September 2008

6 C

4 **S**

Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

General Description

FAIRCHILD

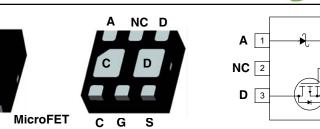
SEMICONDUCTOR®

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable applications. It features a MOSFET with low on-state resistance and an independently connected low forward voltage schottky diode for minimum conduction losses.

The MicroFET 2x2 package offers exceptional thermal performance for it's physisize and is well suited to linear mode applications.

Features

MOSFET:


■ -3.0 A, -20V. $R_{DS(ON)} = 120 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 160 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$

 $R_{DS(ON)} = 240 \text{ m}\Omega @ V_{GS} = -1.8 \text{ V}$

Schottky:

V_F < 0.46 V @ 500 mA

- Low Profile 0.8 mm maximun in the new package MicroFET 2x2 mm
- RoHS Compliant

Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

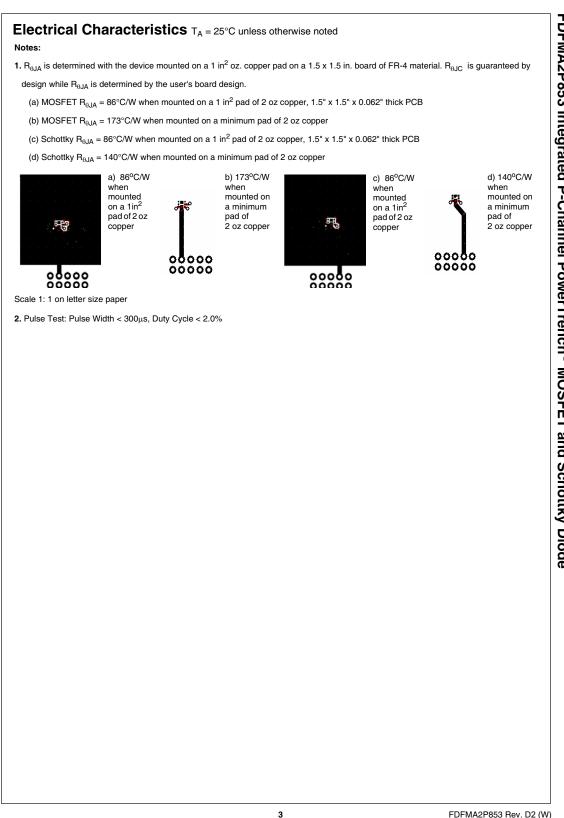
Symbol	Parameter	Ratings	Units		
V _{DSS}	MOSFET Drain-Source Voltage	-20	V		
V _{GSS}	MOSFET Gate-Source Voltage	±8	V		
	Drain Current -Continuous	(Note 1a)	-3.0	Α	
D	-Pulsed			7 ^	
V _{RRM}	Schottky Repetitive Peak Reverse voltage		30	V	
I _O	Schottky Average Forward Current (Note 1a)		1	A	
Б	Power dissipation for Single Operation	(Note 1a)	1.4	w	
PD	Power dissipation for Single Operation	(Note 1b)	0.7	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	86	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	173	∘c/w
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient	(Note 1c)	86	- C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1d)	140	

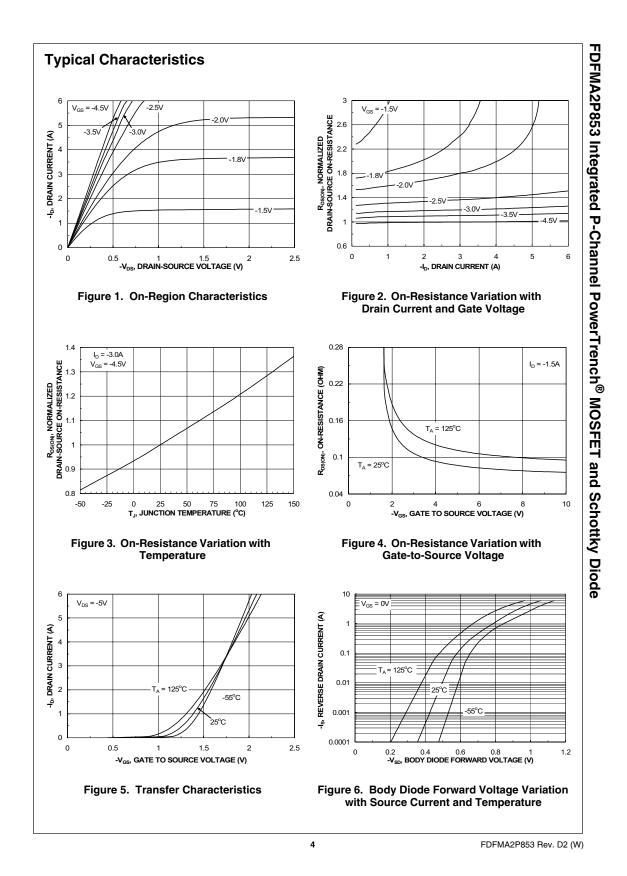
Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
.853	FDFMA2P853	7inch	8mm	3000 units

