January 2004

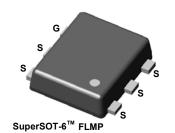
FDC697P

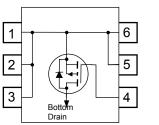
FAIRCHILD SEMICONDUCTOR

P-Channel 1.8V PowerTrench[®] MOSFET

General Description

This P-Channel 1.8V specified MOSFET uses Fairchild's advanced low voltage Power Trench process. It has been optimized for battery power management applications.


Applications


- Battery management
- Load Switch
- Battery protection

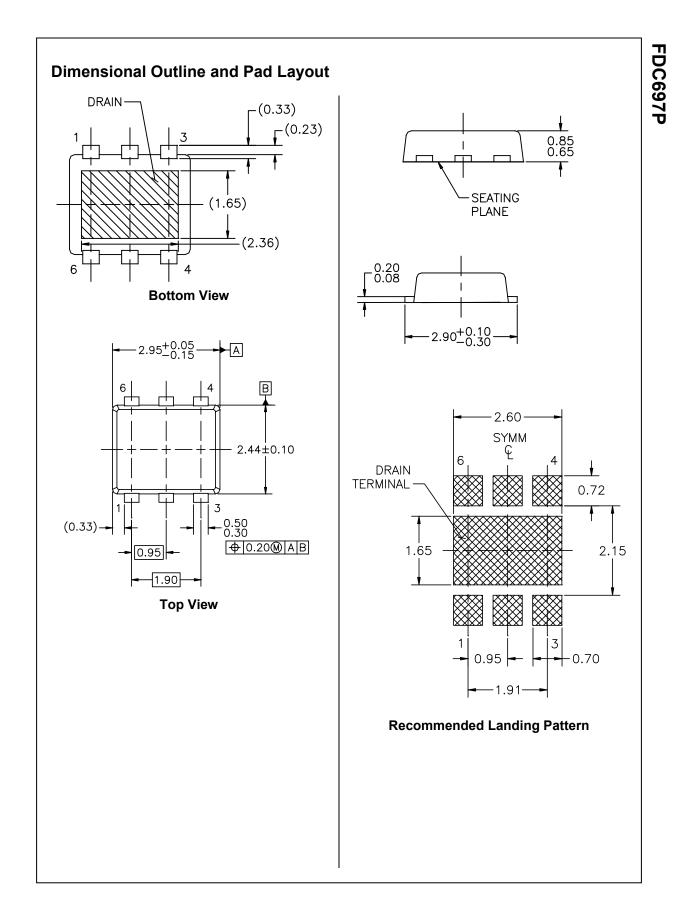
Features

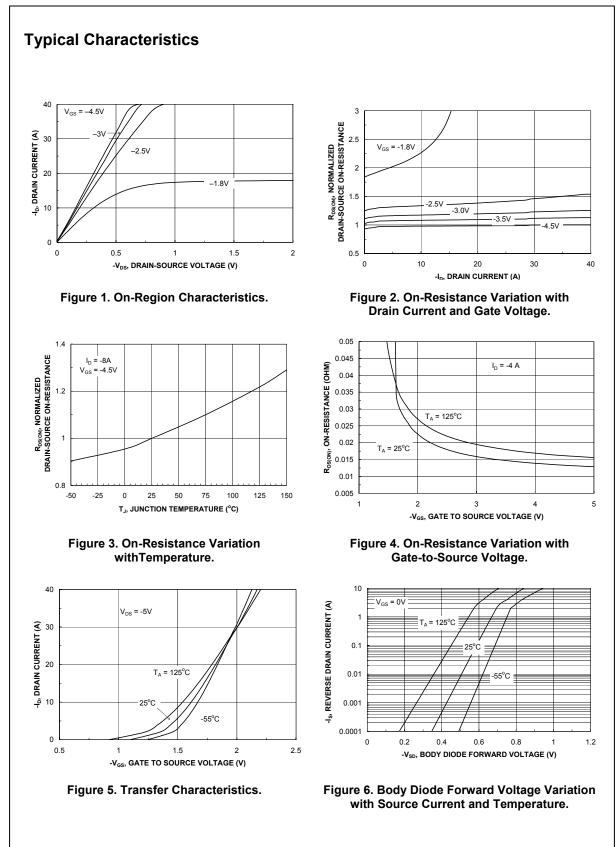
 $\begin{array}{ll} \bullet & -8 \ \text{A}, -20 \ \text{V} & R_{\text{DS}(\text{ON})} & = 20 \ \text{m}\Omega \ \textcircled{0} \ \text{V}_{\text{GS}} = -4.5 \ \text{V} \\ R_{\text{DS}(\text{ON})} & = 25 \ \text{m}\Omega \ \textcircled{0} \ \text{V}_{\text{GS}} = -2.5 \ \text{V} \\ R_{\text{DS}(\text{ON})} & = 35 \ \text{m}\Omega \ \textcircled{0} \ \text{V}_{\text{GS}} = -1.8 \ \text{V} \end{array}$

- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- Fast switching speed
- FLMP SuperSOT-6 package: Enhanced thermal performance in industry-standard package size

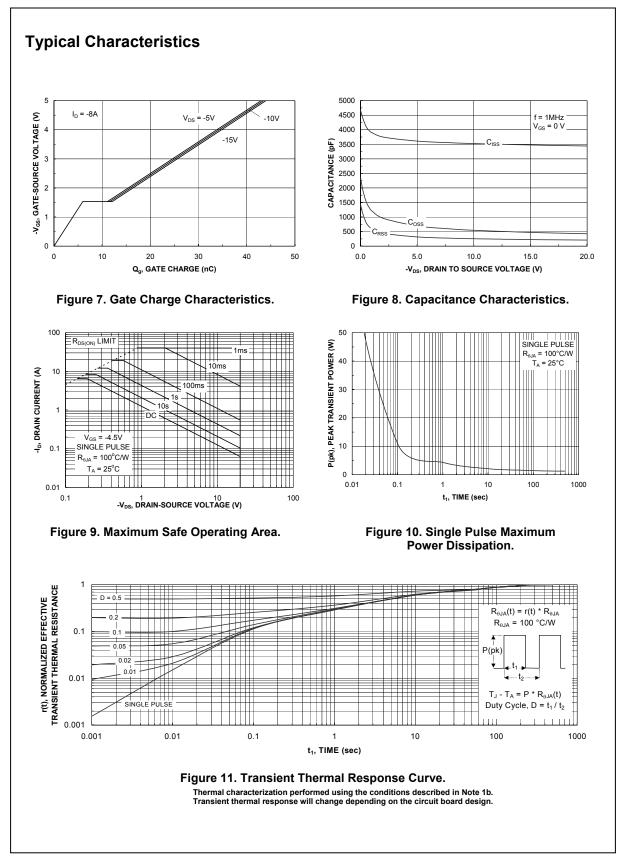
Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Sourc	e Voltage		-20	V
V _{GSS}	Gate-Source	e Voltage		±8	V
ID	Drain Currer	nt – Continuous	(Note 1a)	-8	А
		– Pulsed		-40	
PD	Power Dissi	pation	(Note 1a)	2	W
	1		(Note 1b)	1.5	
T _J , T _{STG}		nd Storage Junction Tempe	erature Range	–55 to +150	℃
Therma	I Charact			-55 to +150 60	°C/W
Therma	I Charact	teristics			
Therma R _{өJA}	I Charact	teristics	ent (Note 1a)	60	
Therma R _{θJA} R _{θJC}	I Charact	teristics sistance, Junction-to-Ambie	ent (Note 1a) (Note 1b)	60 111	
Therma R _{θJA} R _{θJC} Packag	I Charact	teristics sistance, Junction-to-Ambie sistance, Junction-to-Case	ent (Note 1a) (Note 1b)	60 111	


