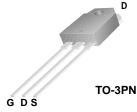
July 2009

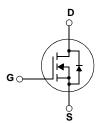
SupreMOS[™]

FAIRCHILD SEMICONDUCTOR® FCA22N60N N-Channel MOSFET

N-Channel MOSFE 600V, 22A, 0.165Ω

Features


- + $R_{DS(on)} = 0.140\Omega$ (Typ.) @ $V_{GS} = 10V$, $I_D = 11A$
- BV_{DSS}>650V @ T_J = 150^oC
- Ultra Low Gate Charge (Typ. Qg = 45nC)
- Low Effective Output Capacitance
- 100% Avalanche Tested
- RoHS Compliant



Description

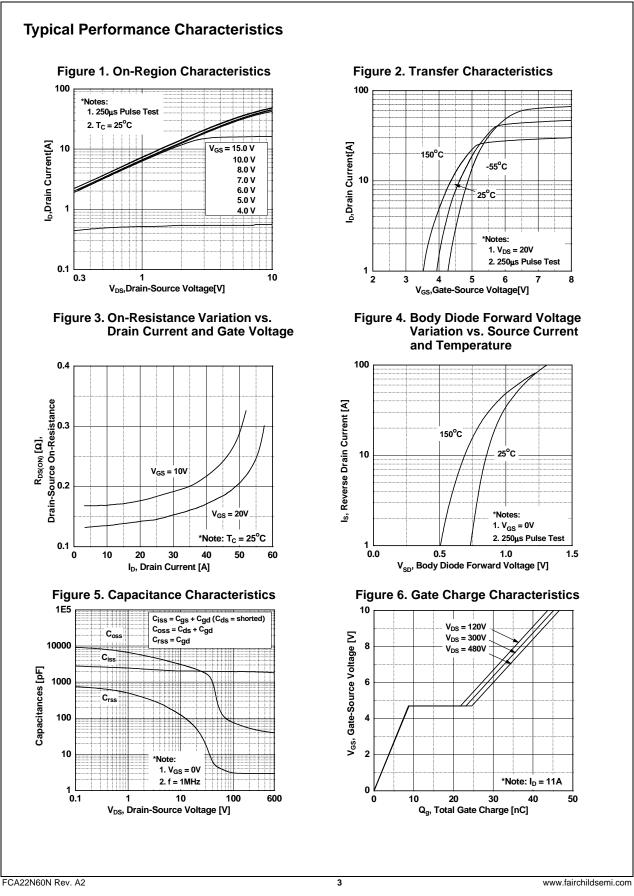
The SupreMOS MOSFET, Fairchild's next generation of high voltage super-junction MOSFETs, employs a deep trench filling process that differentiates it from preceding multi-epi based technologies. By utilizing this advanced technology and precise process control, SupreMOS provides world class Rsp, superior switching performance and ruggedness.

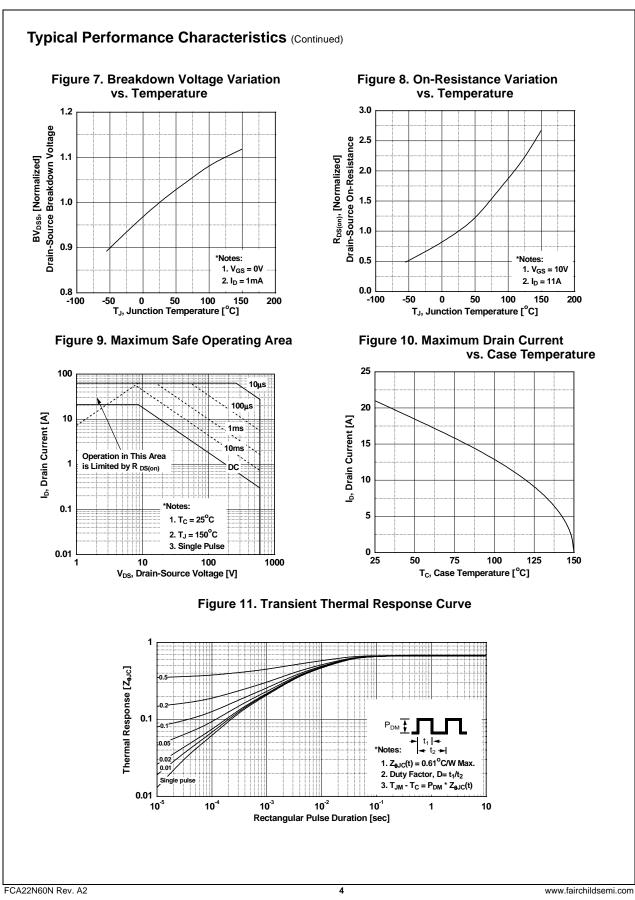
This SupreMOS MOSFET fits the industry's AC-DC SMPS requirements for PFC, server/telecom power, FPD TV power, ATX power, and industrial power applications.

