BS270 # **N-Channel Enhancement Mode Field Effect Transistor** #### **General Description** These N-Channel enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 500mA DC. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications. #### **Features** - 400mA, 60V. $R_{DS(ON)} = 2\Omega$ @ $V_{GS} = 10V$. - High density cell design for low R_{DS(ON)}. - Voltage controlled small signal switch. - Rugged and reliable. - High saturation current capability. #### Absolute Maximum Ratings T_A = 25°C unless otherwise noted | Symbol | Parameter | BS270 | Units | |-------------------|--|------------|----------| | V _{DSS} | Drain-Source Voltage | 60 | V | | V_{DGR} | Drain-Gate Voltage ($R_{\rm gs} \leq 1 {\rm M}\Omega$) | 60 | V | | V_{GSS} | Gate-Source Voltage - Continuous | ±20 | V | | | - Non Repetitive (tp < 50µs) | ±40 | | | I _D | Drain Current - Continuous | 400 | mA | | | - Pulsed | 2000 | | | P _D | Maximum Power Dissipation | 625 | mW | | | Derate Above 25°C | 5 | mW/°C | | T_J , T_{STG} | Operating and Storage Temperature Range | -55 to 150 | ℃ | | T _L | Maximum Lead Temperature for Soldering
Purposes, 1/16" from Case for 10 Seconds | 300 | °C | | THERMA | L CHARACTERISTICS | | <u>.</u> | | R _{eJA} | Thermal Resistacne, Junction-to-Ambient | 200 | °C/W | ^{© 1997} Fairchild Semiconductor Corporation | Symbol | Parameter | Conditions | | Min | Тур | Max | Units | |---------------------|--|--|------------------------|------|------|-------|-------| | OFF CHAI | RACTERISTICS | | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | $V_{gs} = 0 \text{ V}, I_{D} = 10 \mu\text{A}$ | | 60 | | | V | | DSS | Zero Gate Voltage Drain Current | $V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$ | | | | 1 | μΑ | | | | | T _J = 125°C | | | 500 | μA | | GSSF | Gate - Body Leakage, Forward | $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ | | | | 10 | nA | | GSSF | Gate - Body Leakage, Reverse | $V_{gs} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ | | | | -10 | nA | | ON CHAR | ACTERISTICS (Note 1) | <u>.</u> | | | | • | | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | | 1 | 2.1 | 2.5 | V | | R _{DS(ON)} | Static Drain-Source On-Resistance | $V_{gs} = 10 \text{ V}, I_{D} = 500 \text{ mA}$ | | | 1.2 | 2 | Ω | | | | | T _J = 125°C | | 2 | 3.5 | | | | | $V_{gs} = 4.5 \text{ V}, I_{D} = 75 \text{ mA}$ | | | 1.8 | 3 | | | / _{DS(ON)} | Drain-Source On-Voltage | $V_{GS} = 10 \text{ V}, I_{D} = 500 \text{ mA}$ | | | 0.6 | 1 | V | | . , | | $V_{GS} = 4.5 \text{ V}, I_{D} = 75 \text{ mA}$ | | | 0.14 | 0.225 | | | D(ON) | On-State Drain Current | $V_{GS} = 10 \text{ V}, \ V_{DS} \ge 2 V_{DS(on)}$ | | 2000 | 2700 | | mA | | | | $V_{GS} = 4.5 \text{ V}, \ V_{DS} \ge 2 V_{DS(on)}$ | | 400 | 600 | | | |) _{FS} | Forward Transconductance | $V_{DS} \ge 2 V_{DS(on)}, I_D = 200 \text{ mA}$ | | 100 | 320 | | mS | | OYNAMIC | CHARACTERISTICS | | | | | | | | C _{iss} | Input Capacitance | $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$ | | | 20 | 50 | pF | | Coss | Output Capacitance | | | | 11 | 25 | pF | | O _{rss} | Reverse Transfer Capacitance | | | | 4 | 5 | pF | | SWITCHIN | G CHARACTERISTICS (Note 1) | | | | | | | | on | Turn-On Time | $V_{DD} = 30 \text{ V}, \ I_D = 500 \text{ m A},$ $V_{GS} = 10 \text{ V}, R_{GEN} = 25 \Omega$ | | | | 10 | ns | | off | Turn-Off Time | | | | | 10 | ns | | DRAIN-SO | URCE DIODE CHARACTERISTICS AND | MAXIMUM RATINGS | | | | | | | S | Maximum Continuous Drain-Source Diode Forward Current | | | | | 400 | mA | | SM | Maximum Pulsed Drain-Source Diode Forward Current | | | | 2000 | mA | | | / _{SD} | Drain-Source Diode Forward Voltage V _{GS} = 0 V, I _S = 400 mA (Note 1) | | | 0.88 | 1.2 | V | | Note: 1. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%. # **Typical Electrical Characteristics** Figure 1. On-Region Characteristics. Figure 2. On-Resistance Variation with Gate Voltage and Drain Current. Figure 3. On-Resistance Variation with Temperature. Figure 4. On-Resistance Variation with Drain Current and Temperature. Figure 5. Transfer Characteristics. Figure 6. Gate Threshold Variation with Temperature. BS270.SAM # **Typical Electrical Characteristics (continued)** Figure 7. Breakdown Voltage Variation with Temperature. Figure 8. Body Diode Forward Voltage Variation with Current and Temperature. Figure 9. Capacitance Characteristics. Figure 10. Gate Charge Characteristics. Figure 11. Switching Test Circuit. Figure 12. Switching Waveforms. BS270.SAM # Typical Electrical Characteristics (continued) Figure 13. Maximum Safe Operating Area. Figure 14. Transient Thermal Response Curve. BS270.SAM ©2001 Fairchild Semiconductor Corporation # TO-92 Tape and Reel Data, continued #### **TO-92 Reeling Style** Configuration: Figure 2.0 #### Machine Option "A" (H) Style "A", D26Z, D70Z (s/h) # Machine Option "E" (J) Style "E", D27Z, D71Z (s/h) #### **TO-92 Radial Ammo Packaging** Configuration: Figure 3.0 FIRST WIRE OFF IS COLLECTOR (ON PKG. 92) ADHESIVE TAPE IS ON BOTTOM SIDE FLAT OF TRANSISTOR IS ON TOP # **TO-92 Package Dimensions** # TO-92; TO-18 Reverse Lead Form (J35Z Option) (FS PKG Code 92, 94, 96) Scale 1:1 on letter size paper Dimensions shown below are in: inches [millimeters] Part Weight per unit (gram): 0.22 Note: All package 97 or 98 transistors are leadformed to this configuration prior to bulk shipment. Order L34Z option if in-line leads are preferred on package 97 or 98. January 2000, Rev. B ^{*} Standard Option on 97 & 98 package code #### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ QFET™ TinyLogic™ Bottomless™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™ DOME™ ISOPLANAR™ Quiet Series™ #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|---| | Advance Information | Formative or
In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. | Rev. G