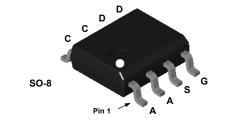
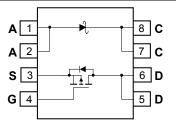
August 2001

FDFS2P102A

Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode


General Description


The FDFS2P102A combines the exceptional performance of Fairchild's PowerTrench MOSFET technology with a very low forward voltage drop Schottky barrier rectifier in an SO-8 package.

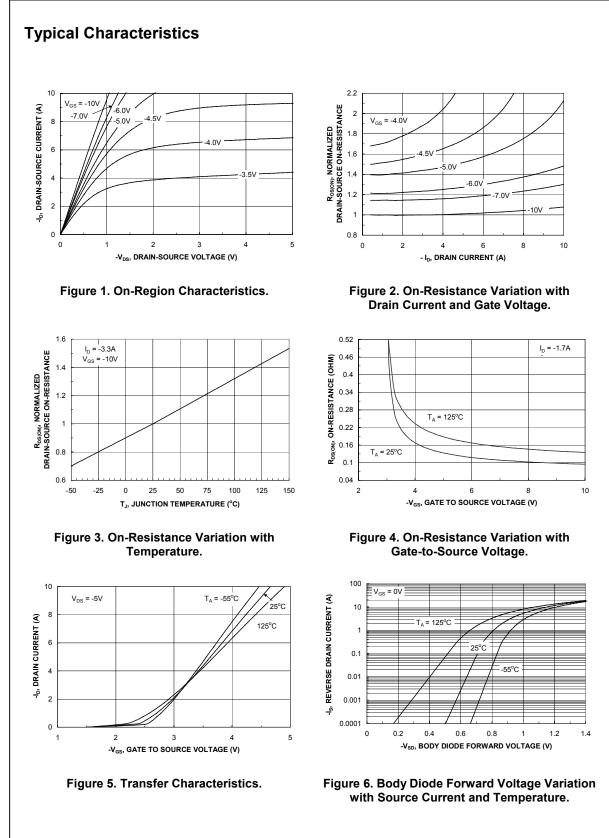
This device is designed specifically as a single package solution for DC to DC converters. It features a fast switching, low gate charge MOSFET with very low onstate resistance. The independently connected Schottky diode allows its use in a variety of DC/DC converter topologies.

Features

- V_F < 0.39 V @ 1 A (T_J = 125°C)
 V_F < 0.47 V @ 1 A
 V_F < 0.58 V @ 2 A
- Schottky and MOSFET incorporated into single power surface mount SO-8 package
- Electrically independent Schottky and MOSFET pinout for design flexibility

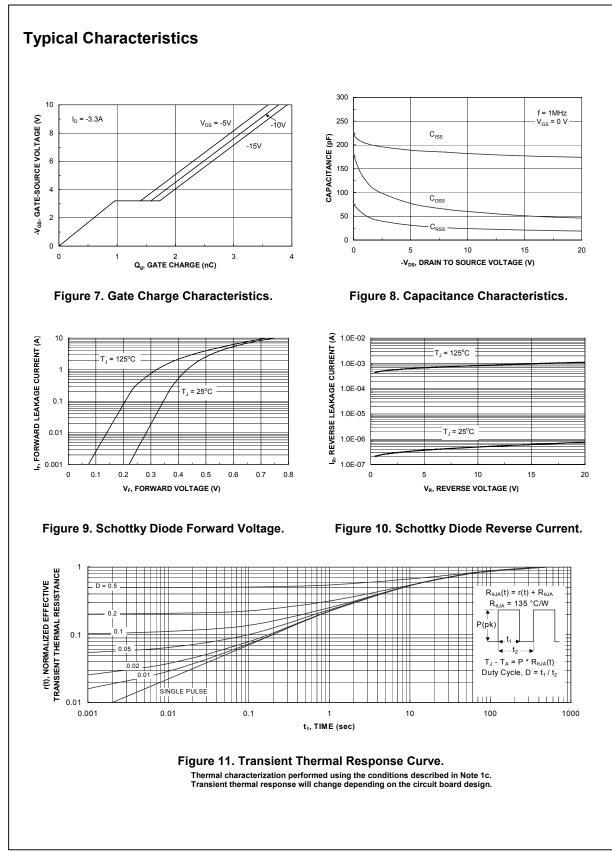
Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol		Parameter		Ratings	Units
V _{DSS}	MOSFET D	rain-Source Voltage		-20	V
V _{GSS}	MOSFET G	ate-Source Voltage		±20	V
ID	Drain Curre	ent – Continuous	(Note 1a)	-3.3	А
		 Pulsed 		-10	
PD	Power Diss	ipation for Dual Operation		2	W
	Power Diss	ipation for Single Operatior	I (Note 1a)	1.6	
			(Note 1b)	1	
			(Note 1c)	0.9	
T _J , T _{STG}	Operating a	and Storage Junction Temp	erature Range	-55 to +150	°C
V _{RRM}	Schottky Re	epetitive Peak Reverse Vol	tage	20	V
lo	Schottky Av	Schottky Average Forward Current		1	А
Packag	e Markin	g and Ordering l	nformation		
Device	Marking	Device	Reel Size	Tape width	Quantity
FDFS2	2P102A	FDFS2P102A	13"	12mm	2500 units


