

Fundamental Mode (4.0 to 11.0MHz)/ 3rd Harmonic Mode (16.0 to 50.0MHz) Ceramic Chip Resonators

Conforming to RoHS Directive

Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.

Development Background / Product Features

A ceramic chip resonator is a piezoceramic applied product. Its demand is increasing for use as an oscillator to generate necessary clock signals in digital machines.
Oscillators are expected the function to maintain a stable oscillation with temperature and voltage variations, i.e. the oscillation frequency stability. To achieve the superior stability in the world's smallest chip size, TDK provides an enriched lineup including fundamental-mode products oscillating at 4.0 to 11.0 MHz and 3 rd harmonic-mode products oscillating at 16.0 to 50.0 MHz .
4.0MHz to 11.0 MHz Products

With the data processing of digital machines evolving rapidly to high-speed and large-capacity, the system clock frequency is also going high-frequency, and there are more demands on oscillator frequency in clock generators to be 15 MHz or higher. However, to realize a ceramic chip resonator with
frequency over 11.0 MHz , the maintenance limits of physical strength and dimensional accuracy exist as the piezo-ceramic element gets thinner. With practical element thickness, it is difficult to use the fundamental mode; instead it could be excited at 3rd harmonic mode. However, to use the 3rd harmonic mode, it is necessary to technically suppress the coupled fundamental oscillation, and this has become the bottleneck in practical use.

16.0 MHz to 50.0 MHz Products

TDK, with its new piezoceramic material development and the unique multilayer structure design which can almost completely suppress the fundamentalmode oscillation, was able to quickly establish the mass production techniques for 16.0 to 50.0 MHz ceramic chip resonators working in the 3rd harmonic mode. Besides the 4.0 to 11.0 MHz products using fundamental mode, TDK will also provide you with the 16.0 to 50.0 MHz products to satisfy your ad-

Development Background/Product Features

vanced needs. Below, we focus on the 3rd harmonicmode products where the fundamental mode will not oscillate at all, and explain our unique techniques integrated in the products.
The limit of the traditional technology and TDK's development
Ceramic resonators used as clock oscillators are often made using PZT material - Titanic acid lead zirconate: $\mathrm{Pb}(\mathrm{Zr}, \mathrm{Ti}) \mathrm{O}_{3}$ - which has a superior electromechanical coupling factor. Such resonators are used in "energy enclosing/thickness expansion/fundamental mode", which can resonate in the 10 MHz band. Due to the principle in which resonance occurs at odd multiples of half-wavelengths, the thickness of a laminated element at low frequencies is 1 half-wavelength, namely with fundamental mode, and in the over 15 MHz range, where element lamination becomes very difficult due to limits in strength, it is thought that tripling the thickness (3 half-wavelengths) enables support of 3rd harmonic mode.
However, the general PZT material, from its material characteristic, is supposed to be suitable for funda-mental-mode oscillation; as shown in the following data, even though using 3rd harmonic-mode operation it exists a strong fundamental-mode response in the low frequency, and operates in the fundamental mode.

The oscillation mode of $\mathrm{Pb}(\mathrm{Zr}, \mathrm{Ti}) \mathrm{O}_{3}$ ceramics

(conventional material)

Because of this, PT material - PbTiO_{3} (lead titanate) has been receiving much attention, because it does not easily resonate in fundamental mode and it produces significant response in 3rd harmonic mode. However, pure PbTiO_{3} has a Curie point near $500^{\circ} \mathrm{C}$. When the material passes this temperature during the cooling process after high-temperature sintering, a significant variance occurs between the spontane-ous-polarization crystal axis and its right-angled crystal axis . When it cools to room temperature, this difference grows even larger. Massive internal stress is produced after cooling, and the material becomes so fragile that it shatters into pieces from the slightest amount of shock.
In contrast with PbTiO_{3} which can't even sinter with pure composition, TDK developed the unique composition control techniques combined with elemental substitution and additive control to encourage the conversion of crystal structure. Moreover, by controlling the powder particle size distribution and improving the sintering process control, TDK established the mass production techniques for thin PbTiO_{3} piezo substrate to enable the high-frequency oscillation.

