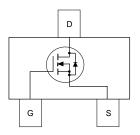

BSS138 N-Channel Logic Level Enhancement Mode Field Effect Transistor


General Description

These N-Channel enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.

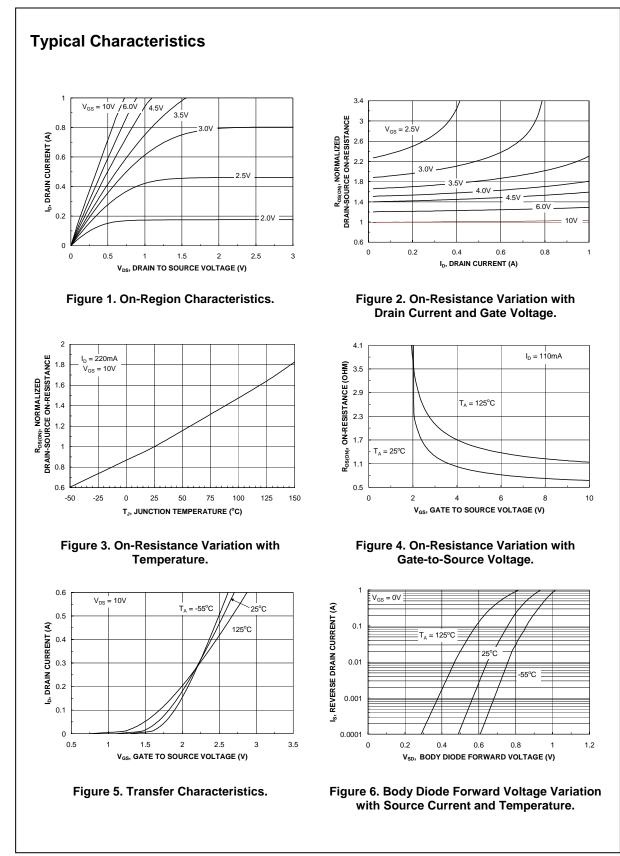
Features

- 0.22 A, 50 V. $R_{DS(ON)}$ = 3.50 @ V_{GS} = 10 V $R_{DS(ON)}$ = 6.00 @ V_{GS} = 4.5 V
- High density cell design for extremely low R_{DS(ON)}
- Rugged and Reliable
- Compact industry standard SOT-23 surface mount package

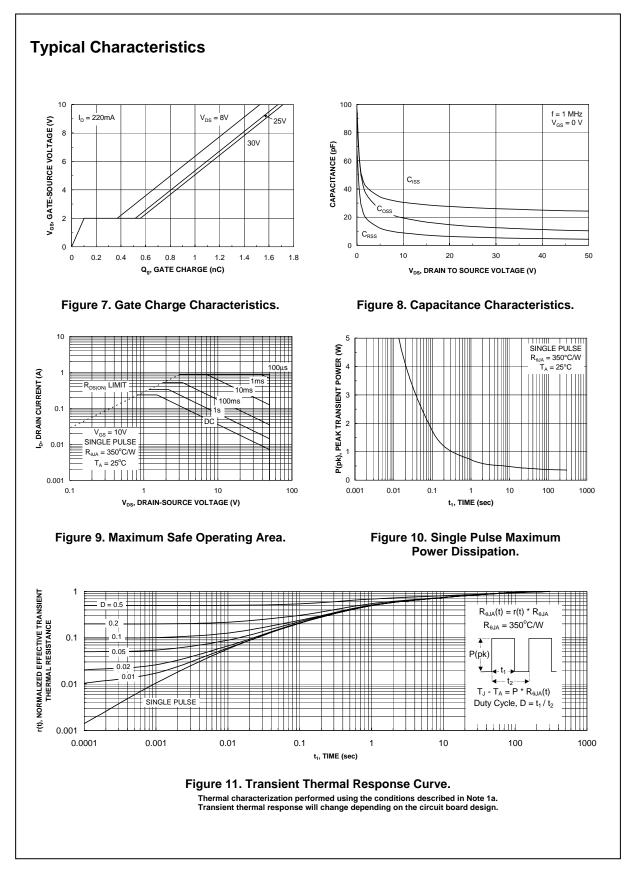
Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol		Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage		50	V		
V _{GSS}	Gate-Source Voltage			±20	V	
D	Drain Current	t – Continuous	(Note 1)	0.22	А	
		– Pulsed		0.88		
D _D	Maximum Power Dissipation (Note 1)			0.36	W	
Derate Above 25°C				2.8	mW/°C	
Γ _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	
	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds			300		
TL				300	°C	
-		16" from Case for 10		300	°C	
-	Purposes, 1/	16" from Case for 10	Seconds	300 350	°C °C/W	
Therma R _{eJA} Packag	Purposes, 1/ Charact Thermal Resi	16" from Case for 10 eristics istance, Junction-to-A	Seconds			

