INTERNATIONAL RECTIFIER

Data Sheet No. PD-9.516A

INTERNATIONAL RECTIFIEF

IOR

REPETITIVE AVALANCHE AND dv/dt RATED

HEXFET® TRANSISTORS

P-CHANNEL

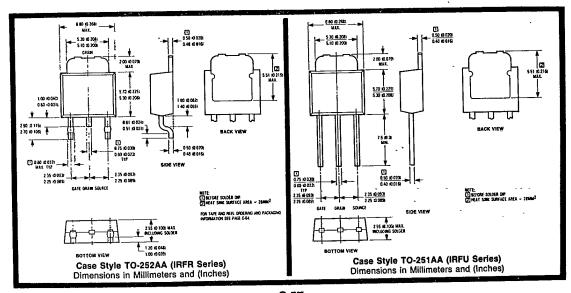
IRFR9010 IRFR9012 IRFU9010 IRFU9012

-50 Volt, 0.50 Ohm HEXFET

The HEXFET® technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low on-state resistance combined with high transconductance; superior reverse energy and diode recovery dv/dt capability.

The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.

Surface mount packages enhance circuit performance by reducing stray inductances and capacitance. The D-Pak (TO-252AA) surface mount package brings the advantages of HEXFETs to high volume applications where PC Board surface mounting is desirable. The surface mount option IRFR9010 is provided on 16mm tape. The straight lead option IRFU9010 of the device is called the I-Pak (TO-251AA).


They are well suited for applications where limited heat dissipation is required such as, computers and peripherals, telecommunications equipment, DC/DC converters, and a wide range of consumer products.

Product Summary

Part Number	BVDSS	R _{DS(on)}	1 _D
IRFR9010	-50V	0.50Ω	-5.3A
IRFR9012	-50V	- 0.70Ω	- 4.5A
IRFU9010	-50V	0.50Ω	-5.3A
IRFU9012	-50V	0.70Ω	-4.5A

FEATURES:

- Surface Mountable (Order As IRFR9010)
- Straight Lead Option (Order As IRFU9010)
- Repetitive Avalanche Ratings
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling

INTERNATIONAL RECTIFIER

Absolute Maximum Ratings

	Parameter	IRFR9010, IRFU9010	IRFR9012, IRFU9012	Units			
ID @ TC = 25°C	Continuous Drain Current	-5.3	-4.5	A			
ID @ TC = 100°C	Continuous Drain Current	3.3	-2.8	A			
¹ DM	Pulsed Drain Current ①	-21	- 18	A			
PD @ TC = 25°C	Max. Power Dissipation	- 2	5	w.			
	Linear Derating Factor	, 0.	20	W/K ⑤			
V _{GS}	Gate-to-Source Voltage	±	V				
E _{AS}	Single Pulse Avalanche Energy ②	24 (See F	mj				
I _{AR}	Avalanche Current ① (Repetitive or Non-Repetitive)	-! (See	A				
EAR	Repetitive Avalanche Energy (1)	2. (See	mJ				
dv/dt	Peak Diode recovery dv/dt ③	5. (See F	V/ns				
T _J TSTG	Operating Junction Storage Temperature Range	- 55 (o 150	°C			
	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s)					

Electrical Characteristics $@T_J = 25^{\circ}C$ (Unless Otherwise Specified)