The oscillation mode of PbTiO_{3} ceramics

Thickness expansion / Fundamental mode

Even though the PT material is more difficult to oscillate when compared with $\mathrm{Pb}(\mathrm{Zr}, \mathrm{Ti}) \mathrm{O}_{3}$, the PT material still has the danger of operating in the fundamental mode, as shown in the above data. Therefore, it
requires actions to work on oscillation circuits, and this is not a practical method.

Fundamental mode and 3rd harmonic mode

Unwanted oscillation (fundamental mode occurs as a result of improper cavity formation)

As shown in the above model, the oscillating elements of the 3rd harmonic mode concentrate on the center of oscillating electrode, and those of the fundamental mode also exist as if surrounding around the electrode. Here, if we mechanically fix the electrode edges by structural members, the oscillation near the electrode, i.e. the fundamental-mode elements could be suppressed. In this case, to keep the 3rd harmonic mode from being suppressed, the sophisticated structural design and the elaborative techniques are essential.

To thoroughly clear the problem, TDK pursues the ideal cavity formation inside the element, and has completed the structural design which can almost completely suppress the fundamental mode, as well as the high-precision process control techniques to mass-produce the structure. Below shows one example of the fundamental oscillating mode suppres-

Series
sion model, oscillating status simulation model used in the optimized cavity design, and the multilayer structural model of high-precision, high-tolerance products which cover 16.0 to 50.0 MHz .

Oscillation form simulation model ($1 / 4$ cut model)
Distribution of displacement (state of oscillation) when unwanted oscillation (basic wave) occurs as a result of improper cavity formation

Future efforts

With the prevalence of frequency synthesis techniques and the need for EMC design (radiation noise suppression), the once-popular trend of clock signals going high frequency has settled down for the time being. However, on the other hand, it is predicted that data transmission is going rapidly to higherspeed and larger-capacity, and the demand for oscillation frequency of system clock is going low-tolerance (high-precision). Needless to say, a great need remains for miniaturization and low-cost design. In order to meet the high-precision needs, it requires unprecedented efforts to work on not only the oscillation frequency tolerance that is assured by the specifications, but also temperature characteristics (stability) and the aging change. The oscillation frequency tolerance on specifications mainly depends on the dimensional accuracy of element structure, so it is necessary to refine the control accuracy in the mass production process and continually work

Development Background/Product Features

on its improvement. Moreover, on temperature characteristics and aging change, it is important to optimize the temperature characteristics of capacitor material (substrate) as well as to improve the piezoceramic material, and the finely-tuned process is done on every product.
As shown in the product specifications, the current research achievement has reduced the oscillation frequency drift from $\pm 0.2 \%$ to $\pm 0.1 \%$ on temperature characteristics (-40 to $+80^{\circ} \mathrm{C}$), and the oscillation frequency drift (10 years) has been suppressed
from the previous $\pm 0.1 \%$ to $\pm 0.05 \%$ (CCR** MYC7 series). Furthermore, the total frequency tolerance can meet the request of "below $\pm 0.25 \%$ ".
On miniaturization, besides the smallest chip series of 4020 size on 4 to 7.99 MHz frequency and 3213 size on 8 to 11 MHz frequency band, we line up the standard 2520 size for 16 to 50 MHz and 2016 size for 24 to 50 MHz . Miniaturization also means the response to lower price needs, and we will keep working on it, including the material and structure improvement.

Exclusive high-durability multilayer construction that provides high-precision cavity formation and industry-leading heat shock resistance properties

Resonator
By optimizing the cavity formation resin, and through the application of a highly accurate printing process, we have established a mass production process that accurately creates cavity dimensions and thickness, while almost completely controlling unwanted fun-damental-mode oscillation and achieving superior impedance characteristics.

Capacitor
Piezo ceramic material with a linear expansion coefficient aligned to the resonator for the upper board and the dielectric element is used. This allows for the realization of industry-leading heat shock resistance properties.
Moreover, on temperature characteristics, the capacitor material improves the compensation relationship with piezo element and increases the stability of oscillation frequency in terms of temperature change.