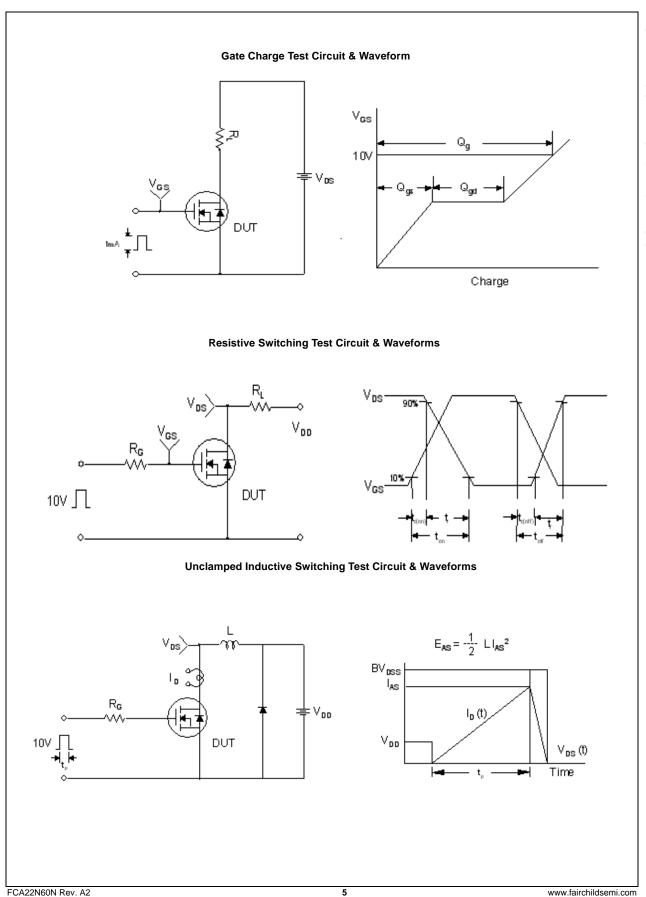
40

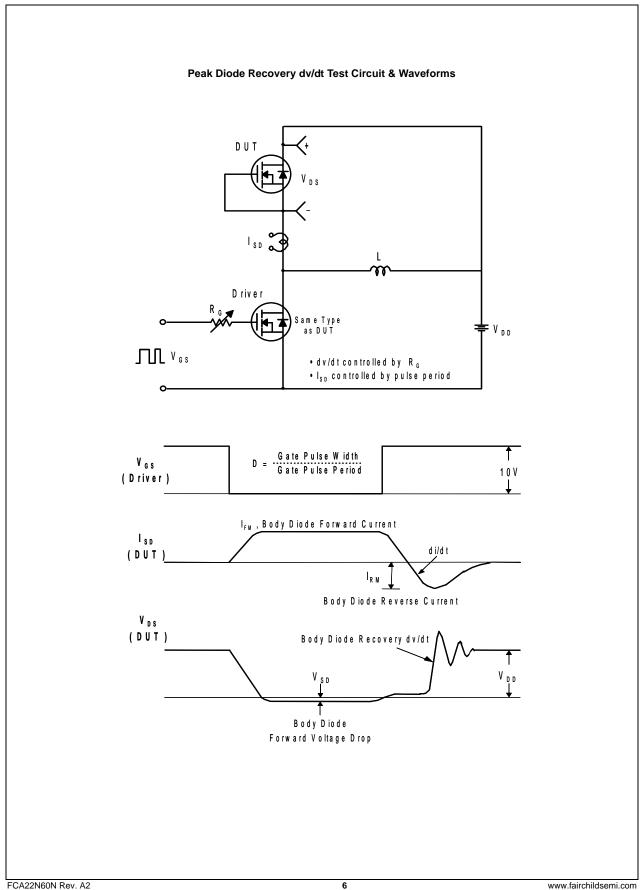
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