©2004 Fairchild Semiconductor Corporation


FDC697P

Off Chara		Test Conditions	Min	Тур	Max	Units
	acteristics					
DVDSS	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = -250 \mu A$	-20			V
	Breakdown Voltage Temperature Coefficient	I_D = – 250 µA, Referenced to 25°C		-12.2		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V$, $V_{GS} = 0 V$			-1	μA
I _{GSS}	Gate–Body Leakage	$V_{GS} = \pm 8 V$, $V_{DS} = 0 V$			±100	nA
On Chara	Acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	-0.4	-0.8	-1.5	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage Temperature Coefficient	I_D = – 250 µA, Referenced to 25°C		2.9		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = -4.5 V,$ $I_D = -8 A$ $V_{GS} = -2.5 V,$ $I_D = -6.8 A$		13	20	mΩ
	On–Resistance	$V_{GS} = -2.5 V,$ $I_D = -6.8 A$		18	25	
		$V_{GS} = -1.8 V$, $I_D = -5.8 A$ $V_{GS} = -4.5 V$, $I_D = -8 A$, $T_J = 125^{\circ}C$		26 16	35 27	
0	Forward Transconductance	$V_{GS} = -4.5 \text{ V}, \text{ I}_D = -8 \text{ A}$		37	21	S
0.0		$v_{DS}5 v$, $I_D6 A$		51		3
	Characteristics Input Capacitance			2524		~
100	Output Capacitance	$V_{DS} = -10 V$, $V_{GS} = 0 V$, f = 1.0 MHz		3524 544		pF pF
	Reverse Transfer Capacitance	1 - 1.0 MHZ		254		pr pF
	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		3.8		ρι
-				0.0		32
	g Characteristics (Note 2) Turn–On Delay Time	$V_{DD} = -10 V$, $I_D = -1 A$,		18	32	ne
-()	Turn–On Delay Time	$V_{\text{DD}} = -10 \text{ V}, \qquad T_{\text{D}} = -1 \text{ A}, \\ V_{\text{GS}} = -4.5 \text{ V}, \qquad \text{R}_{\text{GEN}} = 6 \Omega$		6	12	ns
				-		ns
-()	Turn-Off Delay Time	4		119	190	ns
-1	Turn–Off Fall Time	$V_{DS} = -10 V$, $I_D = -8 A$,		43	69 55	ns
5	Total Gate Charge	$V_{DS} = -10 V$, $I_D = -8 A$, $V_{GS} = -4.5 V$		39	55 8.4	nC
3-	Gate-Source Charge			6	-	nC
3-	Gate–Drain Charge			5.6	7.8	nC
	urce Diode Characteristics					
0	Maximum Continuous Drain-Source	Diode Forward Current			-1.6	A
V SD	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = -1.6 A$ (Note 2)		-0.7	-1.2	V
t _{rr}	Reverse Recovery Time	$I_{\rm F} = -8 {\rm A},$		27		ns
	Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$		16		nC


Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

FDC697P Rev C2 (W)

FDC697P

FDC697P

FDC697P Rev C2 (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	ISOPLANAR™	POP™	SuperFET™
ActiveArray™	FAST®	LittleFET™	Power247 [™]	SuperSOT™-3
Bottomless™	FASTr™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
CoolFET™	FPS™	MicroFET™	QFET [®]	SuperSOT™-8
CROSSVOLT™	FRFET™	MicroPak™	QS™	SyncFET™
DOME™	GlobalOptoisolator™	MICROWIRE™	QT Optoelectronics [™]	TinyLogic [®]
EcoSPARK™	GTO™່	MSX™	Quiet Series [™]	TINYOPTO™
E ² CMOS [™]	HiSeC™	MSXPro™	RapidConfigure™	TruTranslation™
EnSigna™	I²C™	OCX™	RapidConnect™	UHC™
FACT™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER®	UltraFET [®]
Across the boar	d. Around the world.™	OPTOLOGIC [®]	SMART START™	VCX™
The Power Fran		OPTOPLANAR™	SPM™	
Programmable A		PACMAN™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production