-Channel Logic Level PowerTrench[®] MOSFET

General Description

This N-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

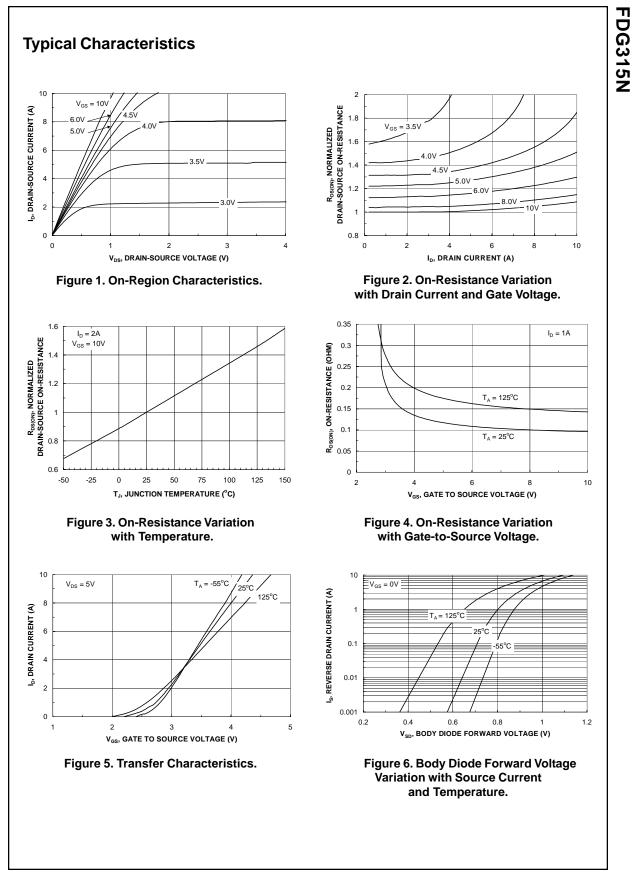

Applications

- DC/DC converter
- Load switch
- Power Management

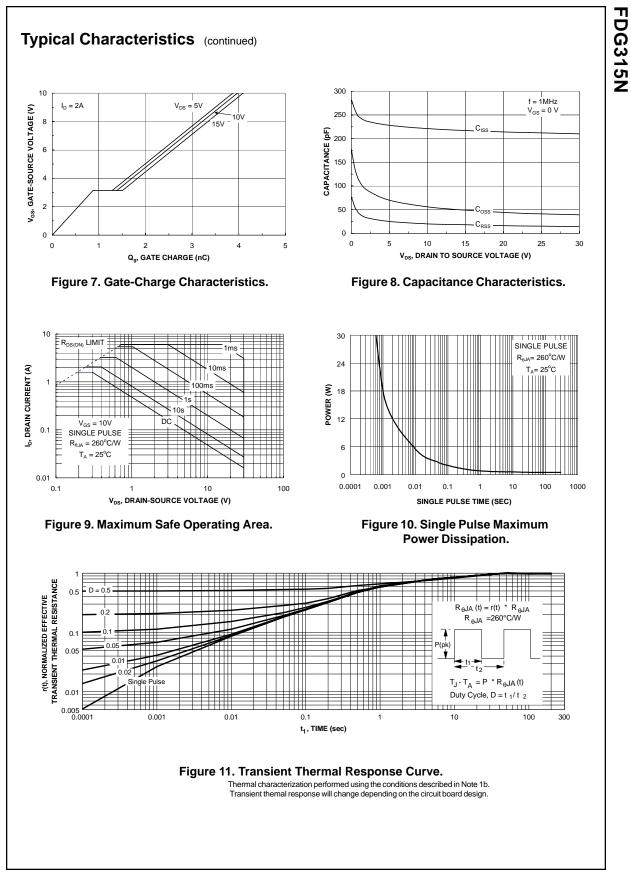
Features

- 2 A, 30 V. $R_{DS(ON)} = 0.12 \ \Omega \ @ V_{GS} = 10 \ V$ $R_{DS(ON)} = 0.16 \ \Omega \ @ V_{GS} = 4.5 \ V.$
- Low gate charge (2.1nC typical).
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}.$
- Compact industry standard SC70-6 surface mount package.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted


Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source Voltage			30	V
V _{GSS}	Gate-Source Voltage			±20	V
I _D	Drain Current - Continuous (Note 1a)			2	A
	- Pulsed			6	
PD	Power Dissipation for Single Operation (Note 1a)		(Note 1a)	0.75	W
			(Note 1b)	0.48	
T _J , T _{stq}	Operating and Storage Junction Temperature Range			-55 to +150	°C
Therma	I Characte	ristics			
Therma		ristics tance, Junction-to-Ambien	it (Note 1b)	260	°C/W
Reja Package	Thermal Resist	tance, Junction-to-Ambien and Ordering Inf	formation		
Reja Package	Thermal Resist	tance, Junction-to-Ambien		260 Tape Width	°C/W Quantity 3000 units

©2000 Fairchild Semiconductor International


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_D = 250 \mu A$	30			V
<u>ΔBVdss</u> ΔT.I	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25° C		26		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1	μA
GSS	Gate-Body Leakage Forward	$V_{GS} = 16 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
GSS	Gate-Body Leakage Reverse	$V_{GS} = -16 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	1	1.8	3	V
ΔV _{GS(th)} ΔT _J	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		-4		mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance			0.100 0.140 0.130	0.12 0.20 0.16	Ω
D(on)	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, I_D = 1.7 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$	3			A
G _{FS}	Forward Transconductance	$V_{DS} = 5 V, I_D = 2 A$		5		S
Dvnamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		220		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		50		pF
C _{rss}	Reverse Transfer Capacitance	1		20		pF
Switchin	g Characteristics (Note 2)					
l _{d(on)}	Turn-On Delay Time	V _{DD} = 15 V, I _D = 1 A,		3	6	ns
r	Turn-On Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		11	22	ns
d(off)	Turn-Off Delay Time			7	14	ns
lf	Turn-Off Fall Time	1		3	6	ns
Qg	Total Gate Charge	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 2 \text{ A},$		2.1	4	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 V$		0.8		nC
Q _{gd}	Gate-Drain Charge			0.7		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain-Source				0.42	A
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = 0.42 A$ (Note 2)		0.7	1.2	V
	of the junction-to-case and case-to-ambient thermatic $R_{\rm \theta JC}$ is guaranteed by design while $R_{\rm \theta CA}$ is determ	al resistance where the case thermal reference is defi ined by the user's board design.	ned as the so	older mounti	ng surface	

2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

FDG315N

FDG315N Rev. C

FDG315N Rev. C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM CROSSVOLTTM DOMETM E²CMOSTM EnSignaTM FACT T^M FACT Quiet SeriesTM FAST[®]

FASTr[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] POP[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		that has been discontinued by Fairchild semicond