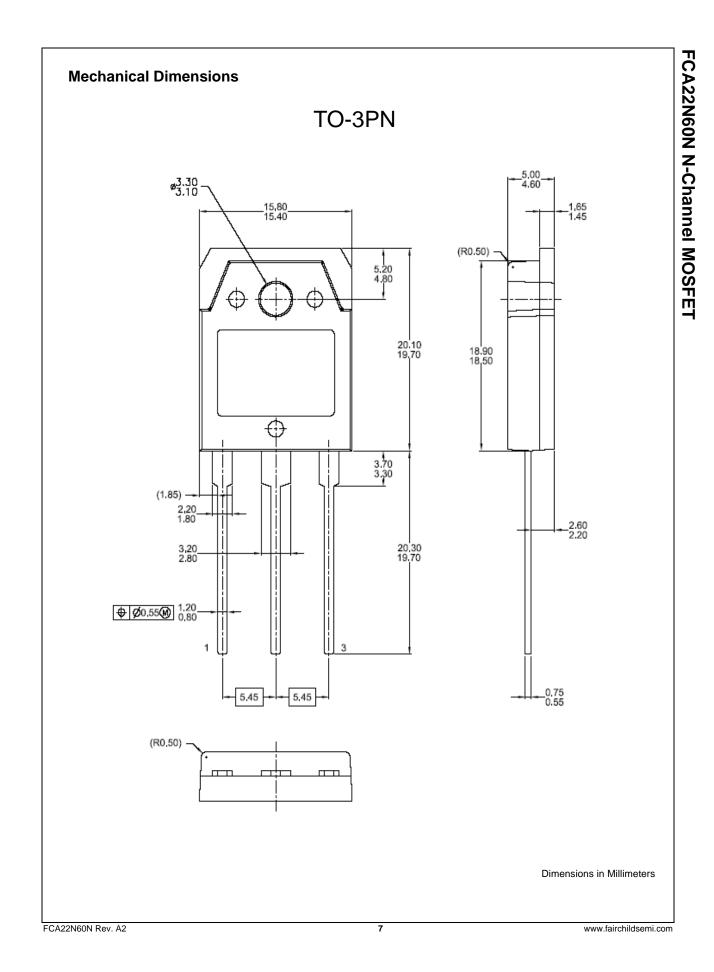
Thermal Resistance, Junction to Ambient


Symbol		Parameter		FCA22N60N	Units	
V _{DSS}	Drain to Source Voltage			600	V	
V _{GSS}	Gate to Source Voltage	Sate to Source Voltage		±30	V	
I _D	Droin Current	Continuous ($T_C = 25^{\circ}C$)		22	•	
	Drain Current	Continuous ($T_c = 100^{\circ}C$)		13.8	A	
I _{DM}	Drain Current	Pulsed (Note 1)	66	А	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		672	mJ		
I _{AR}	Avalanche Current		7.3	А		
E _{AR}	Repetitive Avalanche Energy			2.75	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)			20	V/ns	
	MOSFET dv/dt			100		
P _D	Dewer Dissinction	$(T_{C} = 25^{\circ}C)$		205	W	
	Power Dissipation	Derate above 25°C		1.64	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	
	mited by maximum junction tempe	rature				
Thermal	Characteristics					
Symbol	Parameter			FCA22N60N	Units	
R _{θJC}	Thermal Resistance, Junction to Case			0.61		
$R_{\theta JS}$	Thermal Resistance, Case	to Heat Sink (Typical)		0.24	°C/W	


