INTERNATIONAL RECTIFIER

T-39-13

INTERNATIONAL RECTIFIER

HEXFET® TRANSISTORS IRFZ40 IRFZ42

N-Channel 50 VOLT **POWER MOSFETs**

50 Volt, 0.028 Ohm HEXFET TO-220AB Plastic Package

The HEXFET technology has expanded its product base to serve the low voltage, very low RDS(on) MOSFET transistor requirements. International Rectifier's highly efficient geometry and unique processing of the HEXFET have been combined to create the lowest on resistance per device performance. In addition to this feature all HEXFETs have documented reliability and parts per million quality!

The HEXFET transistors also offer all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling, and temperature stability of the electrical parameters.

They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and in systems that are operated from low voltage batteries, such as automotive, portable equipment, etc.

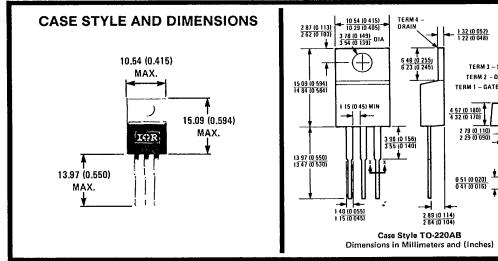
Product Summary

PART NUMBER	VDS	R _{DS} (ON)	ID
IRFZ40	50V	0.028Ω	35A*
IRFZ42	50∨	0.035Ω	35A*

Features:

- Extremely Low RDS(on)
 Compact Plastic Package
 Fast Switching
 Low Drive Current

- Ease of Paralleling
- Excellent Temperature Stability


TERM 3 - SOURCE

5 33 (0 210) 4 83 (0 190)

0 939 (0 037) 0 686 (0 027)

TERM 2 - DRAIN

■ Parts Per Million Quality

*ID Current limited by pin diameter

IRFZ40, IRFZ42 Series

INTERNATIONAL RECTIFIER

Absolute Maximum Ratings

T-39-13

	Parameter	IRFZ40	IRFZ42	Units
V _{DS}	Drain - Source Voltage ①	50	50	V
VDGR	Drain - Gate Voltage (RGS = 20 KΩ) ①	60	50	V
I _D @ T _C = 25°C	Continuous Drain Current	35	35	A
ID @ TC = 100°C	Continuous Drain Current	32	- 29	Α
DM.	Pulsed Drain Current ③	160	145	ΑΑ
V _{GS}	Gate - Source Voltage		V	
P _D @ T _C = 25°C	Max. Power Dissipation	125 (S	w	
. р. с	Linear Derating Factor	1.0 (S	W/K®	
ILM	Inductive Current, Clamped	(See Fig. 15 a		
.FIM		160	145	A
T _J T _{stg}	Operating Junction and Storage Temperature Range	-5	°C	
oig .	Lead Temperature	300 (0.063 in. (1.6)	°C	

Flectrical Characteristics @ Tc = 25°C (Unless Otherwise Specified)

	Parameter	Туре	Min,	Тур.	Max.	Units	Test Cor	ditions	
BVDSS	Drain - Source Breakdown Voltage	IRFZ40	50			V	V _{GS} = 0V		
- 1000		IRFZ42	50	_	-	V	I _D = 250 μA		
V _{GS(th)}	Gate Threshold Voltage	ALL	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$		
IGSS	Gate-Source Leakage Forward	ALL	-		500	nA	V _{GS} = 20V		
IGSS	Gate-Source Leakage Reverse	ALL		-	-500	пА	V _{GS} =-20V		
IDSS	Zero Gate Voltage Drain Current	ALL	-	-	250	μΑ	V _{DS} = Max. Rating, V _{GS} =	ov	
000		ALL	-		1000	μΑ	V _{DS} = Max. Rating x 0.8, V	GS = 0V, T _C = 125°C	
1 _{D(on)}	On-State Drain Current @ @	IRFZ40	35		-	A	Voc > lov + X Books	V _{DS} > I _{D(on)} × R _{DS(on)max} , V _{GS} = 10V	
Dion		IRFZ42	35	_	_	Α	*DS > (D(on) ^ 11DS(on)max	C/ 7G5	
RDS(on)	Static Drain-Source On-State Resistance @	IRFZ40	-	0.024	0.028	Ω	V _{GS} = 10V, I _D = 29A		
DOTOTA		IRFZ42	_	0.030	0.035	Ω	1 00		
9fs	Forward Transconductance @	ALL	17	22	-	S(Ω)	$V_{DS} > I_{D(on)} \times R_{DS(on)}$ ma $V_{GS} = 0V$, $V_{DS} = 25V$, $f =$	_{3x.,} I _D = 29A	
Ciss	Input Capacitance	ALL		2350	3000	ρF	$V_{GS} = 0V, V_{DS} = 25V, f =$	1.0 MHz	
Coss	Output Capacitance	ALL	-	920	1200	рF	See Fig. 10		
Crss	Reverse Transfer Capacitance	ALL	_	250	400	pF			
td(on)	Turn-On Delay Time	ALL		18	25	ns	$V_{DD} \cong 25V$, $I_D = 29A$, $Z_0 =$	4.7Ω	
tr	Rise Time	ALL	-	25	60	ns	See Fig. 17		
td(off)	Turn-Off Delay Time	ALL	-	35	70	ns	(MOSFET switching times are	essentially independent of	
tf	Fall Time	ALL	_	12	25	ns	operating temperature.)		
a _g	Total Gate Charge (Gate-Source Plus Gate-Drain)	ALL	_	40	60	пC	V _{GS} = 10V, I _D = 64A, V _{DS} See Fig. 18 for test circuit. (G	= 0.8 Max. Rating. ate charge is essentially	
Qqs	Gate-Source Charge	ALL	_	22 .	T -	nC	independent of operating tem	perature.)	
Ogd	Gate-Drain ("Miller") Charge	ALL	T -	18	T -	nC	1		
LD	Internal Drain Inductance	Ī	-	3.5	-	nH	Measured from the contact screw on tab to center of die.	Modified MOSFET symbol showing the internal device	
		ALL	-	4.5	-	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die.	inductances.	
LS	Internal Source Inductance	ALL	_	7.5	-	nH	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.	å light	