Product Lineup (Common Specification)

- The "thickness shear/ fundamental mode" and the "thickness expansion/3rd harmonic mode" thin chip type provide the wide frequency range of 4.0 to 11.0 MHz and 16.0 to 50.0 MHz .
■ For the piezo element is mounted in dielectric base substrate which forms the load capacitors, the external capacitors won't be needing and the simplification of the circuit and the lower assembly cost can be achieved.
- By optimizing the temperature characteristics of piezo element and dielectric material, the deviation of oscillation frequency is suppressed.
- This product can be used with reflow solder and lead-free solder $\left(260^{\circ} \mathrm{C}\right.$, within 10 seconds $)$. The package form is embossed tape.
- We also support your needs of setting oscillating frequencies according to special-purpose ICs and customized ICs, as well as the latest IC models, and needs of matching frequencies.

Performance (reliability test categories and ratings)

Low temperature storage test	Left in a constant temperature chamber at $-40 \pm 3^{\circ} \mathrm{C}$ for 1000 h
High temperature storage test	Left in a constant temperature chamber at $85 \pm 2^{\circ} \mathrm{C}$ for 1000 h
Humidity durability test	Left in a constant temperature and humidity chamber at $60 \pm 2^{\circ} \mathrm{C}$ with humidity of 90 to $95 \% R \mathrm{H}$ for 1000 h
Heat shock durability test	30 mins in a constant temperature chamber at $-40^{\circ} \mathrm{C}$, 100 cycles with 1 cycle being 30 mins in a constant temperature chamber at $85^{\circ} \mathrm{C}$ Solder heat durability test
$260^{\circ} \mathrm{C}$ peak, 10 seconds reflow through furnace	
Freefall test	3 freefalls from 1 m height onto concrete
Vibration test	In case of sweeping, $10 \rightarrow 55 \rightarrow 10 \mathrm{~Hz} / \mathrm{min}, 1.5 \mathrm{~mm}$ amplitude, 2 h for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ in each direction
Board bending test	Solder to glass epoxy board*, put pressure at a speed of $1 \mathrm{~mm} / \mathrm{s}$ until board displacement volume reaches 1 mm. Hold for 5 seconds.

*L100×W40mm thickness: 1.6 mm
All products in the CCR series meet all of the following ratings in all of the reliability tests listed below.

1. Oscillation frequency change less than $\pm 0.25 \%$.
2. Resonant resistance change less than $\pm 10 \Omega$.
3. No noticeable changes or abnormalities in external appearance.

Temperature Range

In operation/In Storage -40 to $+85^{\circ} \mathrm{C}$

Recommended soldering conditions

Lead free solder/High-temperature reflow process

Product Lineup

Dimensions/Terminal connection/Electrical characteristics

MUC8 type
Fundamental Mode : 4.0 to 7.99 MHz
Internal Load Capacitance

Dimensions in mm

MUC8 type

Part No.	Oscillation frequency Fosc (MHz)	Resonance Impedance Zo (Ω) max.	Initial Oscillation Frequency Tolerance* (\%) max.	Internal load capacitance (pF) $\mathrm{CL}_{1} \quad \mathrm{CL}_{2}$		T (mm)
CCR4.0MUC8T	4.000	40	$\pm 0.5 / 0.3$	27	27	1.1 max.
CCR4.19MUC8T	4.194	40	$\pm 0.5 / 0.3$	27	27	1.1 max.
CCR4.91MUC8T	4.915	40	$\pm 0.5 / 0.3$	27	27	1.1 max.
CCR5.0MUC8T	5.000	40	$\pm 0.5 / 0.3$	27	27	1.1 max.
CCR6.0MUC8T	6.000	40	$\pm 0.5 / 0.3$	27	27	1.1 max.

- The data shown is a representative characteristic example.

Other oscillating frequencies and internal load capacities can also be supported.

* The allowable tolerance of the standard products is plus and minus 0.5%.

Of course, we can deal with requests for products with smaller allowable tolerance shown in the table.
MXC8 type

	Oscillation frequency Fosc $(M H z)$	Resonance Impedance Z_{0}	Initial Oscillation Frequency	Internal load capacitance	T (mm)	
Part No.	(Ω) max.	Tolerance* $(\%)$ max.	(pF) CL_{1}	CL_{2}		
CCR8.0MXC8T	8.000	40	$\pm 0.5 / 0.3$	18	18	0.8 max.
CCR8.38MXC8T	8.380	40	$\pm 0.5 / 0.3$	18	18	0.8 max.
CCR10.0MXC8T	10.000	40	$\pm 0.5 / 0.3$	18	18	0.8 max.
CCR11.0MXC8T	11.000	40	$\pm 0.5 / 0.3$	18	18	0.8 max.

