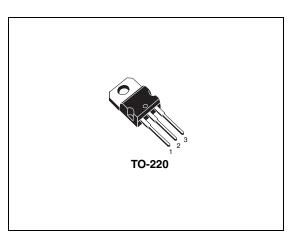


STP75NS04Z

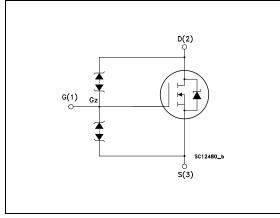
N-channel Clamped - 7mΩ- 80A - TO-220 Fully protected MESH Overlay™ III Power MOSFET

General features

Туре	V _{DSS}	R _{DS(on)}	I _D
STP75NS04Z	Clamped	$< 11 m\Omega$	80A


- Low capacitance and gate charge
- 100% avalanche tested
- 175°C maximum junction temperature

Description


This fully clamped MOSFET is produced by using the latest advanced Company's Mesh Overlay process which is based on a novel strip layout. The inherent benefits of a new technology coupled with the extra clamping capabilities make this product particularly suitable for the harshest operation conditions such as those encoured in power tools. Any other application requiring extra ruggedness is also recommended.

Applications

- Switching application
- Power tools

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
STP75NS04Z	P75NS04Z	TO-220	Tube

Contents

1	Electrical ratings		
2	Electrical characteristics	4	
	2.1 Electrical characteristics (curves)	6	
3	Test circuit	8	
4	Package mechanical data	9	
5	Revision history1	1	

1

Electrical ratings

able 1.	Absolute maximum ratings					
Symbol	Parameter	Value	Unit			
V_{DS}	Drain-source voltage (V _{GS} = 0)	Clamped	V			
V_{DG}	Drain-gate voltage (V _{GS} = 0)	Clamped	V			
V _{GS}	Gate-source voltage	Clamped	V			
$I_D^{(1)}$	Drain current (continuous) at $T_C = 25^{\circ}C$	80	А			
I _D	Drain current (continuous) at $T_C = 100^{\circ}C$	63	А			
I _{DG}	Drain gate current (continuos)	±50	mA			
I _{GS}	Gate source current (continuos)	±50	mA			
$I_{DM}^{(2)}$	Drain current (pulsed)	320	А			
P _{TOT}	Total dissipation at $T_{C} = 25^{\circ}C$	110	W			
	Derating factor	0.73	W/°C			
V_{ESD}	Gate-source ESD (HBM-C=100pF, R=1.5KΩ)	±8	kV			
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to 175	°C			

...

1. Current limited by wire bonding

2. Pulse with limited by safe operating area

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case Max	1.36	°C/W
R _{thj-amb}	Thermal resistance junction-ambient Max	62.5	°C/W
Τ _Ι	Maximum lead temperature for soldering purpose	300	°C

Table 3. Avalanche data

Symbol	Parameter	Value	Unit
E _{AS}	Single pulse avalanche energy (starting Tj=25°C, $I_D=I_{AR}$, $V_{DD}=25V$)	470	mJ

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Symbol	Parameter	Test condictions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1mA, V_{GS} = 0$	33			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 16V			1	μA
I _{GSS}	Gate body leakage current (V _{DS} = 0)	$V_{GS} = \pm 10V$			2	μA
V _{GSS}	Gate threshold breakdown voltage	I _{GS} = ±100μA	18			V
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10V, I _D = 40A		7	11	mΩ

Table 4. On/off states

Table 5. Dynamic

Symbol	Parameter	Test condictions	Min.	Тур.	Max.	Unit
$g_{fs}^{(1)}$	Forward transconductance	V _{DS} =15V, I _D = 15A		50		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} =0		1860 628 196		pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V _{DD} = 20V, I _D = 80 A, V _{GS} = 10 V <i>(see Figure 13)</i>		50 14 16		nC nC nC

1. Pulsed: pulse duration=300µs, duty cycle 1.5%

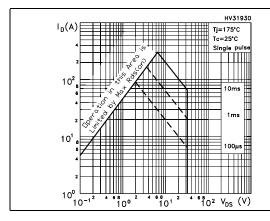
4/12

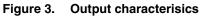
	ownoning on/on					
Symbol	Parameter	Test condictions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time Rise time	$V_{DD}=20V, I_D=40A$ $R_G=4.7 \ \Omega, V_{GS}=10V,$ (see Figure 12)		16 248		ns ns
t _{d(off)} t _f	Turn-off delay time Fall time	$V_{DD}=20V, I_D=40A$ $R_G=4.7 \ \Omega, V_{GS}=10V,$ (see Figure 12)		53 85		ns ns

Table 6. Switching on/off

Table 7.Source drain diode

Symbol	Parameter	Test condictions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)				80 320	A A
V _{SD} ⁽²⁾	Forward on Voltage	I _{SD} =80A, V _{GS} =0			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} =80A, di/dt = 100A/μs, V _{DD} =30V, Tj=150°C (<i>see Figure 17</i>)		53 91 3.4		ns nC A


