$R_{\theta JC}$

FDC606P

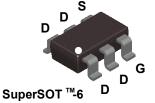
P-Channel 1.8V Specified PowerTrench[®] MOSFET

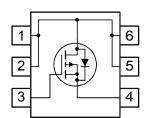
General Description

FAIRCHILD SEMICONDUCTOR

This P-Channel 1.8V specified MOSFET uses Fairchild's low voltage PowerTrench process. It has been optimized for battery power management applications.

Applications


- Battery management
- · Load switch
- Battery protection


Features

• -6 A, -12 V.

 $R_{DS(ON)}$ = 26 m Ω @ V_{GS} = -4.5 V $R_{DS(ON)} = 35 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$ $R_{DS(ON)}$ = 53 m Ω @ V_{GS} = -1.8 V

- · Fast switching speed
- · High performance trench technology for extremely low R_{DS(ON)}

30

Absolute Maximum Ratings T_A=25°C unless otherwise noted

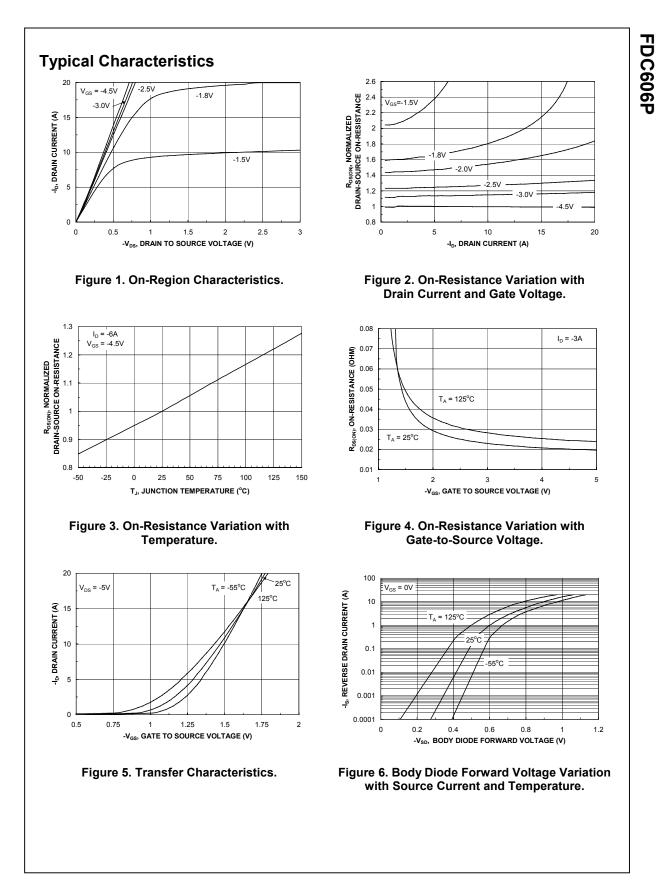
Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-12	V
V _{GSS}	Gate-Source Voltage		±8	V
ID	Drain Current – Continuous	(Note 1a)	-6	A
	– Pulsed		-20	
PD	Maximum Power Dissipation	(Note 1a)	1.6	W
		(Note 1b)	0.8	
T_J, T_{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C
Therma	I Characteristics			÷
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W

(Note 1)

