

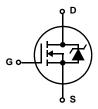
Data Sheet May 2010

14A, 50V, 0.100 Ohm, Logic Level, N-Channel Power MOSFETs

These are N-channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. This performance is accomplished through a special gate oxide design which provides full rated conductance at gate bias in the 3V-5V range, thereby facilitating true on-off power control directly from logic level (5V) integrated circuits.

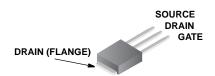
Formerly developmental type TA09870.

Ordering Information


PART NUMBER	PACKAGE	BRAND
RFD14N05L	FD14N05L TO-251AA 14N05L	
RFD14N05LSM	TO-252AA	14N05L

NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-252AA variant in the tape and reel, i.e., RFD14N05LSM9A.

Features


- 14A, 50V
- $r_{DS(ON)} = 0.100\Omega$
- Temperature Compensating PSPICE[®] Model
- Can be Driven Directly from CMOS, NMOS, and TTL Circuits
- · Peak Current vs Pulse Width Curve
- UIS Rating Curve
- 175°C Operating Temperature
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

JEDEC TO-251AA

JEDEC TO-252AA

RFD14N05L, RFD14N05LSM

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFD14N05L, RFD14N05LSM,	UNITS
Drain to Source Voltage (Note 1)VDSS	50	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1)	50	V
Gate to Source Voltage	±10	V
Continuous Drain Current	14	Α
Pulsed Drain Current (Note 3)	Refer to Peak Current Curve	
Pulsed Avalanche RatingE _{AS}	Refer to UIS Curve	
Power Dissipation	48	W
Derate above 25°C	0.32	W/oC
Operating and Storage Temperature	-55 to 175	oC
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10s	300	oC
Package Body for 10s, See Techbrief 334	260	°C

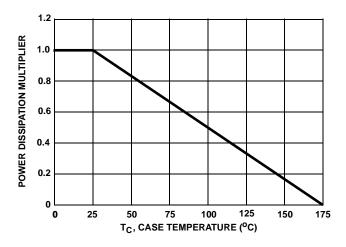
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V, Figure 13		50	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250\mu$ A, Figure 12		1	-	2	V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 40V, V_{GS} = 0V$	1	-	-	1	μΑ
		$V_{DS} = 40V, V_{GS} = 0V, T_{C} = 150^{\circ}C$		-	-	50	μΑ
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 10V$		-	-	±100	nA
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	I _D = 14A, V _{GS} = 5V, I	Figures 9, 11	-	-	0.100	Ω
Turn-On Time	t _(ON)	$V_{DD} = 25V, I_{D} = 7A,$ $R_{L} = 3.57\Omega, V_{GS} = 5V,$ $R_{GS} = 0.6\Omega$		-	-	60	ns
Turn-On Delay Time	t _{d(ON)}			-	13	-	ns
Rise Time	t _r			-	24	-	ns
Turn-Off Delay Time	t _{d(OFF)}			-	42	-	ns
Fall Time	t _f			-	16	-	ns
Turn-Off Time	t(OFF)			-	-	100	ns
Total Gate Charge	Q _{g(TOT)}	$V_{GS} = 0V \text{ to } 10V$	$V_{DD} = 40V, I_D = 14A,$	-	-	40	nC
Gate Charge at 5V	Q _{g(5)}	$\begin{array}{c} V_{GS} = 0V \text{ to } 5V \\ V_{GS} = 0V \text{ to } 1V \end{array}$ Figures 20, 21	-	-	25	nC	
Threshold Gate Charge	Q _{g(TH)}		-	-	1.5	nC	
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz Figure 14		-	670	-	pF
Output Capacitance	C _{OSS}			-	185	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	50	-	pF
Thermal Resistance Junction to Case	$R_{ heta JC}$			-	-	3.125	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	TO-251 and TO-252		-	-	100	oC/W


Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage (Note 2)	V _{SD}	I _{SD} = 14A	-	-	1.5	V
Diode Reverse Recovery Time	t _{rr}	$I_{SD} = 14A$, $dI_{SD}/dt = 100A/\mu s$	i	-	125	ns

NOTES:

- 2. Pulse Test: Pulse Width ≤300ms, Duty Cycle ≤2%.
- 3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance Curve (Figure 3) and Peak Current Capability Curve (Figure 5).

