

STN1N20

N-channel 200 V, 1.2 Ω, 1 A, SOT-223 MESH OVERLAY™ Power MOSFET

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D
STN1N20	200 V	< 1.5 Ω	1 A

■ 100% avalanche tested

Application

■ Switching applications

Description

Using the latest high voltage MESH OVERLAYTM process, STMicroelectronics has designed an advanced family of power MOSFETs with outstanding performance. The new patented STrip layout coupled with the company's proprietary edge termination structure, makes it suitable in converters for lighting applications.

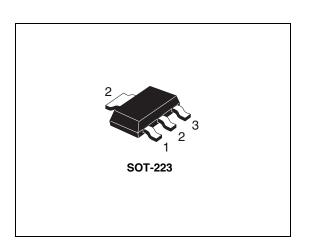


Figure 1. Internal schematic diagram

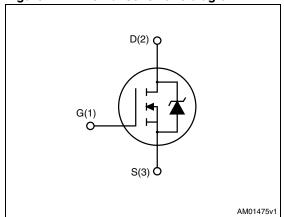


Table 1. Device summary

Order codes	Marking	Package	Packaging
STN1N20	N1N20	SOT-223	Tape and reel

April 2009 Rev 2 1/12

Contents STN1N20

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	. 4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	. 8
4	Package mechanical data	. 9
5	Revision history	11

STN1N20 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} =0)	200	V
V_{GS}	Gate-source voltage	± 20	V
I _D	Drain current (continuous) at T _C = 25 °C	1	Α
I _D	Drain current (continuous) at T _C = 100 °C	0.6	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	4	Α
P _{TOT}	Total dissipation at T _C = 25 °C	2.9	W
	Derating factor	0.023	W/°C
dv/dt	Peak diode recovery voltage slope	6	V/ns
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to 150	°C

^{1.} Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb}	Thermal resistance junction-pcb max	43	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	60	°C/W
T _I	Maximum lead temperature for soldering purpose	260	°C

Table 4. Thermal data

Symbol	Parameter	Value	Unit
I _{AR}	Max current during repetitive or single pulse avalanche (pulse width limited by T _{JMAX})	1	A
E _{AS}	Single pulse avalanche energy (1)	10	mJ

^{1.} Starting T_j = 25 °C, I_D = I_{AR} , V_{DD} = 50 V

Electrical characteristics STN1N20

2 Electrical characteristics

(Tcase = 25 °C unless otherwise specified)

Table 5. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \mu A, V_{GS} = 0$	200			V
I _{DSS}		V_{DS} = Max rating V_{DS} = Max rating, T_{C} =125 °C			1 100	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, I_D = 0.5 \text{ A}$		1.2	1.5	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 0.5 \text{ A}$		2.7		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$		206 40 15		pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 160 V, I_D = 4 A, V_{GS} = 10 V (see <i>Figure 14</i>)		11 2.8 4	15.7	nC nC nC

^{1.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

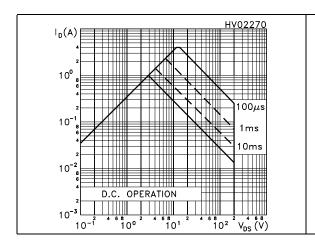
Table 7. Switching times

	J					
Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	$V_{DD} = 160 \text{ V}, I_D = 4 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 13</i>)		9 10 25 6		ns ns ns ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)				1 4	A A
V _{SD} (2)	Forward on voltage	I _{SD} = 1 A, V _{GS} = 0			1.5	٧
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 4$ A, di/dt = 100 A/ μ s $V_{DD} = 30$ V, $T_j = 150$ °C (see <i>Figure 18</i>)		124 446 7.2		ns nC A

^{1.} Pulse width limited by safe operating area


^{2.} Pulsed: Pulse duration = 300 μs, duty cycle 1.5%

Electrical characteristics STN1N20

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

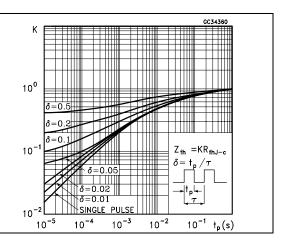
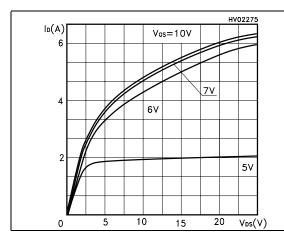