[^0]
Dimensions / Terminal connection / Electrical characteristics

MX7 type
3rd Harmonic Mode : 16.0 to 50.0 MHz
External Load Capacitance

MX7 type

Part No.	Oscillation frequency Fosc (MHz)	Resonance Impedance Zo (Ω) max.	Initial Oscillation Frequency Tolerance* (\%) max.	Inte cap (pF CL	load ance CL_{2}	T (mm)
CCR16.0MX7T	16.000	70	$\pm 0.5 / 0.3 / 0.15$	-	-	1.1 ± 0.2
CCR16.93MX7T	16.934	70	$\pm 0.5 / 0.3 / 0.15$	-	-	1.1 ± 0.2
CCR18.0MX7T	18.000	70	$\pm 0.5 / 0.3 / 0.15$	-	-	1 ± 0.2
CCR20.0MX7T	20.000	40	$\pm 0.5 / 0.3 / 0.15$	-	-	1 ± 0.2
CCR22.58MX7T	22.580	40	$\pm 0.5 / 0.3 / 0.15$	-	-	1 ± 0.2
CCR24.0MX7T	24.000	40	$\pm 0.5 / 0.3 / 0.15$	-	-	1 ± 0.2
CCR25.0MX7T	25.000	40	$\pm 0.5 / 0.3 / 0.15$	-	-	0.9 ± 0.2
CCR30.0MX7T	30.000	40	$\pm 0.5 / 0.3 / 0.15$	-	-	0.9 ± 0.2
CCR32.0MX7T	32.000	40	$\pm 0.5 / 0.3 / 0.15$	-	-	0.8 ± 0.2
CCR33.33MX7T	33.333	40	$\pm 0.5 / 0.3 / 0.15$	-	-	0.8 ± 0.2
CCR33.86MX7T	33.868	40	$\pm 0.5 / 0.3 / 0.15$	-	-	0.8 ± 0.2
CCR34.57MX7T	34.570	40	$\pm 0.5 / 0.3 / 0.15$	-	-	0.8 ± 0.2
CCR40.0MX7T	40.000	40	$\pm 0.5 / 0.3 / 0.15$	-	-	0.8 ± 0.2
CCR48.0MX7T	48.000	40	$\pm 0.5 / 0.3 / 0.15$	-	-	0.8 ± 0.2
CCR50.0MX7T	50.000	40	$\pm 0.5 / 0.3 / 0.15$	-	-	0.8 ± 0.2

[^1]* The allowable tolerance of the standard products is plus and minus 0.5%

Of course, we can deal with requests for products with smaller allowable tolerance shown in the table