©2009 Fairchild Semiconductor Corporation FCA22N60N Rev. A2


 $R_{\theta JA}$


	Device Marking Device Packa		ge Reel Size Tap		e Width		Quantity			
FCA22N6			TO-3PI	N	-		-	30		
Iectrical	Char	acteristics								
Symbol	ctrical Characteristics		Test Conditions		Min.	Typ.	Max.	Units		
Off Charact	eristic									
BV _{DSS}	Drain to Source Breakdown Voltage		$I_D = 1mA, V_{GS} = 0V, T_J = 25^{\circ}C$ $I_D = 1mA, V_{GS} = 0V, T_J = 150^{\circ}C$		600 650	-	-	V		
ΔBV _{DSS} ΔΤ.ι	Breakdown Voltage Temperature Coefficient		$I_D = 1$ mA, Referenced to 25°C			-	0.68	-	V/ºC	
DSS	Zero Ga	Zero Gate Voltage Drain Current		$V_{DS} = 480V, V_{GS} = 0V$ $V_{DS} = 480V, T_J = 125^{\circ}C$		-	-	10	μA	
GSS	Gate to Body Leakage Current		$V_{DS} = 480V,$ $V_{GS} = \pm 50V,$	-		-	-	100 ±100	nA	
On Charact	eristic	5								
/ _{GS(th)}	Gate Threshold Voltage			V _{GS} = V _{DS} , I _D = 250μA			2.0	3	4.0	V
R _{DS(on)}	Static Drain to Source On Resistance		V _{GS} = 10V, I			-	0.140	0.165	Ω	
JFS	Forward Transconductance		$V_{DS} = 20V, I_D = 11A$			-	22	-	S	
Dynamic Cl	haracte	eristics								
C _{iss}	Input Capacitance						-	1950	-	pF
S _{ISS}		Capacitance		$V_{DS} = 100V, V_{GS} = 0V$		-	75.9	-	pF	
Poss Prss		e Transfer Capacitance		_f = 1MHz			-	3	-	pF
YISS YOSS		ut Capacitance		V _{DS} = 380V, V _{GS} = 0V, f = 1MHz		-	43.2	-	pF	
C _{oss} eff.		tive Output Capacitance		$V_{DS} = 0V \text{ to } 480V, V_{GS} = 0V$		-	196.4	-	pF	
Q _{q(tot)}		otal Gate Charge at 10V				-	45	-	nC	
λ _{gs}		Source Gate Charge		$V_{DS} = 380V, I_D = 11A,$ $V_{GS} = 10V$		-	8.7	-	nC	
ي ک _{gd}		Drain "Miller" Charge				-	14.5	-	nC	
×ga ESR		Equivalent Series Resistance (G-S)		(Note 4) Drain Open, f=1MHz			-	1	-	Ω
Switching (harac	toristics	. ,	· · ·						
-	1	Delay Time					-	16.9	-	ns
t _{d(on)}		-On Rise Time -Off Delay Time		$V_{DD} = 380$ V, $I_D = 11$ A $R_G = 4.7\Omega$		-	16.7	-	ns	
r d(off)						-	49	-	ns	
α(οπ) f		f Fall Time	(Note 4)			-	4	-	ns	
	ce Dior	de Characteristic	·e			, ,				
s		m Continuous Drain to	-	e Forward Cu	rent		-		22	A
SM	Maximu	Maximum Pulsed Drain to Source Diode For		rward Current		-	-	66	Α	
/ _{SD}	Drain to	Drain to Source Diode Forward Voltage		V _{GS} = 0V, I _{SD} = 11A		-	-	1.2	V	
rr	Reverse	everse Recovery Time		$V_{GS} = 0V, I_{SD} = 11A$		-	350	-	ns	
2 _{rr}	Reverse	Reverse Recovery Charge		$dI_F/dt = 100A/\mu s$		-	6	-	μC	


FCA22N60N N-Channel MOSFET

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

uto-SPM™	F-PFS™	PowerTrench [®]	The Power Franchise
suild it Now™	FRFET®	PowerXS™	the
CorePLUS™	Global Power Resource SM	Programmable Active Droop™	power
CorePOWER™	Green FPS™	QFET®	franchise
CROSSVOLT™	Green FPS [™] e-Series [™]	QS™	TinyBoost™
TL™	G <i>max</i> ™	Quiet Series™	TinyBuck™
Current Transfer Logic™	GTO™	RapidConfigure™	TinyLogic [®]
	IntelliMAX™		TINYOPTO™
fficentMax™	ISOPLANAR™	Тм	TinyPower™
ZSWITCH™ *	MegaBuck™	Saving our world, 1mW /W /kW at a time™	TinyPWM™
	MIČROCOUPLER™	SmartMax™	TinyWire™
<i>→1</i>	MicroFET™	SMART START™	TriFault Detect™
R	MicroPak™	SPM®	TRUECURRENT™*
F®	MillerDrive™	STEALTH™	µSerDes™
airchild®	MotionMax™	SuperFET™	U
airchild Semiconductor [®]	Motion-SPM [™]	SuperSOT™-3	SerDes"
ACT Quiet Series™	OPTOLOGIC [®]	SuperSOT™-6	UHC®
ACT®	OPTOPLANAR [®]	SuperSOT™-8	Ultra FRFET™
AST®	R	SupreMOS™	UniFET™
astvCore™	(1)	SyncFET™	VCX [™]
ETBench™		Sync-Lock™	VisualMax™
lashWriter [®] *	PDP SPM™	SYSTEM ®*	XS™
PS™	Power-SPM [™]	GENERAL	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their

parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

FCA22N60N Rev. A2