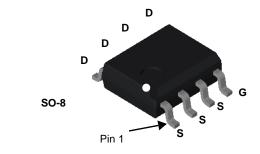
FAIRCHILD

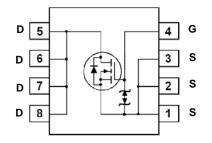
November 2008

FDS8813NZ N-Channel PowerTrench[®] MOSFET

FDS8813NZ N-Channel PowerTrench[®] MOSFET 30V, 18.5A, 4.5m Ω

Features


- Max $r_{DS(on)} = 4.5m\Omega$ at $V_{GS} = 10V$, $I_D = 18.5A$
- Max $r_{DS(on)}$ = 6.0m Ω at V_{GS} = 4.5V, I_D =16A
- HBM ESD protection level of 5.6KV typical (note 3)
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability
- RoHS compliant



General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been especially tailored to minimize the on-state resistance.

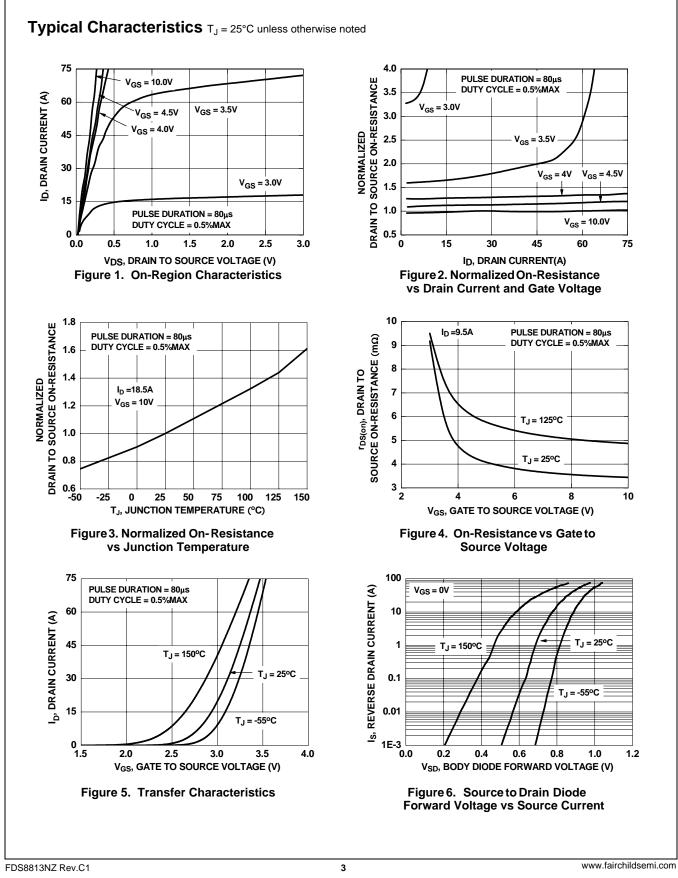
This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery Packs.

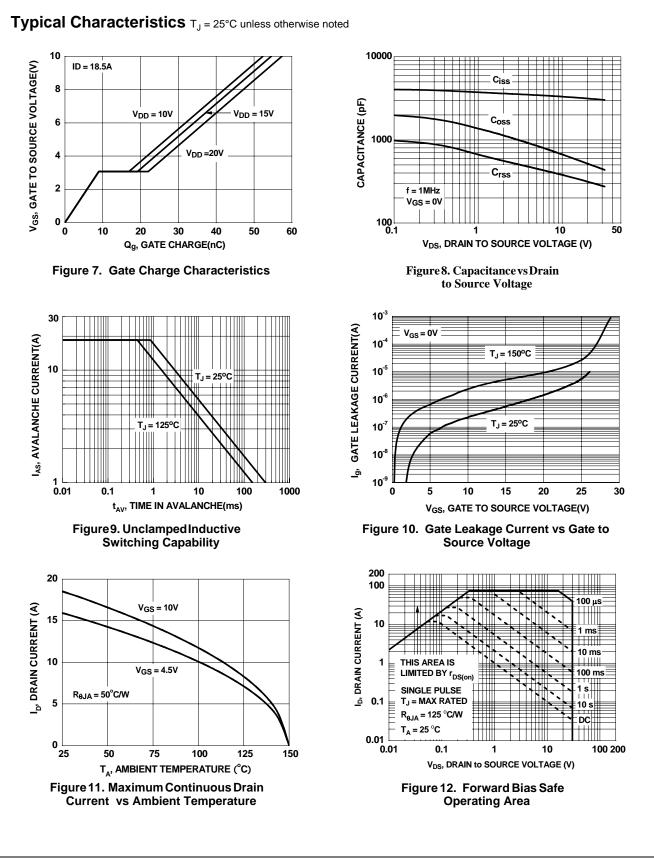
MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage		30	V	
V _{GS}	Gate to Source Voltage		±20	V	
ID	Drain Current -Continuous	(Note 1a)	18.5	A	
	-Pulsed		74		
E _{AS}	Single Pulse Avalanche Energy	(Note 4)	337	mJ	
P _D	Power Dissipation	(Note 1a)	2.5	W	
	Power Dissipation	(Note 1b)	1.0		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