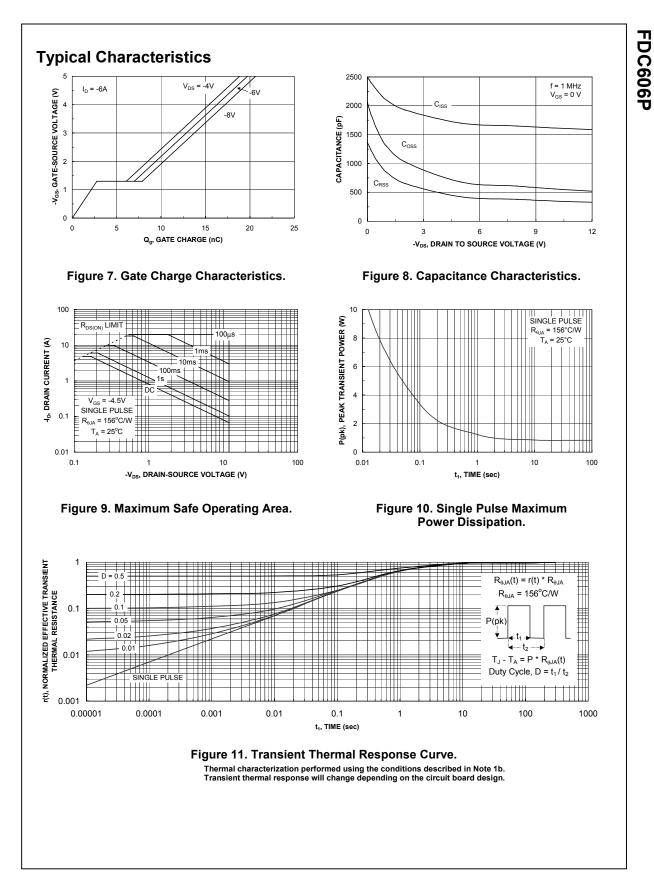
Thermal Resistance, Junction-to-Case

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width
.606	FDC606P	7"	8mm


©2001 Fairchild Semiconductor Corporation

Quantity 3000 units


°C/W

FDC606P

Breakdown Voltage oltage Temperature ltage Drain Current eakage, Forward eakage, Reverse (Note 2) old Voltage old Voltage Coefficient Source ce in Current sconductance istics ance citance sfer Capacitance	$\begin{array}{c} V_{GS} = 0 \text{ V}, & I_D = -250 \ \mu\text{A} \\ I_D = -250 \ \mu\text{A}, \text{Referenced to } 25 \\ V_{DS} = -10 \text{ V}, & V_{GS} = 0 \text{ V} \\ V_{GS} = 8 \text{ V}, & V_{DS} = 0 \text{ V} \\ V_{GS} = -8 \text{ V}, & V_{DS} = 0 \text{ V} \\ \end{array}$ $\begin{array}{c} V_{DS} = -250 \ \mu\text{A}, \text{Referenced to } 25 \\ V_{GS} = -250 \ \mu\text{A}, \text{Referenced to } 25 \\ V_{GS} = -250 \ \mu\text{A}, \text{Referenced to } 25 \\ \end{array}$ $\begin{array}{c} V_{DS} = -250 \ \mu\text{A}, \text{Referenced to } 25 \\ V_{GS} = -2.5 \text{ V}, & I_D = -6 \text{ A} \\ V_{GS} = -2.5 \text{ V}, & I_D = -5 \text{ A} \\ V_{GS} = -1.8 \text{ V}, & I_D = -4 \text{ A} \\ V_{GS} = -4.5 \text{ V}, & I_D = -6 \text{ A}, \text{T}_J = 125 \\ \end{array}$ $\begin{array}{c} V_{DS} = -5 \text{ V}, & V_{DS} = -5 \text{ V} \\ V_{DS} = -5 \text{ V}, & I_D = -6 \text{ A} \\ \end{array}$	-0.4	-0.5 2.5 21 26 34 28 25 1699	-1 100 -100 -1.5 26 35 53 35	V mV/°C μA nA nA V mV/°C mΩ A S
oltage Temperature Itage Drain Current eakage, Forward eakage, Reverse (Note 2) old Voltage Od Voltage Coefficient Source ce in Current sconductance istics ance citance	$\begin{split} I_{D} &= -250 \; \mu \text{A}, \text{Referenced to } 25 \\ V_{DS} &= -10 \; \text{V}, V_{GS} &= 0 \; \text{V} \\ V_{GS} &= 8 \; \text{V}, V_{DS} &= 0 \; \text{V} \\ V_{GS} &= -8 \; \text{V}, V_{DS} &= 0 \; \text{V} \\ \hline V_{DS} &= -8 \; \text{V}, V_{DS} &= 0 \; \text{V} \\ \hline I_{D} &= -250 \; \mu \text{A}, \text{Referenced to } 25 \\ \hline V_{GS} &= -4.5 \; \text{V}, I_{D} &= -6 \; \text{A} \\ V_{GS} &= -2.5 \; \text{V}, I_{D} &= -6 \; \text{A} \\ V_{GS} &= -1.8 \; \text{V}, I_{D} &= -6 \; \text{A} \\ \hline V_{GS} &= -4.5 \; \text{V}, I_{D} &= -6 \; \text{A} \\ \hline V_{GS} &= -4.5 \; \text{V}, V_{DS} &= -5 \; \text{V} \\ \hline V_{DS} &= -5 \; \text{V}, I_{D} &= -6 \; \text{A} \\ \hline V_{DS} &= -5 \; \text{V}, V_{DS} &= -5 \; \text{V} \\ \hline V_{DS} &= -6 \; \text{V}, V_{GS} &= 0 \; \text{V}, \end{split}$	5°C -0.4	-0.5 2.5 21 26 34 28 25	100 -100 -1.5 26 35 53	mV/°C μA nA nA NA mV/°C mΩ A S