	Parameter	Туре	Min,	Тур.	Max.	Units	Test Conditions	
BVDSS	Drain-to-Source Breakdown Voltage	All	-50			٧	V _{GS} = 0V, I _D = -250μA	
R _{DS(on)}	Static Drain-to-Source On-State Resistance 4	IRFR9010 IRFU9010	-	0.35	0.50	Ω	V _{GS} = -10V _L I _D = -2.8A	
		IRFR9012 IRFU9012	-	0,50	0,70	**	GS = -10V, 1D = -2.0A	
I _{D(on)}	On-State Drain Current 4	IRFR9010 IRFU9010	- 5,3	_		Α	V _{DS} > I _{D(on)} × R _{DS(on)} Max.	
		IRFR9012 IRFU9012	-4,5			,	V _{GS} = -10V	
V _{GS(th)}	Gate Threshold Voltage	ALL	-2.0	_	-4.0	٧	V _{DS} = V _{GS} , I _D = -250μA	
g _{fs}	Forward Transconductance 4	ALL	1.1	1.7	-	S(U)	V _{DS} ≤ -50V, I _{DS} = -2.8A	
loss	Zero Gate Voltage Drain Current		-		-250		V _{DS} ≈ Max. Rating, V _{GS} = 0V	
	s	ALL	_	-	- 1000	μA	V _{DS} = 0.8 × Max. Rating V _{GS} = 0V, T _J = 125°C	
1GSS	Gate-to-Source Leakage Forward	ALL		-	500	nΑ	V _{GS} = -20V	
lgss	Gate-to-Source Leakage Reverse	ALL	_	-	500	nA	V _{GS} = 20V	
Qg	Total Gate Charge	ALL	_	6.1	9.1	пС	VGS = -10V, ID = -4.7A	
Qgs	Gate-to-Source Charge	ALL	_	2.0	3,0	пC	V _{DS} = 0.8 × Max. Rating See Fig. 16	
Q _{gd}	Gate-to-Drain ("Miller") Charge			3.9	5.9	nC	(Independent or operating temperature)	
t _{d(on)}	Turn-On Delay Time	ALL		6.1	9.2	ns	$V_{DD} = -25V$, $I_{D} \approx -4.7A$, $R_{G} = 24\Omega$	
t _r	Rise Time	ALL		47	71	ns	$R_D = 5.6\Omega$	
t _{d(off)}	Turn-Off Delay Time	ALL	-	13	20	ns	See Fig. 15	
tf	Fall Time	ALL	-	35	59	ns	(Independent of operating temperature)	
L _D	Internal Drain Inductance	ALL	_	4.5		nΗ	Measured from the drain lead, 6mm (0.25 in.) from showing the internal package to center of die.	
Lg	Internal Source Inductance	ALL	-	7.5	_	nΗ	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.	
C _{iss}	Input Capacitance	ALL		240	-	pF	V _{GS} = 0V, V _{DS} = -25V	
Coss	Output Capacitance	ALL		160	_	pF	f = 1.0 MHz	
Crss	Reverse Transfer Capacitance	ALL	_	30	-	pF	See Fig. 10	

INTERNATIONAL RECTIFIER

T-37-25

Source-Drain Diode Ratings and Characteristics

,.	Parameter	Туре	Min.	Тур.	Max.	Units	Test Conditions
İs	Continuous Source Current (Body Díode)	ALL	-	-	-5.3	Α	Modified MOSFET symbol showing the Integral Reverse p-n junction rectifier.
ISM	Pulsed Source Current (Body Diode) ①	ALL	_	-	-18	A	in the state of th
VSD	Diode Forward Voltage ④	ALL	_		-5.5	v	T _J = 25°C, I _S = -5.3A, V _{GS} = 0V
trr	Reverse Recovery Time	ALL	33	75	160	лз	T _J = 25°C, I _F = -4.7A, di/dt = 100 A/µs
QRR	Reverse Recovery Charge	ALL	0.090	0.22	0.52	μC	
ton	Forward Turn-On Time	ALL	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by L _S + L _D .				

Thermal Resistance

RthJC	Junction-to-Case	ALL	_	-	5.0	KW(§)
RthCS	Case-to-Sink	ALL	_	1.7	_	K/W (5) Typical solder mount (6)
R _{thJA}	Junction-to-Ambient	ALL	-	1	110	K/W ③ Typical socket mount

(2) @ V_{DD} = -25V, Starting T_J = 25°C, L = 9.7 mH, R_G = 25Ω, Peak I_L = -5.3A

Pulse width ≤ 300 μs; Duty Cycle ≤ 2%

6 Mounting pad must cover heatsink surface area. See case style drawing on front page

The information shown on the following graphs applies also to the IRFU devices.