Figure 4. Output characteristics

Figure 5. Transfer characteristics

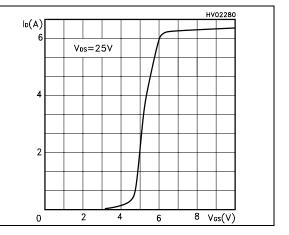


Figure 6. Transconductance

Figure 7. Static drain-source on resistance

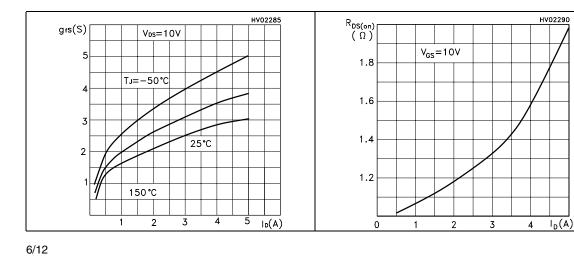


Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

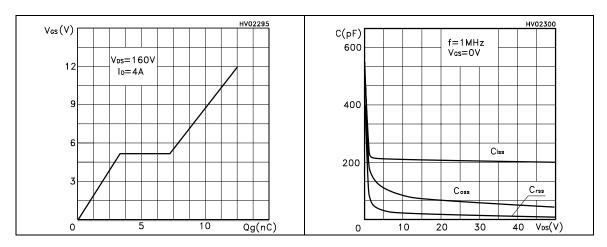


Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature temperature

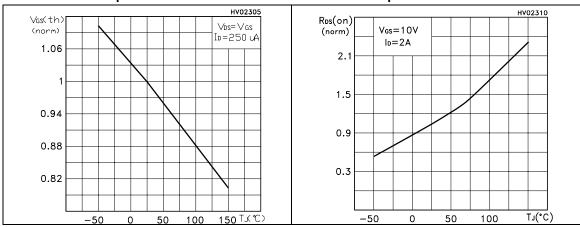
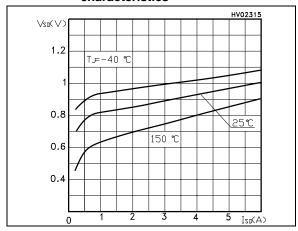



Figure 12. Source-drain diode forward characteristics

Test circuits STN1N20

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

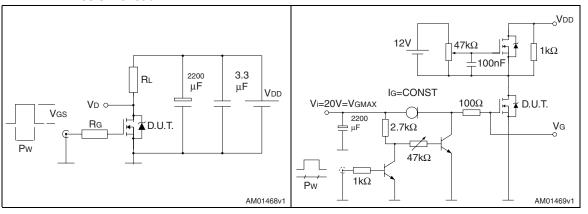


Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

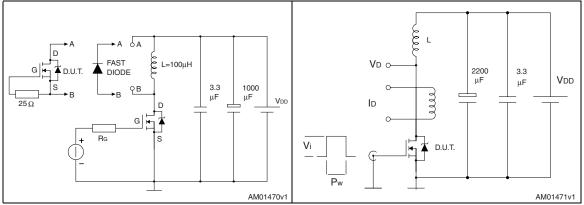
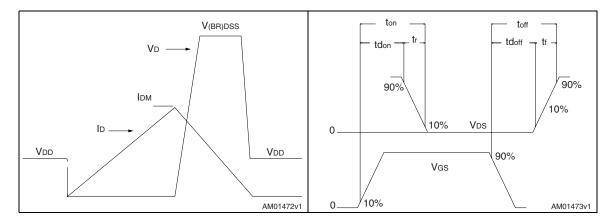
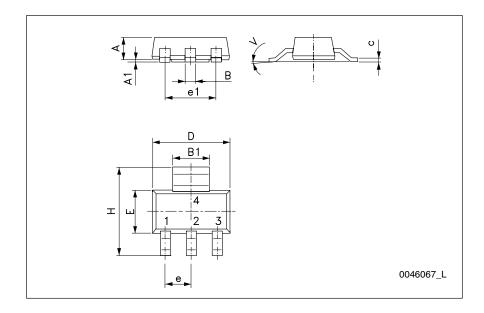



Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

<u>577</u>

COT	222	maak	nanic	ما ماما	۱.
SUL	-223	mecr	ianica	ai dai	ia -

DIM.		mm.	
DIIVI.	min.	typ	max.
Α			1.80
A1	0.02		0.1
В	0.60	0.70	0.85
B1	2.90	3.00	3.15
С	0.24	0.26	0.35
D	6.30	6.50	6.70
е		2.30	
e1		4.60	
E	3.30	3.50	3.70
Н	6.70	7.00	7.30
V			10 °

577

STN1N20 Revision history

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
21-Jun-2004	1	First release.
31-Mar-2009	2	Document status promoted from preliminary data to datasheet.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

477