Itage Drain Current eakage, Forward eakage, Reverse (Note 2) old Voltage old Voltage Coefficient Source ce in Current sconductance istics ance citance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{GS} = 8 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = -250 \text{ µA}, \text{Referenced to } 25$ $V_{GS} = -4.5 \text{ V}, I_D = -6 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -6 \text{ A}$ $V_{GS} = -1.8 \text{ V}, I_D = -4 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -6 \text{ A}, \text{T}_J = 125$ $V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{DS} = -5 \text{ V}, V_{DS} = -6 \text{ A}$	-0.4	-0.5 2.5 21 26 34 28 25	100 -100 -1.5 26 35 53	μΑ nA nA W/°C mV/°C mΩ A S
eakage, Forward eakage, Reverse (Note 2) old Voltage old Voltage Coefficient Source ce in Current sconductance istics ance citance	$ \begin{array}{c} V_{GS} = 8 \ V, \qquad V_{DS} = 0 \ V \\ V_{GS} = -8 \ V, \qquad V_{DS} = 0 \ V \\ \end{array} \\ \hline \begin{array}{c} V_{DS} = V_{GS}, \qquad I_D = -250 \ \mu A \\ \hline I_D = -250 \ \mu A, Referenced to 25 \\ \hline V_{GS} = -4.5 \ V, \qquad I_D = -6 \ A \\ V_{GS} = -2.5 \ V, \qquad I_D = -5 \ A \\ \hline V_{GS} = -1.8 \ V, \qquad I_D = -4 \ A \\ \hline V_{GS} = -4.5 \ V, \qquad I_D = -6 \ A, T_J = 125 \\ \hline V_{GS} = -4.5 \ V, \qquad V_{DS} = -5 \ V \\ \hline V_{DS} = -5 \ V, \qquad I_D = -6 \ A \\ \end{array} $	5°C	2.5 21 26 34 28 25	100 -100 -1.5 26 35 53	nA nA V mV/°C mΩ A S
(Note 2) (Note 2) old Voltage Coefficient Source ce in Current sconductance istics ance citance	$\begin{split} V_{GS} &= -8 \text{ V}, V_{DS} = 0 \text{ V} \\ \hline V_{DS} &= V_{GS}, I_D = -250 \mu\text{A} \\ \hline I_D &= -250 \mu\text{A}, \text{Referenced to } 25 \\ \hline V_{GS} &= -4.5 \text{ V}, I_D = -6 A \\ \hline V_{GS} &= -2.5 \text{ V}, I_D = -5 A \\ \hline V_{GS} &= -1.8 \text{ V}, I_D = -4 A \\ \hline V_{GS} &= -4.5 \text{ V}, V_{DS} = -5 V \\ \hline V_{DS} &= -5 V, I_D = -6 A, \\ \hline V_{DS} &= -5 V, I_D = -6 A \\ \hline V_{DS} &= -6 V, V_{GS} = 0 V, \end{split}$	5°C	2.5 21 26 34 28 25	-100 -1.5 26 35 53	nA WV/°C mΩ A S
(Note 2) old Voltage Coefficient Source ce in Current sconductance istics ance citance	$\begin{array}{c} V_{DS} = V_{GS}, I_D = -250 \ \mu\text{A} \\ I_D = -250 \ \mu\text{A}, \text{Referenced to } 250 \\ V_{GS} = -4.5 \ V, I_D = -6 \ \text{A} \\ V_{GS} = -2.5 \ V, I_D = -5 \ \text{A} \\ V_{GS} = -1.8 \ V, I_D = -4 \ \text{A} \\ V_{GS} = -4.5 \ V, I_D = -6 \ \text{A}, T_J = 125 \\ V_{GS} = -4.5 \ V, V_{DS} = -5 \ V \\ V_{DS} = -5 \ V, I_D = -6 \ \text{A} \end{array}$	5°C	2.5 21 26 34 28 25	-1.5 26 35 53	V mV/°C mΩ A S