Typical Performance Curves Unless Otherwise Specified

16 (V) 12 8 8 0 25 50 75 100 125 150 175 T_C, CASE TEMPERATURE (°C)

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE

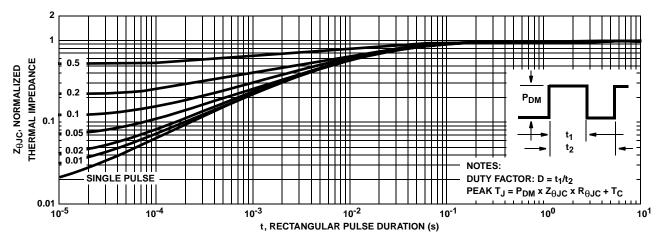


FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

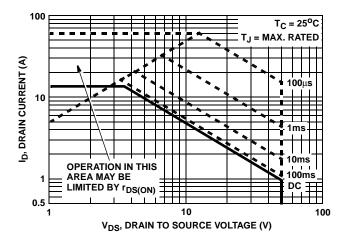


FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

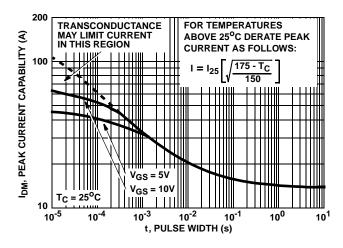
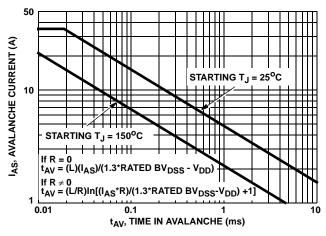



FIGURE 5. PEAK CURRENT CAPABILITY

Typical Performance Curves Unless Otherwise Specified (Continued)

NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING

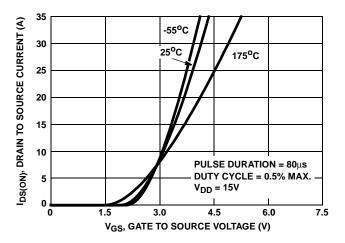


FIGURE 8. TRANSFER CHARACTERISTICS

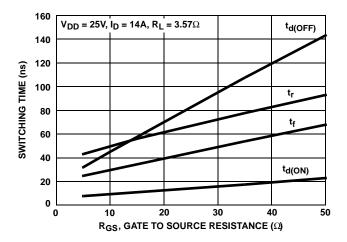


FIGURE 10. SWITCHING TIME vs GATE RESISTANCE

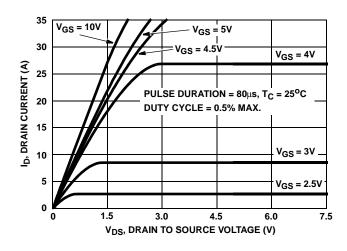


FIGURE 7. SATURATION CHARACTERISTICS

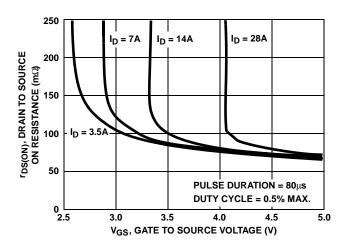


FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

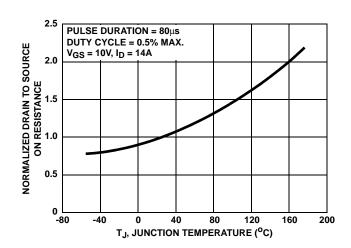


FIGURE 11. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

Typical Performance Curves Unless Otherwise Specified (Continued)