Thermal Resistance

RthJC	Junction-to-Case	ALL	_	_	1.0	W/K®	
RthCS	Case-to-Sink	ALL		1.0	_	W/K ®	Mounting surface flat, smooth, and greased.
Reb IA	Junction-to-Ambient	ALL	-		80	W/K®	Typical socket mount

IRFZ40, IRFZ42 Series

INTERNATIONAL RECTIFIER

T-39-13

Source-Drain Diode Ratings and Characteristics

Is	Continuous Source Current	IRFZ40	_	_	35	A	Modified MOSFET symbol showing the integral	
	(Body Diode)	IRFZ42	-	_	35	Α	reverse P-N junction rectifier.	
Ism	Pulse Source Current	IRFZ40	_	_	160	Α] [[]] }	
	(Body Diode) ③	IRFZ42		Ī	145	Α		
V _{SD}	Diode Forward Voltage ②	IRFZ40	_	_	2.5	V	T _C = 25°C, I _S = 51A, V _{GS} = 0V	
-		IRFZ42	-	-	2.2	V	T _C = 25°C, I _S = 46A, V _{GS} = 0V	
t _{rr}	Reverse Recovery Time	ALL		350	_	ПS	$T_{\rm J} = 150^{\circ}{\rm C}$, $I_{\rm F} = 51{\rm A}$, $dI_{\rm F}/dt = 100{\rm A}/\mu{\rm s}$	
QRR	Reverse Recovered Charge	ALL	_	2.1		μC	$T_{J} = 150^{\circ}\text{C}$, $I_{F} = 51\text{A}$, $dI_{F}/dt = 100\text{A}/\mu\text{s}$	
ton	Forward Turn-on Time	ALL	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp.					

① $T_J = 25^{\circ}C$ to $150^{\circ}C$.

② Pulse Test: Pulse width \leqslant 300 $\mu\text{s},$ Duty Cycle \leqslant 2%.

⑤ K/W = °C/W W/K = W/°C

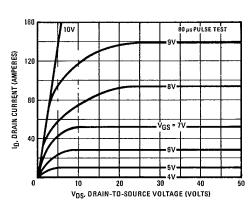


Fig. 1 - Typical Output Characteristics

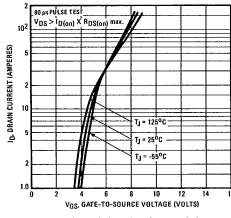


Fig. 2 — Typical Transfer Characteristics

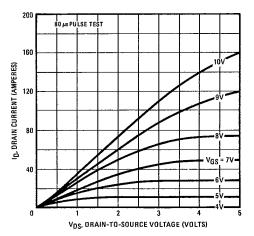


Fig. 3 — Typical Saturation Characteristics

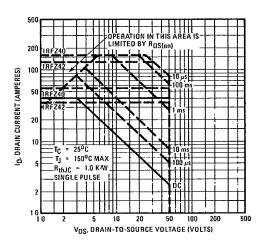


Fig. 4 - Maximum Safe Operating Area

ID Current limited by pin diameter.

Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5).

INTERNATIONAL RECTIFIER

T-39-13

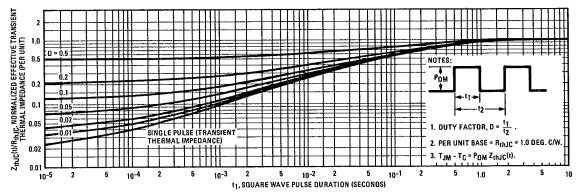


Fig. 5 — Maximum Effective Transient Thermal Impedance, Junction-toCase Vs. Pulse Duration

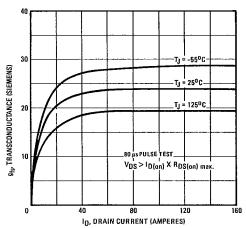


Fig. 6 — Typical Transconductance Vs. Drain Current

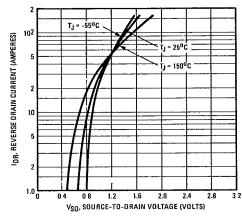


Fig. 7 — Typical Source-Drain Diode Forward Voltage

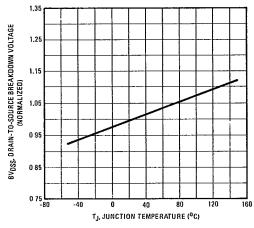


Fig. 8 - Breakdown Voltage Vs. Temperature

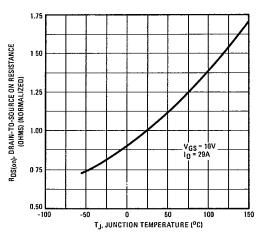


Fig. 9 — Normalized On-Resistance Vs. Temperature

Lie D 4855452 0008696 0

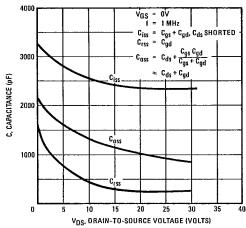


Fig. 10 - Typical Capacitance Vs. Drain-to-Source Voltage

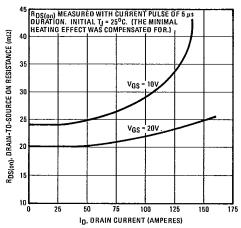


Fig. 12 — Typical On-Resistance Vs. Drain Current

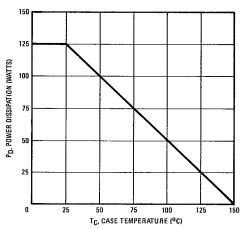


Fig. 14 -- Power Vs. Temperature Derating Curve

T-39-13 IRFZ40, IRFZ42 Series

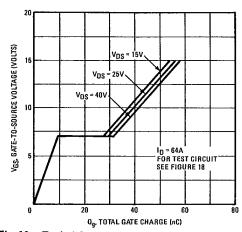


Fig. 11 — Typical Gate Charge Vs. Gate-to-Source Voltage

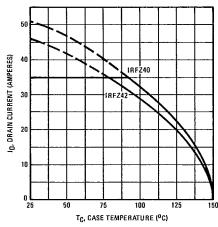


Fig. 13 - Maximum Drain Current Vs. Case Temperature

Fig. 15 — Clamped Inductive Test Circuit

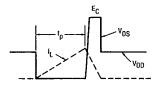


Fig. 16 — Clamped Inductive Waveforms

IRFZ40, IRFZ42 Series

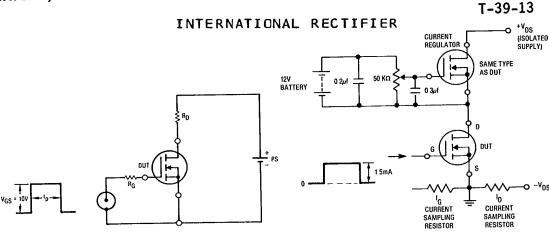
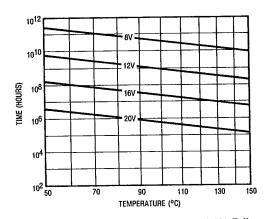
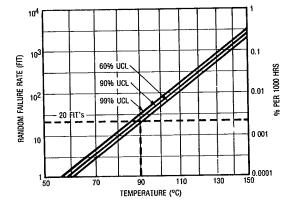




Fig. 17 — Switching Time Test Circuit

*Fig. 19 — Typical Time to Accumulated 1% Failure

*Fig. 20 — Typical High Temperature Reverse Blas (HTRB) Failure Rate

*The data shown is correct as of April 15, 1987. This information is updated on a quarterly basis; for the latest reliability data, please contact your local IR field office.