old Voltage Od Voltage Coefficient Source ce in Current sconductance istics ance citance	$\begin{split} I_{D} &= -250 \; \mu \text{A}, \text{Referenced to } 250 \\ V_{GS} &= -4.5 \; \text{V}, I_{D} &= -6 \; \text{A} \\ V_{GS} &= -2.5 \; \text{V}, I_{D} &= -5 \; \text{A} \\ V_{GS} &= -1.8 \; \text{V}, I_{D} &= -4 \; \text{A} \\ V_{GS} &= -4.5 \; \text{V}, I_{D} &= -6 \; \text{A}, \text{T}_{J} = 125 \\ V_{GS} &= -4.5 \; \text{V}, V_{DS} &= -5 \; \text{V} \\ V_{DS} &= -5 \; \text{V}, I_{D} &= -6 \; \text{A} \\ \end{split}$	5°C	2.5 21 26 34 28 25	26 35 53	mV/°C mΩ A S
old Voltage Od Voltage Coefficient Source ce in Current sconductance istics ance citance	$\begin{split} I_{D} &= -250 \; \mu \text{A}, \text{Referenced to } 250 \\ V_{GS} &= -4.5 \; \text{V}, I_{D} &= -6 \; \text{A} \\ V_{GS} &= -2.5 \; \text{V}, I_{D} &= -5 \; \text{A} \\ V_{GS} &= -1.8 \; \text{V}, I_{D} &= -4 \; \text{A} \\ V_{GS} &= -4.5 \; \text{V}, I_{D} &= -6 \; \text{A}, \text{T}_{J} = 125 \\ V_{GS} &= -4.5 \; \text{V}, V_{DS} &= -5 \; \text{V} \\ V_{DS} &= -5 \; \text{V}, I_{D} &= -6 \; \text{A} \\ \end{split}$	5°C	2.5 21 26 34 28 25	26 35 53	mV/°C mΩ A S
Coefficient Source ce in Current sconductance istics ance citance	$V_{GS} = -4.5 V, I_D = -6 A$ $V_{GS} = -2.5 V, I_D = -5 A$ $V_{GS} = -1.8 V, I_D = -4 A$ $V_{GS} = -4.5 V, V_{DS} = -6 A, T_J = 125$ $V_{DS} = -5 V, I_D = -6 A$ $V_{DS} = -6 V, V_{GS} = 0 V,$	5°C	21 26 34 28 25	35 53	mΩ A S
in Current sconductance istics ance citance	$V_{GS} = -2.5 V, I_D = -5 A$ $V_{GS} = -1.8 V, I_D = -4 A$ $V_{GS} = -4.5 V, I_D = -6 A, T_J = 125$ $V_{GS} = -4.5 V, V_{DS} = -5 V$ $V_{DS} = -5 V, I_D = -6 A$ $V_{DS} = -6 V, V_{GS} = 0 V,$		26 34 28 25	35 53	A S
sconductance istics ance sitance	$V_{GS} = -4.5 V, \qquad V_{DS} = -5 V$ $V_{DS} = -5 V, \qquad I_D = -6 A$ $V_{DS} = -6 V, \qquad V_{GS} = 0 V,$				S
i stics ance citance	V _{DS} = -6 V, V _{GS} = 0 V,				
ance sitance	/		1600	1	I _
ance sitance	/		1600	1	_
	/		1099		pF
sfer Canacitance	f = 1.0 MHz		679		pF
orer oupdoitarioc	_		423		pF
ristics (Note 2)					
ay Time			11	19	ns
Time			10	20	ns
ay Time			89	142	ns
Time	7		70	112	ns
narge	$V_{DS} = -6 V,$ $I_{D} = -6 A,$ $V_{GS} = -4.5 V$		18	25	nC
Charge			3		nC
harge	-		4.2		nC
e Characteristics	and Maximum Ratings				
				-1.3	Α
Diode Forward	$V_{GS} = 0 V$, $I_S = -1.3 A$ (Note	2)	-0.6	-1.2	V