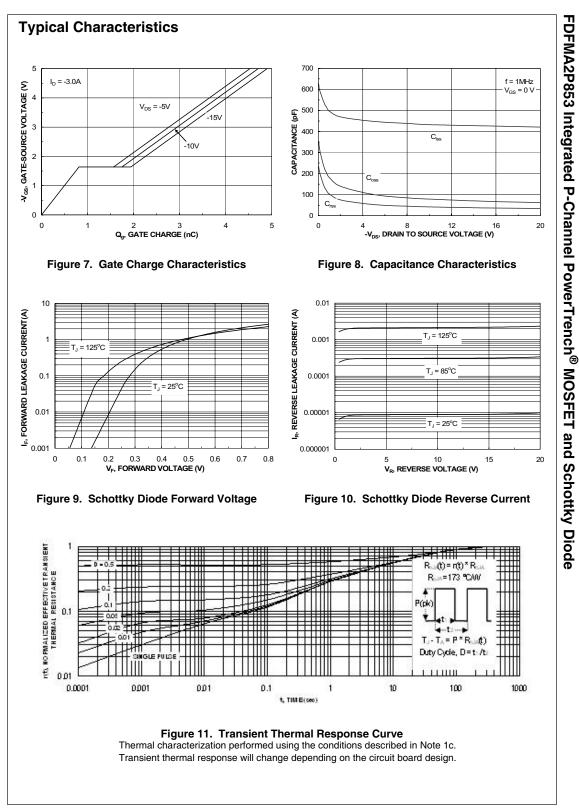

©2008 Fairchild Semiconductor Corporation

Symbol	Parameter	Test	Conditions	Min	Тур	Max	Units
Off Chara	acteristics						
BV _{DSS}	Drain–Source Breakdown Voltage	V _{GS} = 0 V,	I _D = –250 μA	-20			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = -250 μA, I	Referenced to 25°C		-12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V$,	V_{GS} = 0 V			-1	μA
I _{GSS}	Gate–Body Leakage	$V_{GS} = \pm 8 V$,	V _{DS} = 0 V			±100	nA
On Chara	acteristics (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$,	I _D = -250 μA	-0.4	-0.7	-1.3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient		Referenced to 25°C		2		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = -4.5 V,$ $V_{GS} = -2.5 V,$			90 120	120 160	mΩ
		$V_{GS} = -1.8 V$,			172	240	
		V_{GS} = -4.5 V, I _D	o = −3.0 A, T _J =125°C		118	160	
I _{D(on)}	On-State Drain Current	$V_{GS} = -4.5 V$,	V _{DS} = -5 V	-20			Α
g FS	Forward Transconductance	$V_{DS} = -5 V$,	I _D = -3.0 A		7		S
Dvnamic	Characteristics						
C _{iss}	Input Capacitance	V _{DS} = -10 V,	$V_{cs} = 0 V$		435		pF
Coss	Output Capacitance	f = 1.0 MHz	. 63		80		pF
C _{rss}	Reverse Transfer Capacitance	-			45		pF
Switchin	q Characteristics (Note 2)	1					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -10 V$,	In = -1 A.		9	18	ns
t _r	Turn-On Rise Time	$V_{GS} = -4.5 V,$			11	19	ns
t _{d(off)}	Turn-Off Delay Time	-			15	27	ns
t _f	Turn–Off Fall Time	-			6	12	ns
Q _g	Total Gate Charge	$V_{DS} = -10 V$,	$I_{\rm D} = -3.0 \text{ A},$		4	6	nC
Q _{qs}	Gate–Source Charge	V _{GS} = -4.5 V			0.8		nC
Q _{gd}	Gate–Drain Charge				0.9		nC
		and Maximu	m Datinga				_
ls	Durce Diode Characteristics					-1.1	А
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V,$			-0.8	-1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = −3.0 A,		1	17	İ	ns
Q _{rr}	Diode Reverse Recovery Charge	dl _⊧ /dt = 100 A/µs			6	İ	nC
Schottky	Diode Characteristics						
	Reverse Leakage	V _R = 5 V	T _J = 25°C		9.9	50	μA
			$T_{J} = 125^{\circ}C$		2.3	10	mA
I _R	Reverse Leakage	V _R = 20 V	T _J = 25°C		9.9	100	μA
			T _J = 85°C		0.3	1	mA
			T _J = 125°C		2.3	10	mA
VF	Forward Voltage	I _F = 500mA	T _J = 25°C		0.4	0.46	V
			T _J = 125°C		0.3	0.35	
V _F	Forward Voltage	I _F = 1A	T _J = 25°C		0.5	0.55	V
			T _J = 125°C	1	0.49	0.54	

