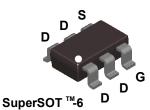
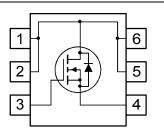
FDC3612 100V N-Channel PowerTrench[®] MOSFET

General Description

FAIRCHILD


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $R_{DS(ON)}$ and fast switching speed.


Applications

• DC/DC converter

Features

- 2.6 A, 100 V $R_{DS(ON)} = 125 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 135 \text{ m}\Omega @ V_{GS} = 6 \text{ V}$
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- Low gate charge (14nC typ)
- High power and current handling capability
- Fast switching speed

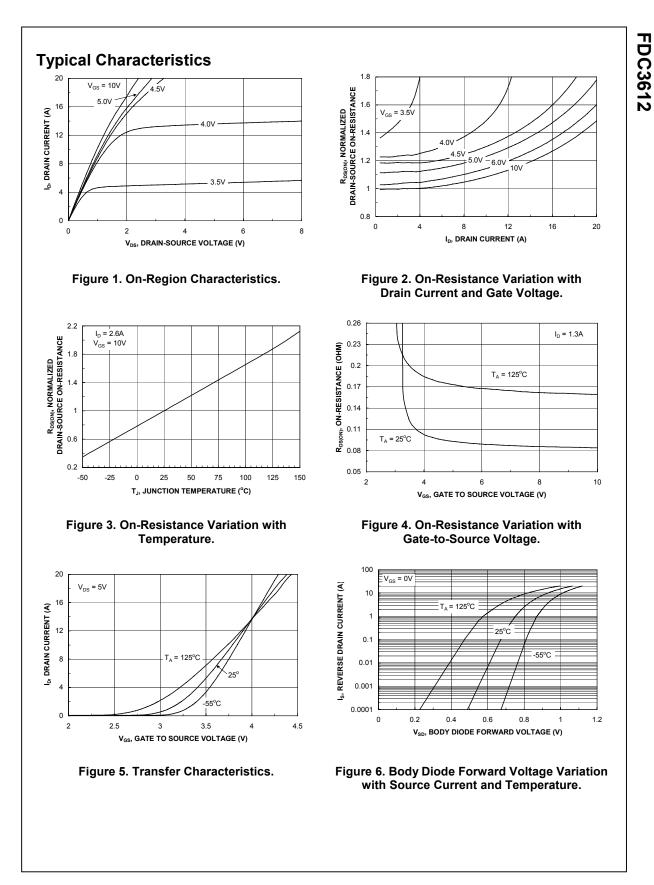
Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain-Source	ce Voltage	100	V		
V _{GSS}	Gate-Source Voltage			± 20	V	
I _D	Drain Curre	nt – Continuous	(Note 1a)	2.6	А	
		 Pulsed 		20		
P _D	Maximum Power Dissipation		(Note 1a)	1.6	W	
			(Note 1b)	0.8		
T _J , T _{STG}	Operating a	Ind Storage Junction Terr	perature Range	–55 to +150	°C	
Therma	l Charac	teristics				
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note		bient (Note 1a)	78	°C/W	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 1)			30	°C/W	
Packag	e Markin	g and Ordering	Information			
Device Marking		Device	Reel Size	Tape width	Quantity	
.362		FDC3612	7"	8mm	3000 units	

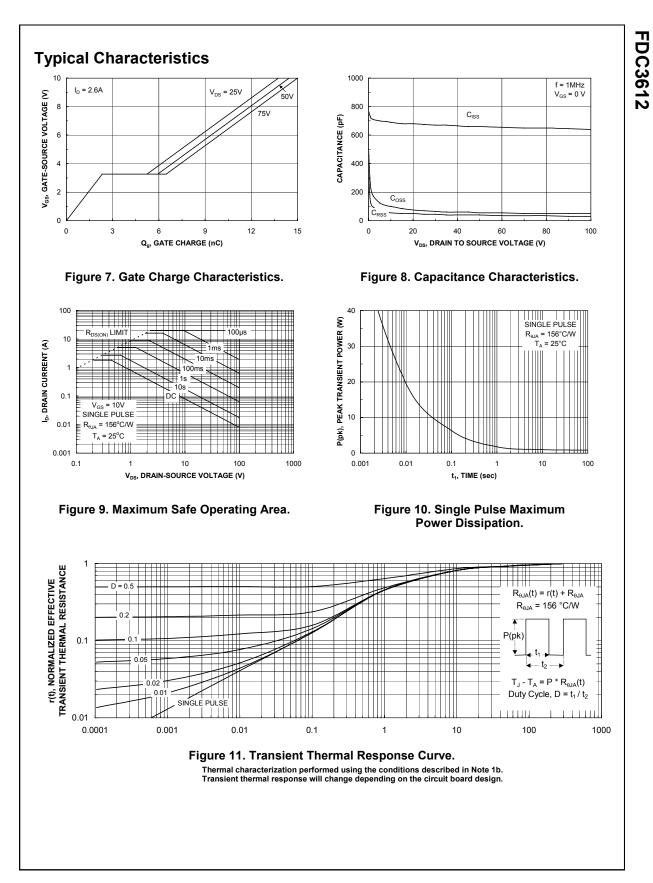
©2002 Fairchild Semiconductor Corporation