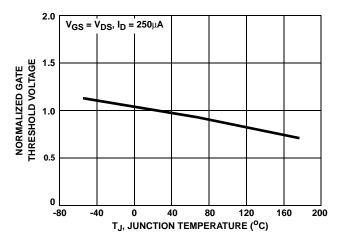


FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

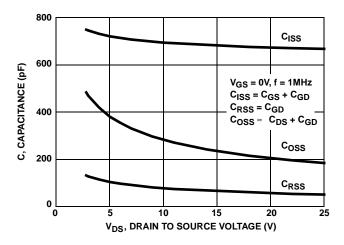


FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

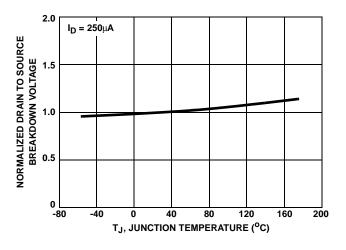
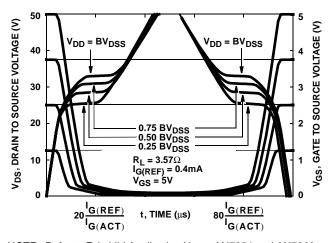



FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260, FIGURE 15. TRANSCONDUCTANCE vs DRAIN CURRENT

Test Circuits and Waveforms

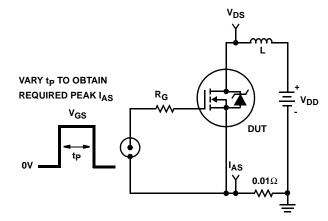


FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT

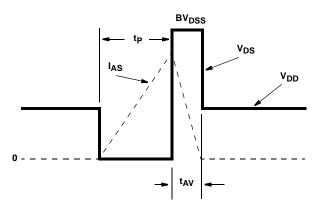


FIGURE 17. UNCLAMPED ENERGY WAVEFORMS

Test Circuits and Waveforms (Continued)