1. Pulse width limited by safe operating area


2. Pulsed: pulse duration=300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

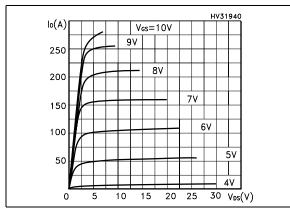


Figure 5. Normalized B_{VDSS} vs temperature

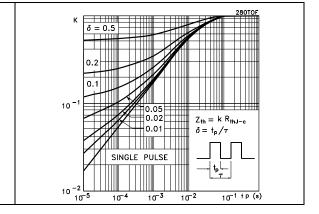


Figure 4. Transfer characteristics

Figure 2. Thermal impedance

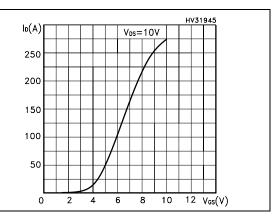
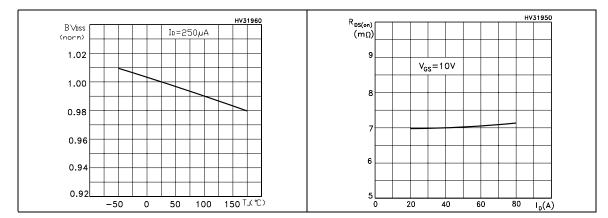
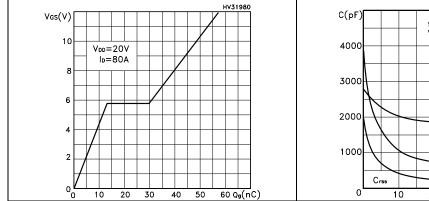




Figure 6. Static drain-source on resistance

HV31970

Gate charge vs gate-source voltage Figure 8. Capacitance variations Figure 7.

Figure 9.

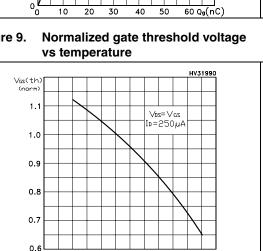
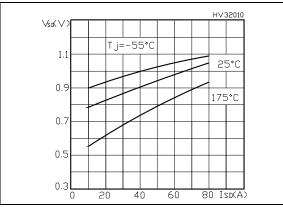


Figure 11. Source-drain diode forward characteristics


0

50

100

150 TJ(℃)

-50

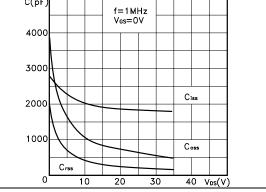
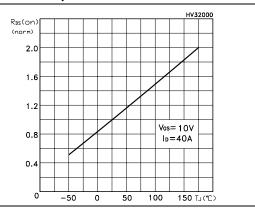



Figure 10. Normalized on resistance vs temperature

57

3 Test circuit

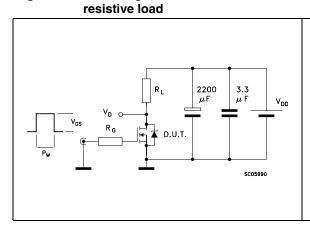
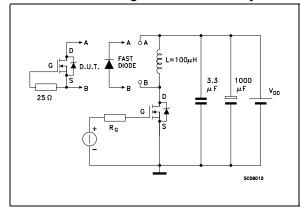
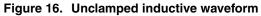




Figure 14. Test circuit for inductive load switching and diode recovery times

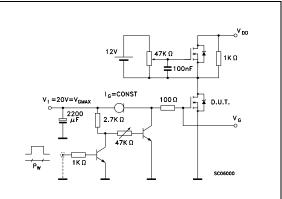
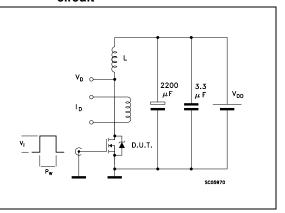
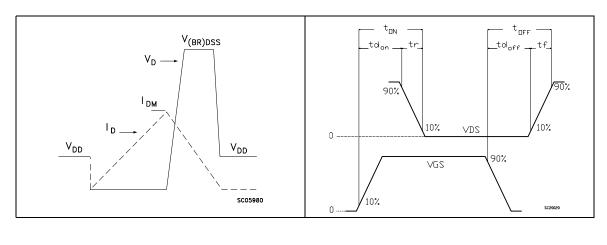
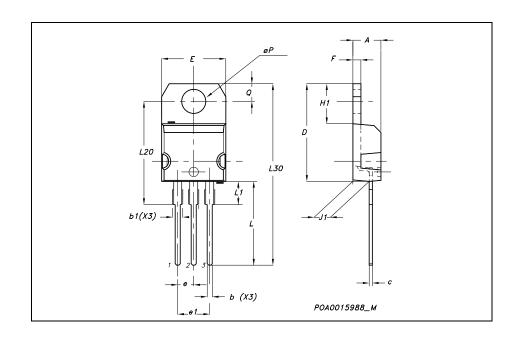




Figure 15. Unclamped inductive load test circuit


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

DIM		mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	4.40		4.60	0.173		0.181	
b	0.61		0.88	0.024		0.034	
b1	1.15		1.70	0.045		0.066	
С	0.49		0.70	0.019		0.027	
D	15.25		15.75	0.60		0.620	
E	10		10.40	0.393		0.409	
е	2.40		2.70	0.094		0.106	
e1	4.95		5.15	0.194		0.202	
F	1.23		1.32	0.048		0.052	
H1	6.20		6.60	0.244		0.256	
J1	2.40		2.72	0.094		0.107	
L	13		14	0.511		0.551	
L1	3.50		3.93	0.137		0.154	
L20		16.40			0.645		
L30		28.90			1.137		
øP	3.75		3.85	0.147		0.151	
Q	2.65		2.95	0.104		0.116	

TO-220 MECHANICAL DATA

5 Revision history

Table 8.	Revision	history
----------	----------	---------

Date	Revision	Changes
06-Jun-2006	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12

57