FDC3612 Rev B3 (W)

FDC3612


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
•	ource Avalanche Ratings (Note			-76		
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, V_{DD} = 50 V, I_D =2.6 A			90	mJ
I _{AR}	Drain-Source Avalanche Current				2.6	A
	acteristics					
	Drain–Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	100			V
	Breakdown Voltage Temperature		100			
ΔT_J	Coefficient	I_D = 250 µA, Referenced to 25°C		99		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 80 V, V_{GS} = 0 V$			10	μA
I _{GSSF}	Gate–Body Leakage, Forward	V_{GS} = 20 V, V_{DS} = 0 V			100	nA
I _{GSSR}	Gate–Body Leakage, Reverse	$V_{GS} = -20 V, V_{DS} = 0 V$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	2	2.3	4	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage	I_D = 250 µA, Referenced to 25°C		- 6		mV/°C
ΔT_{J}	Temperature Coefficient	V _{GS} = 10 V, I _D = 2.6 A			105	111 07
R _{DS(on)}	Static Drain–Source	$V_{GS} = 10$ V, $I_D = 2.6$ A $V_{GS} = 6.0$ V, $I_D = 2.5$ A		86 91	125 135	mΩ
	On Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 2.6 \text{ A}; \text{T}_{J} = 125^{\circ}\text{C}$		157	240	
I _{D(on)}	On–State Drain Current	V_{GS} = 10 V, V_{DS} = 5 V	10			Α
g fs	Forward Transconductance	$V_{DS} = 10 V$, $I_D = 2.6 A$		10		S
Dynamic	c Characteristics					
Ciss	Input Capacitance	$V_{DS} = 50 V$, $V_{GS} = 0 V$,		660		pF
Coss	Output Capacitance	f = 1.0 MHz		55		pF
C _{rss}	Reverse Transfer Capacitance			40		pF
Switchin	ng Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 50 V, I_D = 1 A,$		6	11	ns
t _r	Turn–On Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		3.5	7	ns
t _{d(off)}	Turn–Off Delay Time	7		23	37	ns
t _f	Turn–Off Fall Time	7		3.7	7.4	ns
Qg	Total Gate Charge	$V_{DS} = 50 V$, $I_{D} = 2.6 A$,		14	20	nC
Q _{gs}	Gate–Source Charge	V _{GS} = 10 V		2.3		nC
Q _{gd}	Gate–Drain Charge			3.6		nC
Drain-Se	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain-Source				1.3	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 1.3 A$ (Note 2)		0.76	1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = 2.6 A		31	1	nS
Q _{rr}	Diode Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A}/\mu \text{s}$ (Note 2)	<u> </u>	56		nC

1. $R_{_{0JA}}$ is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{_{0JC}}$ is guaranteed by design while $R_{_{0CA}}$ is determined by the user's board design.


a. 78°C/W when mounted on a 1in² pad of 2oz copper on FR-4 board.

b. 156°C/W when mounted on a minimum pad.

2. Pulse Test: Pulse Width $\leq 300~\mu s,~\text{Duty}~\text{Cycle} \leq 2.0\%$

FDC3612 Rev B3(W)

FDC3612 Rev B3(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM CROSSVOLTTM DenseTrenchTM DOMETM EcoSPARKTM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST $^{\textcircled{(0)}}$ OPTOLFASTrTMOPTOFFRFETTMPACMAGlobalOptoisolatorTMPOPTMGTOTMPower2HiSeCTMPower7ISOPLANARTMQFETTMLittleFETTMQSTMMicroFETTMQT OptMicroPakTMQuiet SMICROWIRETMSILENT

OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART START[™] VCX[™] STAR*POWER[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] TruTranslation[™] UHC[™] UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition			
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.			
	Formative or In Design First Production Full Production			