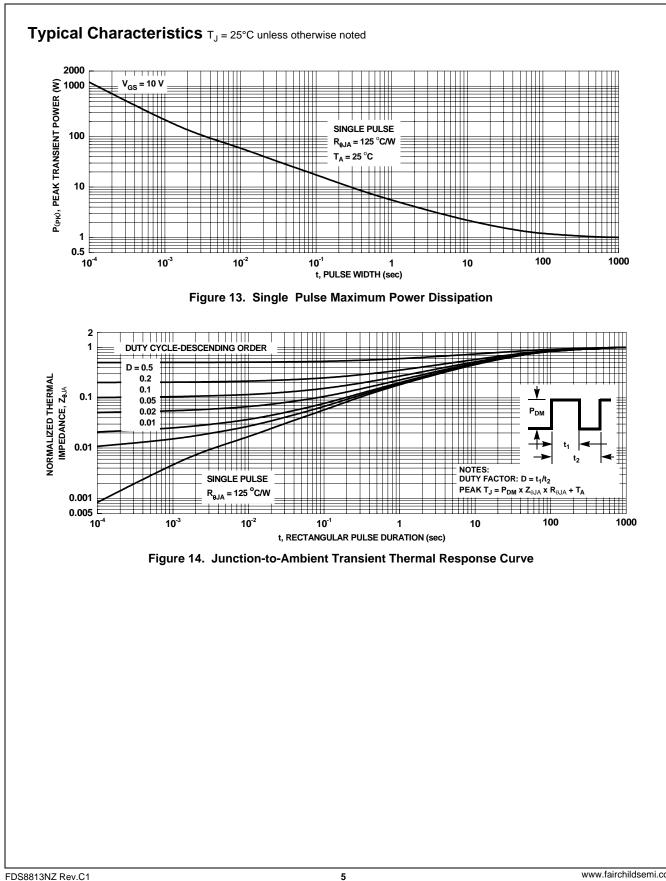
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Note 1)	25	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	50	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	125	

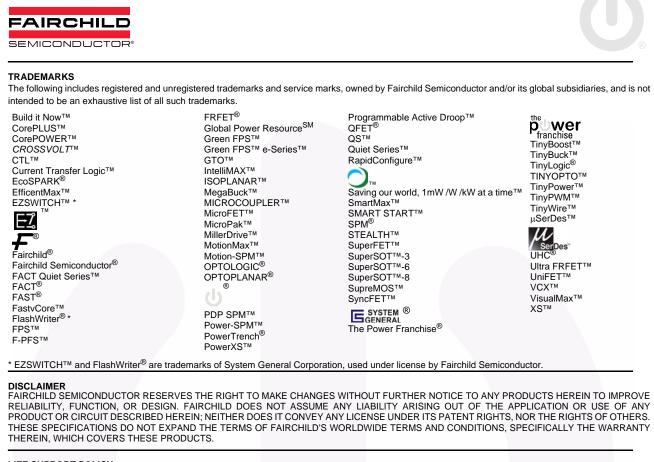

Package Marking and Ordering Information


Device Marking	Device	Reel Size	Tape Width	Quantity
FDS8813NZ	FDS8813NZ	13"	12mm	2500 units