	Time Time Time Time Time Time Time Time	Time $V_{GS} = -4.5 \text{ V}$, $R_{GEN} = 6 \Omega$ y TimeTimeTime $V_{DS} = -6 \text{ V}$, $I_D = -6 \text{ A}$,arge $V_{DS} = -4.5 \text{ V}$ Charge $V_{GS} = -4.5 \text{ V}$ harge $V_{GS} = -4.5 \text{ V}$ Characteristics and Maximum Ratings ntinuous Drain–Source Diode Forward CurrentDiode Forward $V_{GS} = 0 \text{ V}$, $I_S = -1.3 \text{ A}$ (Note	Time $V_{GS} = -4.5 \text{ V}$, $R_{GEN} = 6 \Omega$ by Time Time Time $V_{DS} = -6 \text{ V}$, $I_D = -6 \text{ A}$, $V_{GS} = -4.5 \text{ V}$ harge $V_{DS} = -6 \text{ V}$, $I_D = -6 \text{ A}$, $V_{GS} = -4.5 \text{ V}$ harge $V_{GS} = -4.5 \text{ V}$ Characteristics and Maximum Ratings ntinuous Drain–Source Diode Forward Current Diode Forward $V_{GS} = 0 \text{ V}$, $I_S = -1.3 \text{ A}$ (Note 2) ase and case-to-ambient resistance where the case thermal reference is defined as the sesign while R_{eCA} is determined by the user's board design.	a Time $V_{GS} = -4.5 \text{ V}$, $R_{GEN} = 6 \Omega$ 10 by Time 89 Time 70 arge $V_{DS} = -6 \text{ V}$, $I_D = -6 \text{ A}$, $I_B = -6 \text{ A}$, $V_{GS} = -4.5 \text{ V}$ 18 Charge $V_{GS} = -4.5 \text{ V}$ 3 harge 4.2 4.2 Characteristics and Maximum Ratings 10 ntinuous Drain–Source Diode Forward Current 0 Diode Forward $V_{GS} = 0 \text{ V}$, $I_S = -1.3 \text{ A}$ (Note 2) -0.6 ase and case-to-ambient resistance where the case thermal reference is defined as the solder mour asign while $R_{\theta CA}$ is determined by the user's board design.	Time $V_{GS} = -4.5 \text{ V}$, $R_{GEN} = 6 \Omega$ 10 20 ay Time 89 142 Time 70 112 arge $V_{DS} = -6 \text{ V}$, $I_D = -6 \text{ A}$, $V_{GS} = -4.5 \text{ V}$ 18 25 Charge $V_{GS} = -4.5 \text{ V}$ 3 4.2 e Characteristics and Maximum Ratings 4.2 -1.3 Diode Forward $V_{GS} = 0 \text{ V}$, $I_S = -1.3 \text{ A}$ (Note 2) -0.6 -1.2 ase and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface asign while $R_{\theta CA}$ is determined by the user's board design. -0.6 -1.2

FDC606P Rev E (W)

FDC606P Rev E (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM CROSSVOLTTM DenseTrenchTM DOMETM EcoSPARKTM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST $^{\textcircled{(0)}}$ OPTOLFASTrTMOPTOFFRFETTMPACMAGlobalOptoisolatorTMPOPTMGTOTMPower2HiSeCTMPower7ISOPLANARTMQFETTMLittleFETTMQSTMMicroFETTMQT OptMicroPakTMQuiet SMICROWIRETMSILENT

OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART START[™] VCX[™] STAR*POWER[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] TruTranslation[™] UHC[™] UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production