FDC655BN

Single N-Channel, Logic Level, PowerTrench ${ }^{\circledR}$ MOSFET $30 \mathrm{~V}, 6.3 \mathrm{~A}, 25 \mathrm{~m} \Omega$

Features

- Max $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}=25 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.3 \mathrm{~A}$

■ Max $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}=33 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.5 \mathrm{~A}$

- Fast switching
- Low gate charge
- High performance trchnology for extremely low $r_{\text {DS(on) }}$
- Termination is Lead-free and RoHS Compliant

General Description

This N-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench ${ }^{\circledR}$ process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.
These devices are well suited for low voltage and battery powered applicatoins where low in-line power loss and fast switching are required.

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter		Ratings	Units
$\mathrm{V}_{\text {DS }}$	Drain to Source Voltage		30	V
V_{GS}	Gate to Source Voltage		± 20	V
I_{D}	-Continuous	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad$ (Note 1a)	6.3	A
	-Pulsed		20	
P_{D}	Power Dissipation	(Note 1a)	1.6	W
	Power Dissipation	(Note 1b)	0.8	
$\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junctio		-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance, Junction to Ambient	(Note 1a)	78

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
$.55 B$	FDC655BN	SSOT-6 $^{\text {TM }}$	$7^{\prime \prime}$	8 mm	3000 units

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Off Characteristics						
$B V_{\text {DSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	30			V
$\frac{\Delta \mathrm{BV}_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$		25		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {GSS }}$	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS}} \mathrm{t}^{\text {(th) }}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	1	1.9	3	V
$\frac{\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})}}{\Delta \mathrm{T}_{\mathrm{J}}}$	Gate to Source Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$		-5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
${ }^{\text {dSS(on) }}$	Static Drain to Source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.3 \mathrm{~A}$		21	25	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.5 \mathrm{~A}$		26	33	
		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.3 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		30	36	
g_{FS}	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.3 \mathrm{~A}$		35		S

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	470	620	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		100	130	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		60	90	pF
R_{g}	Gate Resistance		3.0		Ω

Switching Characteristics

$\mathrm{t}_{\text {d(on) }}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$	6	11	ns
t_{r}	Rise Time		2	10	ns
$\mathrm{t}_{\text {d(off) }}$	Turn-Off Delay Time		15	26	ns
t_{f}	Fall Time		2	10	ns
Q_{g}	Total Gate Charge	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 10 V	9	13	nC
Q_{g}	Total Gate Charge	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to $5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}$,	5	7	nC
$\mathrm{Qgs}^{\text {s }}$	Gate to Source Charge	$\mathrm{I}_{\mathrm{D}}=6.3 \mathrm{~A}$	1.4		nC
Qgd	Gate to Drain "Miller" Charge		1.6		nC

Drain-Source Diode Characteristics

I_{S}	Maximum Continuous Drain-Source Diode Forward Current			1.3	A	
$\mathrm{~V}_{\mathrm{SD}}$	Source-Drain Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1.3 \mathrm{~A} \quad$ (Note 2)		0.8	1.2	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{F}}=6.3 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$		15	26	ns
Q_{rr}	Reverse Recovery Charge			4	10	nC

Notes:

1: $\mathrm{R}_{\text {QJA }}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.
$R_{\theta J C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design.
a. $78{ }^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a 1 in 2 pad of 2 oz copper on FR-4 board.
b. $156^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad.

2: Pulse Test: Pulse Width<300 us, Duty Cycle<2.0\%.

Typical Characteristics $\mathrm{T}_{3}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 1. On Region Characteristics

Figure 3. Normalized On Resistance vs Junction Temperature

Figure 5. Transfer Characteristics

Figure2. Normalized On-Resistance vs Drain Current and Gate Voltage

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 7. Gate Charge Characteristics

Figure 9. Forward Bias Safe Operating Area

Figure8. Capacitance vsDrain to Source Voltage

Figure 10. Single Pulse Maximum Power Dissipation

Figure 11. Junction-to-Ambient Transient Thermal Response Curve

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower ${ }^{\text {TM }}$	FlashWriter ${ }^{\circledR \text { * }}$	PDP SPM ${ }^{\text {™ }}$	- SYSTEM ${ }^{\text {® }}$ *
Auto-SPM ${ }^{\text {TM }}$	FPS ${ }^{\text {™ }}$	Power-SPM ${ }^{\text {TM }}$	\checkmark GENERAL
Build it Now ${ }^{\text {™ }}$	F-PFS ${ }^{\text {TM }}$	PowerTrench ${ }^{\circledR}$	The Power Franchise ${ }^{\circledR}$
CorePLUS ${ }^{\text {TM }}$	FRFET ${ }^{\text {® }}$	PowerXS ${ }^{\text {TM }}$	the
CorePOWER ${ }^{\text {TM }}$	Global Power Resource ${ }^{\text {SM }}$	Programmable Active Droop ${ }^{\text {TM }}$	p wer
CROSSVOLT ${ }^{\text {TM }}$	Green FPS ${ }^{\text {™ }}$	QFET ${ }^{\circledR}$	franchise ${ }_{\text {Ting }}$
CTL ${ }^{\text {TM }}$	Green FPS ${ }^{\text {™ }}$ e-Series ${ }^{\text {™ }}$	QS ${ }^{\text {™ }}$	TinyBoost ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	Gmax ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {M }}$ TinyCalctm
DEUXPEED ${ }^{\text {® }}$	GTOTM	RapidConfigure ${ }^{\text {TM }}$	TinyLogic ${ }^{\circledR}$
Dual Cool ${ }^{\text {™ }}$	IntelliMAX ${ }^{\text {TM }}$	(${ }^{\text {TM }}$	TINYOPTOTM
EcoSPARK ${ }^{\text {® }}$	ISOPLANAR ${ }^{\text {TM }}$	\bigcirc	TinyPowerTm
EfficentMax ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {™ }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$ TinyPWM ${ }^{\text {™ }}$
EZSWITCH ${ }_{\text {TM* }}{ }^{\text {TM* }}$	MICROCOUPLER ${ }^{\text {TM }}$	SignalWise ${ }^{\text {TM }}$	TinyWireTM
$\square]^{\text {TM* }}$	MicroFET ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
$E \pm$	MicroPak ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	TRUECURRENT ${ }^{\text {TM }}$ *
5^{\circledR}	MicroPak2 ${ }^{\text {™ }}$	SPM ${ }^{\circledR}$	μ SerDes ${ }^{\text {™ }}$
	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	
Fairchild ${ }^{(1)}$	MotionMax ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	M
Fairchild Semiconductor ${ }^{(8)}$	Motion-SPM ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-3	SerDes*
FACT Quiet Series ${ }^{\text {™ }}$	OptiHiT ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	UHC ${ }^{(8)}$
FACT ${ }^{\text {® }}$	OPTOLOGIC ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-8	Ultra FRFET ${ }^{\text {TM }}$
FAST ${ }^{\text {® }}$	OPTOPLANAR ${ }^{\circledR}$	SupreMOS ${ }^{\text {™ }}$	UniFET ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$	${ }^{\text {® }}$	SyncFET ${ }^{\text {™ }}$	VCX ${ }^{\text {TM }}$
FETBench ${ }^{\text {™ }}$	J)	Sync-Lock ${ }^{\text {TM }}$	VisualMax ${ }^{\text {™ }}$ XSTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild
Semiconductor. The datasheet is for reference information only.		