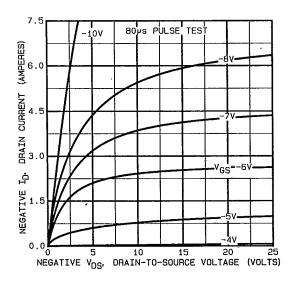


Fig. 1 — Typical Output Characteristics

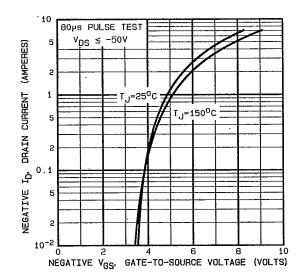


Fig. 2 — Typical Transfer Characteristics

 $[\]bigcirc$ I_{SD} ≤ -5.3A, di/dt ≤ -80A/μs, V_{DD} 40V, T_J ≤ 150°C Suggested R_G = 24Ω

⁵ K/W = °C/W W/K = W/°C

T-37-25

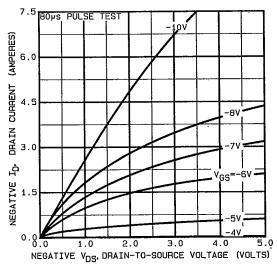


Fig. 3 — Typical Saturation Characteristics

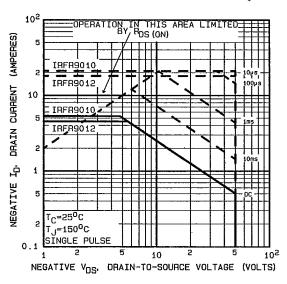


Fig. 4 — Maximum Safe Operating Area

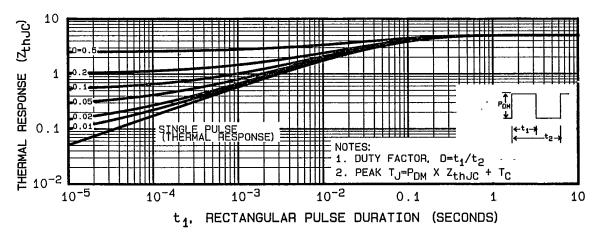


Fig. 5 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

INTERNATIONAL RECTIFIER

T-37-25

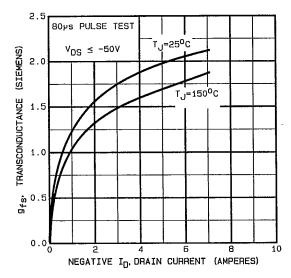


Fig. 6 — Typical Transconductance Vs. Drain Current

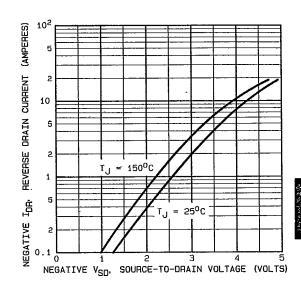


Fig. 7 — Typical Source-Drain Diode Forward Voltage

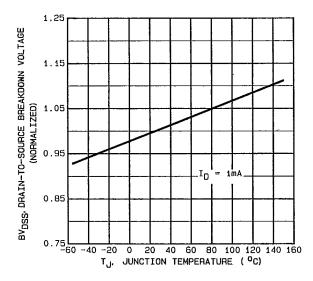


Fig. 8 — Breakdown Voltage Vs. Temperature

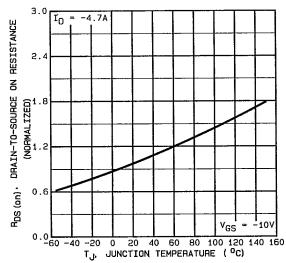
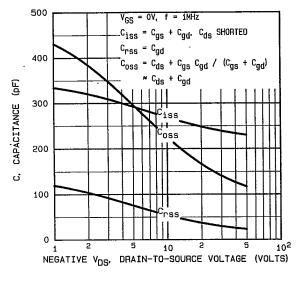