Product Lineup

Dimensions / Terminal connection / Electrical characteristics

MXC7 type
3rd Harmonic Mode : 16.0 to 50.0 MHz
Internal Load Capacitance

MXC7 type

Part No.	Oscillation frequency Fosc (MHz)	Resonance Impedance Zo (Ω) max.	Initial Oscillation Frequency Tolerance* (\%) max.	Internal load capacitance (pF) $\mathrm{CL}_{1} \quad \mathrm{CL}_{2}$		T (mm)
CCR16.0MXC7T	16.000	70	$\pm 0.5 / 0.3 / 0.15$	10.0	10.0	1.1 ± 0.2
CCR16.93MXC7T	16.934	70	$\pm 0.5 / 0.3 / 0.15$	9.0	9.0	1.1 ± 0.2
CCR18.0MXC7T	18.000	70	$\pm 0.5 / 0.3 / 0.15$	9.0	9.0	1 ± 0.2
CCR20.0MXC7T	20.000	40	$\pm 0.5 / 0.3 / 0.15$	9.0	9.0	1 ± 0.2
CCR22.58MXC7T	22.580	40	$\pm 0.5 / 0.3 / 0.15$	9.0	9.0	1 ± 0.2
CCR24.0MXC7T	24.000	40	$\pm 0.5 / 0.3 / 0.15$	9.0	9.0	1 ± 0.2
CCR25.0MXC7T	25.000	40	$\pm 0.5 / 0.3 / 0.15$	8.0	8.0	0.9 ± 0.2
CCR30.0MXC7T	30.000	40	$\pm 0.5 / 0.3 / 0.15$	8.0	8.0	0.9 ± 0.2
CCR32.0MXC7T	32.000	40	$\pm 0.5 / 0.3 / 0.15$	8.0	8.0	0.8 ± 0.2
CCR33.33MXC7T	33.333	40	$\pm 0.5 / 0.3 / 0.15$	8.0	8.0	0.8 ± 0.2
CCR33.86MXC7T	33.868	40	$\pm 0.5 / 0.3 / 0.15$	8.0	8.0	0.8 ± 0.2
CCR34.57MXC7T	34.570	40	$\pm 0.5 / 0.3 / 0.15$	8.0	8.0	0.8 ± 0.2
CCR40.0MXC7T	40.000	40	$\pm 0.5 / 0.3 / 0.15$	8.0	8.0	0.8 ± 0.2
CCR48.0MXC7T	48.000	40	$\pm 0.5 / 0.3 / 0.15$	8.0	8.0	0.8 ± 0.2
CCR50.0MXC7T	50.000	40	$\pm 0.5 / 0.3 / 0.15$	8.0	8.0	0.8 ± 0.2

- The data shown is a representative characteristic example.

Other oscillating frequencies and internal load capacities can also be supported.
*The allowable tolerance of the standard products is plus and minus 0.5%.
Of course, we can deal with requests for products with smaller allowable tolerance shown in the table.

Dimensions / Terminal connection / Electrical characteristics

MYC7 type
3rd Harmonic Mode : 24.0 to 50.0 MHz Internal Load Capacitance

MYC7 type

	Oscillation frequency Fosc $(M H z)$	Resonance Impedance Z_{0}	Initial Oscillation Frequency Tolerance*	Internal load capacitance	(Ω) max.	$(\%)$ max.
Part No.	40	$\pm 0.5 / 0.3 / 0.15$	7.0	7.0	0.9 ± 0.1	
CCR24.0MYC7T1	24.000	40	$\pm 0.5 / 0.3 / 0.15$	7.0	7.0	0.9 ± 0.1
CCR25.0MYC7T1	25.000	40	$\pm 0.5 / 0.3 / 0.15$	7.0	7.0	0.85 ± 0.1
CCR27.12MYC7T1	27.120	40	$\pm 0.5 / 0.3 / 0.15$	7.0	7.0	0.85 ± 0.1
CCR30.0MYC7T1	30.000	40	$\pm 0.5 / 0.3 / 0.15$	7.0	7.0	0.85 ± 0.1
CCR33.33MYC7T1	33.333	40	$\pm 0.5 / 0.3 / 0.15$	7.0	7.0	0.85 ± 0.1
CCR33.86MYC7T1	33.868	40	$\pm 0.5 / 0.3 / 0.15$	7.0	7.0	0.8 ± 0.1
CCR40.0MYC7T1	40.000	40	$\pm 0.5 / 0.3 / 0.15$	7.0	7.0	0.8 ± 0.1
CCR48.0MYC7T1	48.000				$C L_{2}$	

- The data shown is a representative characteristic example.

Other oscillating frequencies and internal load capacities can also be supported.

* The allowable tolerance of the standard products is plus and minus 0.5%.

Of course, we can deal with requests for products with smaller allowable tolerance shown in the table

Product Lineup

Oscillation frequency vs. temperature

 characteristics example

CCR48.0MYC7TI

Measurement circuit of
Oscillation frequency vs.
temperature characteristics

Oscillation frequency time-lapse variation (long-term stability)

[^0]: - The data shown is a representative characteristic example.

 Other oscillating frequencies and internal load capacities can also be supported.

 * The allowable tolerance of the standard products is plus and minus 0.5%.

 Of course, we can deal with requests for products with smaller allowable tolerance shown in the table

[^1]: The data shown is a representative characteristic example.
 Other oscillating frequencies and internal load capacities can also be supported

