

N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

Features

- Low Gate Threshold Voltage
- Low Input Capacitance
- Fast Switching Speed
- Low Input/Output Leakage
- High Drain-Source Voltage Rating
- Lead, Halogen and Antimony Free, RoHS Compliant
 "Green" Device (Notes 2 and 4)

Mechanical Data

- Case: SOT-23
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe).
- Terminal Connections: See Diagram
- Marking Information: See Page 3
- Ordering Information: See Page 3
- Weight: 0.008 grams (approximate)

Equivalent Circuit

TOP VIEW

Maximum Ratings $@T_A = 25^{\circ}C$ unless otherwise specified

Charact	eristic	Symbol	Value	Units	
Drain-Source Voltage		V _{DSS}	100	V	
Drain-Gate Voltage $R_{GS} \le 20 K\Omega$		V _{DGR}	100	V	
Gate-Source Voltage	Continuous	V _{GSS}	±20	V	
Drain Current (Note 1)	Continuous Pulsed	I _D I _{DM}	170 680	mA	

Thermal Characteristics @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Units		
Total Power Dissipation (Note 1)	Pd	300	mW		
Thermal Resistance, Junction to Ambient (Note 1)	R ₀ JA	417	°C/W		
Operating and Storage Temperature Range	Tj, T _{STG}	-55 to +150	°C		

Electrical Characteristics $@T_A = 25^{\circ}C$ unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition		
OFF CHARACTERISTICS (Note 3)	- - ,		. 71-					
Drain-Source Breakdown Voltage	BV _{DSS}	100		_	V	$V_{GS} = 0V, I_D = 250 \mu A$		
Zara Cata Valtaga Drain Current			_	1.0	μA	$V_{DS} = 100V, V_{GS} = 0V$		
Zero Gate Voltage Drain Current	IDSS			10	nA	$V_{DS} = 20V, V_{GS} = 0V$		
Gate-Body Leakage, Forward	I _{GSSF}	_		50	nA	$V_{GS} = 20V, V_{DS} = 0V$		
ON CHARACTERISTICS (Note 3)								
Gate Threshold Voltage	V _{GS(th)}	0.8	1.4	2.0	V	$V_{DS} = V_{GS}, I_D = 1mA$		
Static Drain-Source On-Resistance	Proven			6.0	Ω	$V_{GS} = 10V, I_D = 0.17A$		
Static Drain-Source On-Resistance	R _{DS (ON)}	_	—	10	52	V _{GS} = 4.5V, I _D = 0.17A		
Forward Transconductance	g fs	80	370		mS	V _{DS} = 10V, I _D = 0.17A, f = 1.0KHz		
Drain-Source Diode Forward Voltage	V _{SD}		0.84	1.3	V	$V_{GS} = 0V, I_{S} = 0.34A$		
DYNAMIC CHARACTERISTICS								
Input Capacitance	Ciss		29	60	pF			
Output Capacitance	C _{oss}		10	15	pF	$V_{DS} = 25V, V_{GS} = 0V, f = 1.0MHz$		
Reverse Transfer Capacitance	Crss		2	6	pF	1		
SWITCHING CHARACTERISTICS								
Turn-On Rise Time	t _r			8	ns			
Turn-Off Fall Time	t _f			16	ns	$V_{DD} = 30V, I_D = 0.28A,$		
Turn-On Delay Time	t _{D(ON)}			8	ns	$R_{GEN} = 50\Omega$, $V_{GS} = 10V$		
Turn-Off Delay Time	t _{D(OFF)}			13	ns			

Notes: 1. Part mounted on FR-4 board with recommended pad layout, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf. 2. No purposefully added lead. Halogen and Antimony Free.

3. Short duration pulse test used to minimize self-heating effect.

 Product manufactured with Data Code V9 (week 33, 2008) and newer are built with Green Molding Compound. Product manufactured prior to Date Code V9 are built with Non-Green Molding Compound and may contain Halogens or Sb₂O₃ Fire Retardants.

BSS123

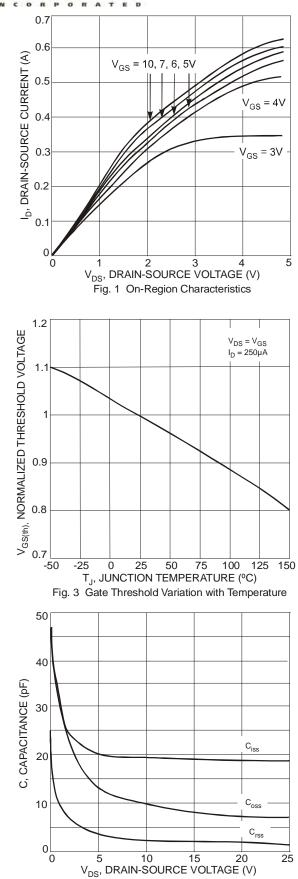
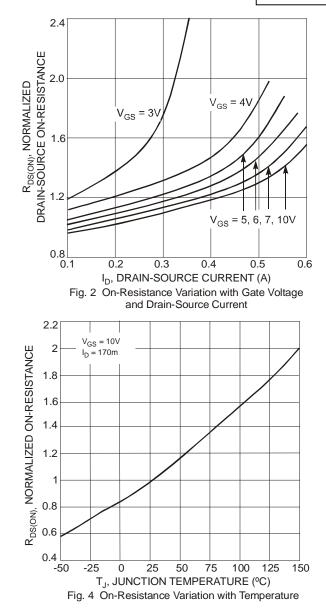
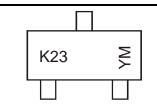



Fig. 5 Typical Capacitance

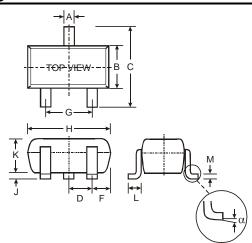


Ordering Information (Note 5)

Part Number	Case	Packaging
BSS123-7-F	SOT-23	3000/Tape & Reel

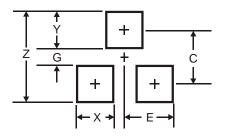
Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information



 $\begin{array}{l} \mathsf{K23} = \mathsf{Product} \ \mathsf{Type} \ \mathsf{Marking} \ \mathsf{Code} \\ \mathsf{YM} = \mathsf{Date} \ \mathsf{Code} \ \mathsf{Marking} \\ \mathsf{Y} = \mathsf{Year} \ \mathsf{ex:} \ \mathsf{T} = 2006 \\ \mathsf{M} = \mathsf{Month} \ \mathsf{ex:} \ \mathsf{9} = \mathsf{September} \end{array}$

Date Code Key


Dute boue hey												
Year	200	6	2007		2008	20	09	2010		2011	2	2012
Code	Т		U		V	V	N	Х		Y		Z
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	Ν	D

Package Outline Dimensions

SOT-23						
Dim	Dim Min Max					
Α	0.37	0.51				
в	1.20	1.40				
C	2.30	2.50				
D	0.89	1.03				
F	0.45	0.60				
G	1.78	2.05				
Н	2.80	3.00				
J	0.013	0.10				
K	0.903	1.10				
L	0.45	0.61				
М	0.085	0.180				
α	0°	8°				
All Dir	All Dimensions in mm					

Suggested Pad Layout

Dimensions	Value (in mm)
Z	3.4
G	0.7
Х	0.9
Y	1.4
С	2.0
E	0.9

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.