2

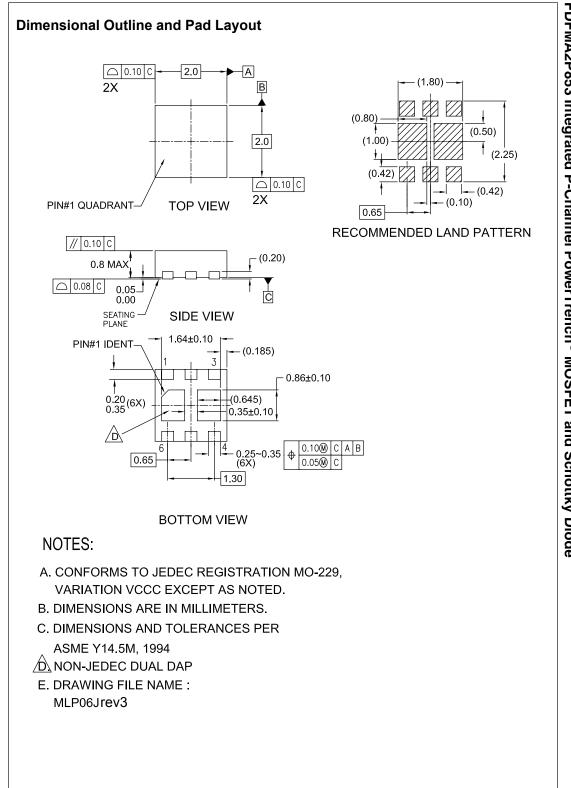

FDFMA2P853 Rev D2 (W)

Downloaded from Elcodis.com electronic components distributor



FDFMA2P853 Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

FDFMA2P853 Rev. D2 (W)



Downloaded from Elcodis.com electronic components distributor

FDFMA2P853 Rev. D2 (W)

5

6

FDFMA2P853 Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

FDFMA2P853 Rev. D2 (W)

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH * FficentMax™ EZSWITCH *	F-PFS™ FRFET® Global Power Resource SM Green FPS™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MiCROCOUPLER™ MicroFET™ MicroFET™ MicroFET™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®	PowerTrench [®] Programmable Active Droop [™] QFET [®] QS [™] Quiet Series [™] RapidConfigure [™] \overrightarrow{O}_{M} Saving our world, 1mW /W /kW at a time [™] SmartMax [™] SmartMax [™] SMART START [™] Sym [®] STEALTH [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -6 SuperSOT [™] -8 SuperSOT [™] -8 SuperSOT [™] -8 SuperSOT [™] SyncFET [™] $\overrightarrow{SyncFET}^{®}$	The Power Franchise [®] the Franchise TinyBoost [™] TinyBuck [™] TinyDogic [®] TINYOPTO [™] TinyPWM [™] TinyPWM [™] TinyPWM [™] TinyPWM [™] TinyWire [™] µSerDes [™] UHC [®] Ultra FRFET [™] VCX [™] VisualMax [™]
---	---	--	---

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		
		Rev. 13		