©2005 Fairchild Semiconductor Corporation


BSS138 Rev C(W)

BSS138


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	50			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}, \text{Referenced to } 25^\circ\text{C}$		72		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 50 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			0.5	μA
		$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V} \text{ T}_{J} = 125^{\circ}\text{C}$			5	μA
		$V_{\text{DS}} = 30 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			100	nA
I _{GSS}	Gate–Body Leakage.	$V_{GS}=\pm 20~V, ~~V_{DS}=0~V$			±100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	0.8	1.3	1.5	V
$rac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 1 \text{ mA,Referenced to } 25^{\circ}\text{C}$		-2		mV/°C
$R_{\text{DS(on)}}$	Static Drain–Source	$V_{GS} = 10 \text{ V}, \qquad I_D = 0.22 \text{ A}$		0.7	3.5	Ω
	On–Resistance	$V_{GS} = 4.5 V$, $I_D = 0.22 A$		1.0	6.0	
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, \text{ I}_D = 0.22 \text{ A}, \text{ T}_J = 125^{\circ}\text{C}$ $V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	0.2	1.1	5.8	А
g _{FS}	Forward Transconductance	$V_{DS} = 10V, I_D = 0.22 \text{ A}$	0.12	0.5		S
-						
	Characteristics			27		pF
	Output Capacitance	$V_{DS} = 25 V$, $V_{GS} = 0 V$, f = 1.0 MHz		13		pr pF
C _{oss} C _{rss}	Reverse Transfer Capacitance			6		pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		9		Ω
-		VGS = 13 1110, 1 = 1.0 10112		3		52
	Turn On Delay Time			2.5	5	20
t _{d(on)}	Turn-On Delay Time				-	ns
t _r	Turn–On Rise Time	100, 100, 100 U		9	18	ns
t _{d(off)}	Turn–Off Delay Time Turn–Off Fall Time	4		20 7	36	ns
t _f Q _g	Total Gate Charge	$V_{DS} = 25 V$, $I_D = 0.22 A$,		1.7	14 2.4	ns nC
-	Gate-Source Charge	$V_{DS} = 25 \text{ V}, \qquad I_D = 0.22 \text{ A}, \\ V_{GS} = 10 \text{ V}$		0.1	2.4	
Q _{gs}	e e e e e e e e e e e e e e e e e e e	-		-		nC nC
Q _{gd}	Gate-Drain Charge			0.4		nc
	ource Diode Characteristics				0.22	А
I _S V _{SD}	Drain–Source Diode Forward	$V_{GS} = 0 V$, $I_S = 0.44 A$ (Note 2)		0.8	1.4	V
▼ SD	Voltage			0.0	1.4	, v

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

BSS138

BSS138

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$ $FAST^{\textcircled{B}}$ $ActiveArray^{TM}$ $FASTr^{TM}$ $Bottomless^{TM}$ FPS^{TM} $Build it Now^{TM}$ $FRFET^{TM}$ $CoolFET^{TM}$ $GlobalOptoisolator^{TM}$ $CROSSVOLT^{TM}$ GTO^{TM} $DOME^{TM}$ $HiSeC^{TM}$ $EcoSPARK^{TM}$ l^2C^{TM} E^2CMOS^{TM} $i-Lo^{TM}$ $EnSigna^{TM}$ ImpliedDisconnect^{TM} $FACT^{TM}$ IntelliMAX^{TM} $FACT$ Quiet Series^{TM}	MICROWIRE [™] MSX [™] MSXPro [™] OCX [™] OCXPro [™] OPTOLOGIC [®] OPTOPLANAR [™]	PowerSaver [™] PowerTrench [®] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] µSerDes [™] ScalarPump [™] SILENT SWITCHER [®] SMART START [™]	SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [®] TINYOPTO [™] TruTranslation [™] UHC [™] UHC [™] UltraFET [®] UniFET [™] VCX [™] Wire [™]
Across the board. Around the world.™ The Power Franchise [®] Programmable Active Droop™	PACMAN™ POP™ Power247™ PowerEdge™	SPM™ Stealth™ SuperFET™ SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.