Cteristics Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current Cteristics (Note 2) Gate to Source Threshold Voltage	$I_{D} = 250\mu A, V_{GS} = 0V$ $I_{D} = 250\mu A, \text{ referenced to } 25^{\circ}\text{C}$ $V_{DS} = 24V, V_{GS} = 0V$ $V_{GS} = \pm 20V, V_{DS} = 0V$	30	20	1	V mV/°C
Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current Cteristics (Note 2)	$I_D = 250\mu A$, referenced to 25°C $V_{DS} = 24V$, $V_{GS} = 0V$	30	20	1	-
Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current Cteristics (Note 2)	$I_D = 250\mu A$, referenced to 25°C $V_{DS} = 24V$, $V_{GS} = 0V$		20	1	mV/°C
Gate to Source Leakage Current				1	
cteristics (Note 2)					μA
				±10	μA
			·		
	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1	1.8	3	V
Gate to Source Threshold Voltage		•	1.0	•	-
Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		-6		mV/°C
	$V_{GS} = 10V, I_D = 18.5A$		3.8	4.5	
Static Drain to Source On Resistance	$V_{GS} = 4.5V, I_{D} = 16A$		4.7	6.0	mΩ
	V _{GS} = 10V, I _D = 18.5A, T _J = 125°C		5.1	6.6	
Forward Transconductance	$V_{DS} = 5V, I_{D} = 18.5A$		74		S
Characteristics					
			3115	4145	pF
	$V_{DS} = 15V, V_{GS} = 0V,$				pF
	f = 1MHz				pF
'	f = 1MHz			020	Ω
			-		
			10		
	Vpp = 15V. lp = 18.5A		-		ns
	$-V_{GS} = 10V, R_{GEN} = 6\Omega$		-	-	ns
					ns
					ns
-				-	nC
Total Gate Charge	$V_{GS} = 0V \text{ to } 5V$ $I_D = 18.3A$		-	40	nC
			9		nC
Gate to Source Gate Charge			40		
Gate to Source Gate Charge Gate to Drain "Miller" Charge			10		nC
-			10		nC
Gate to Drain "Miller" Charge	V _{GS} = 0V, I _S = 2.1A (Note 2)		10 0.7	1.2	nC V
Gate to Drain "Miller" Charge	$V_{GS} = 0V, I_S = 2.1A$ (Note 2) $I_F = 18.5A, di/dt = 100A/\mu s$			1.2 47 41	1
	Static Drain to Source On Resistance Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$\frac{V_{GS} = 10V, I_D = 18.5A}{V_{GS} = 4.5V, I_D = 16A}$ Static Drain to Source On Resistance $\frac{V_{GS} = 4.5V, I_D = 16A}{V_{GS} = 10V, I_D = 18.5A, T_J = 125^{\circ}C}$ Forward Transconductance $V_{DS} = 5V, I_D = 18.5A$ Characteristics $\frac{Input Capacitance}{Output Capacitance} \qquad V_{DS} = 15V, V_{GS} = 0V, f = 1MHz$ Reverse Transfer Capacitance Gate Resistance $f = 1MHz$ Characteristics $\frac{Turn-On Delay Time}{Rise Time} \qquad V_{DD} = 15V, I_D = 18.5A}$ $V_{DS} = 15V, V_{GS} = 0V, f = 1000, 000, 000, 000, 000, 000, 000, 0$	$\frac{V_{GS} = 10V, I_D = 18.5A}{V_{GS} = 4.5V, I_D = 16A}$ Static Drain to Source On Resistance $\frac{V_{GS} = 10V, I_D = 18.5A}{V_{GS} = 10V, I_D = 18.5A, T_J = 125^{\circ}C}$ Forward Transconductance $V_{DS} = 5V, I_D = 18.5A$ Characteristics $\frac{Input Capacitance}{Output Capacitance} F = 1MHz$ Reverse Transfer Capacitance Gate Resistance $f = 1MHz$ Characteristics $\frac{Turn-On Delay Time}{Rise Time} V_{DD} = 15V, I_D = 18.5A V_{GS} = 0V, F = 10Hz$	$\frac{V_{GS} = 10V, I_D = 18.5A}{V_{GS} = 4.5V, I_D = 16A}$ Static Drain to Source On Resistance $\frac{V_{GS} = 4.5V, I_D = 16A}{V_{GS} = 10V, I_D = 18.5A, T_J = 125^{\circ}C}$ Forward Transconductance $V_{DS} = 5V, I_D = 18.5A$ Tuput Capacitance $\frac{V_{DS} = 5V, V_{GS} = 0V, f = 1MHz$ Characteristics $\frac{V_{DS} = 15V, V_{GS} = 0V, f = 1MHz$ Gate Resistance $f = 1MHz$ $\frac{V_{DD} = 15V, I_D = 18.5A}{V_{GS} = 10V, I_D = 18.5A}$ $\frac{113}{V_{GS} = 10V, I_D = 18.5A}$ $\frac{113}{V_{GS} = 10V, I_D = 18.5A}$ $\frac{113}{V_{GS} = 10V, I_D = 18.5A}$ $\frac{V_{DD} = 15V, I_D = 18.5A}{V_{GS} = 10V, R_{GEN} = 6\Omega}$ $\frac{13}{V_{GS} = 10V, R_{GEN} = 6\Omega}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

2. Pulse Test: Pulse Width < 300 us, Duty Cycle < 2%. 3. The diode connected between the gate and source serves only as protection against ESD . No gate overvoltage rating is implied. 4. Starting $T_J = 25^{\circ}$ C, L = 3mH, $I_{AS} = 15A$, $V_{DD} = 30V$, $V_{GS} = 10V$.


FDS8813NZ Rev.C1



FDS8813NZ Rev.C1

FDS8813NZ N-Channel PowerTrench[®] MOSFET

FDS8813NZ N-Channel PowerTrench[®] MOSFET

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bught from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

FDS8813NZ Rev. C1