Fig 9 — Normalized On-Resistance Vs. Temperature

T-37-25

INTERNATIONAL RECTIFIER

SEE FIGURE 16

Qg. TOTAL GATE CHARGE (nC)

Fig. 10 — Typical Capacitance Vs. Drain-to-Source Voltage

Fig. 11 — Typical Gate Charge Vs. Gate-to-Source Voltage

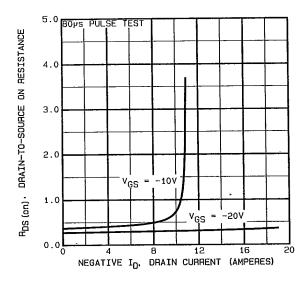


Fig. 12 — Typical On-Resistance Vs. Drain Current

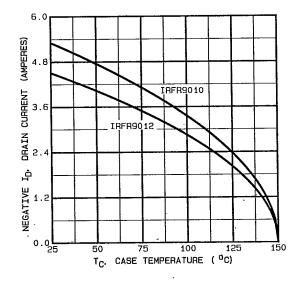


Fig. 13 - Maximum Drain Current Vs. Case Temperature

C-62

INTERNATIONAL RECTIFIER

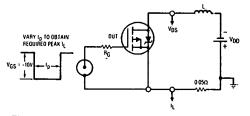


Fig. 14a — Unclamped Inductive Test Circuit

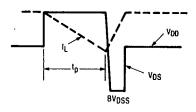


Fig. 14b — Unclamped Inductive Waveforms

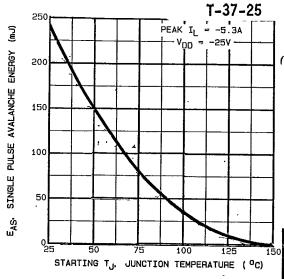


Fig. 14c — Maximum Avalanche Vs. Starting Junction Temperature

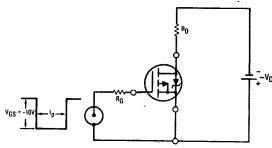


Fig. 15a — Switching Time Test Circuit

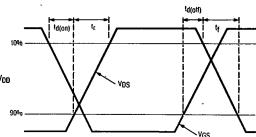


Fig. 15b — Switching Time Waveforms

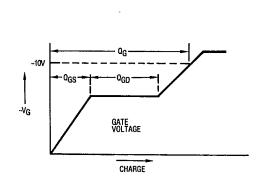


Fig. 16a — Basic Gate Charge Waveform

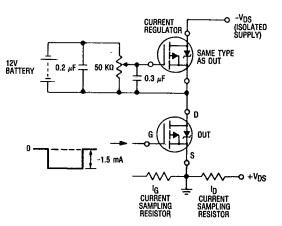


Fig. 16b — Gate Charge Test Circuit

T-37,-25

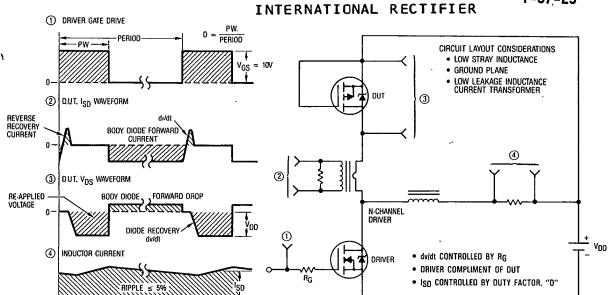
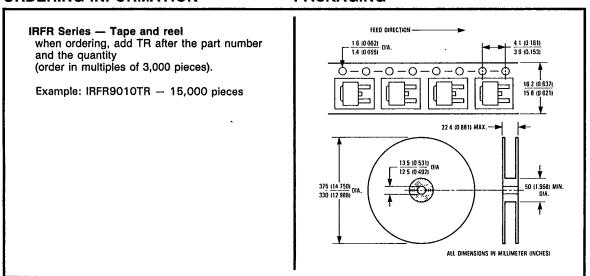



Fig. 17 — Peak Diode Recovery dv/dt Test Circuit

ORDERING INFORMATION

PACKAGING