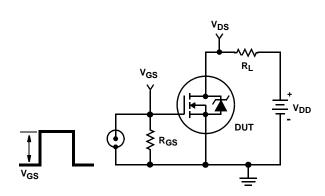


FIGURE 18. SWITCHING TIME TEST CIRCUIT

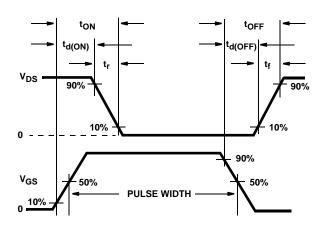


FIGURE 19. RESISTIVE SWITCHING WAVEFORMS

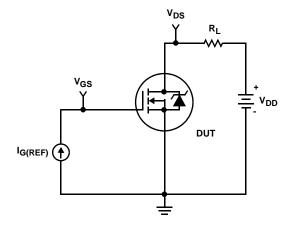


FIGURE 20. GATE CHARGE TEST CIRCUIT

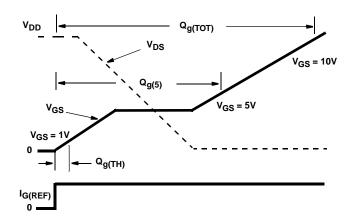


FIGURE 21. GATE CHARGE WAVEFORMS

PSPICE Electrical Model

```
.SUBCKT_RFD14N05L_213:
                                 rev 9/15/94
CA 12 8 1.464e-9
CB 15 14 1.64e-9
                                                                     DPLCAP
CIN 6 8 6.17e-10
                                                                                                                   DRAIN
                                                              10
                                                                                                          LDRAIN
DBODY 7 5 DBDMOD
DBREAK 5 11 DBKMOD
                                                                                  RSCL1
DPLCAP 10 5 DPLCAPMOD
                                                                                         DBREAK
                                                                   RSCL2
                                                                                  ESCL
EBREAK 11 7 17 18 65.35
EDS 14 8 5 8 1
                                                                                 50
EGS 13 8 6 8 1
                                                                                                          DBODY
                                                                                RDRAIN
                                                          ESG
ESG 6 10 6 8 1
                                                                                         EBREAK \left(\frac{17}{18}\right)
EVTO 20 6 18 8 1
                                                                       VTO
                                                                                          MOS<sub>2</sub>
                                                         EVTO
                                    GATE
IT 8 17 1
                                                      20
                                                          18
                                                                                MOS1
                                          LGATE RGATE
LDRAIN 2 5 1e-9
                                                                 RIN $
                                                                           CIN
LGATE 1 9 5.68e-9
                                                                                                         LSOURCE
                                                                                         RSOURCE
LSOURCE 3 7 5.35e-9
                                                                                   8
                                                                                                               ,_
→ 3
SOURCE
MOS1 16 6 8 8 MOSMOD M = 0.99
MOS2 16 21 8 8 MOSMOD M = 0.01
                                                                  S2A
                                                        S1A
                                                                                                    RBREAK
                                                                  14
                                                             13
RBREAK 17 18 RBKMOD 1
                                                                                                             18
                                                                  13
RDRAIN 50 16 RDSMOD 33.1e-3
                                                        S<sub>1</sub>B
                                                                    S2B
                                                                                                              RVTO
RGATE 9 20 5.85
RIN 6 8 1e9
                                                                                                              19
                                                         CA
                                                                          CB
                                                                                                 ^{lack}
RSCL1 5 51 RSCLMOD 1e-6
                                                                                                              VBAT
RSCL2 5 50 1e3
                                                            EGS
                                                                        EDS
RSOURCE 8 7 RDSMOD 14.3e-3
RVTO 18 19 RVTOMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 8 19 DC 1
VTO 21 6 0.485
ESCL 51 50 VALUE = \{(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/46,7))\}
.MODEL DBDMOD D (IS = 2.23e-13 RS = 1.15e-2 TRS1 = 1.64e-3 TRS2 = 7.89e-6 CJO = 6.83e-10 TT = 3.68e-8)
.MODEL DBKMOD D (RS = 3.8e-1 TRS1 = 1.89e-3 TRS2 = 1.13e-5)
.MODEL DPLCAPMOD D (CJO = 25.7e-11 IS = 1e-30 N = 10)
.MODEL MOSMOD NMOS (VTO = 1.935 KP = 18.89 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL RBKMOD RES (TC1 = 7.18e-4 TC2 = 1.53e-6)
.MODEL RDSMOD RES (TC1 = 4.45e-3 TC2 = 2.9e-5)
.MODEL RSCLMOD RES (TC1 = 2.8e-3 TC2 = 6.0e-6)
.MODEL RVTOMOD RES (TC1 = -1.7e-3 TC2 = -2.0e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.55 VOFF= -1.55)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.55 VOFF= -3.55)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.55 VOFF= 2.45)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.45 VOFF= -2.55)
.ENDS
```

NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options; authored by William J. Hepp and C. Frank Wheatley.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{TM}$ CTL™ Current Transfer Logic™

DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™ ESBC™

 $\mathsf{Fairchild}^{\text{@}}$ Fairchild Semiconductor®

FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FlashWriter® *

F-PFSTM FRFET®

Global Power ResourceSM Green FPS™ Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™

MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ OptiHiT™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™

Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™

SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™

SYSTEM 3*
GENERAL
The Power Franchise®

bwer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®]
TINYOPTO™ TinyPower™ TinyPWM™ $\overset{\cdot}{\text{TinyWire}^{\text{TM}}}$ TriFault Detect™ TRUECURRENT™* μSerDes™

UHC[®] Ultra FRFET™ UniFET™ **VCXTM** VisualMax™ XSTM

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS. SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	tion Product Status Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary First Production Datasheet contains preliminary data; supplementary data will be published date. Fairchild Semiconductor reserves the right to make changes at any notice to improve design.		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 148