©2001 Fairchild Semiconductor Corporation

Symbol	Parameter	Test C	onditions	Min	Тур	Max	Units
Off Char	acteristics						
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 0$	–250 μA	-20			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = -250 μA,Re	eferenced to 25°C		-23		mV/∘C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V$,	V _{GS} = 0 V			-1	μA
I _{GSSF}	Gate–Body Leakage, Forward	V _{GS} = 20 V,	$V_{DS} = 0 V$			100	nA
	Gate–Body Leakage, Reverse	V_{GS} = -20 V,	V _{DS} = 0 V			-100	nA
On Char	acteristics (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} =$	= –250 μA	-1	-1.8	-3	V
$\Delta V_{GS(th)}$ ΔT_J	Gate Threshold Voltage Temperature Coefficient		$I_D = -250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$		4.4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = -10 V,$ $V_{GS} = -4.5 V,$ $V_{GS} = -10 V, I_D$			96 152 137	125 200 190	mΩ
I _{D(on)}	On-State Drain Current	V _{GS} = -10 V, V	∕ _{DS} = −5 V	-10			Α
g _{FS}	Forward Transconductance	V_{DS} = -5V, I_D :	= –3.3 A		4.6		S
Dynamic	Characteristics						
C _{iss}	Input Capacitance	$V_{DS} = -10 V$. $V_{GS} = 0 V$.			182		pF
C _{oss}	Output Capacitance	f = 1.0 MHz	VGS U V,		60		pF
Crss	Reverse Transfer Capacitance				24		pF
Switchin	g Characteristics (Note 2)						
t _{d(on)}	Turn–On Delay Time	V _{DD} = -10 V,	$l_{\rm p} = -1 \Delta$		5	10	ns
t _r	Turn–On Rise Time		$R_{GEN} = 6 \Omega$		14	52	ns
t _{d(off)}	Turn–Off Delay Time	V _{DS} = -10 V, I _D = -3.3 A,			11	20	ns
t _f	Turn–Off Fall Time				2	4	ns
Q _g	Total Gate Charge				2.1	3.0	nC
Q _{qs}	Gate–Source Charge	$V_{GS} = -5 V$		1.0		nC	
Q _{gd}	Gate–Drain Charge	_			0.6		nC
0	ource Diode Characteristics	and Maximu	m Ratings				
l _s	Source Diode Characteristics and Maximum Ratings Maximum Continuous Drain–Source Diode Forward Current –1.3 /						Α
V _{SD}		n–Source Diode Forward Voltage $V_{GS} = 0 V$, $I_S = -1.3 A$ (Note 2)				-1.2	V
	<pre>v Diode Characteristics</pre>		- , ,		-0.8		
	Reverse Leakage	V _R = 20 V	T _J = 25°C			50	μA
·ĸ			T _J = 125°C			18	mA
V _F	Forward Voltage	I _F = 1 A	T _J = 25°C			0.47	V
			T _J = 125°C			0.39	
		I _F = 2 A	$T_{J} = 25^{\circ}C$			0.58	
	1		T _J = 125°C			0.53	

FDFS2P102A


FDFS2P102A

R _{0JA}	Characteristics ReJA Thermal Resistance, Junction-to-Ambient				(Not	e 1a)	78		°C/W	
R _{eJC}			nce, Junction-to		(Nc	te 1)	40			°C/W
otes:										
	m of the junction-to-c	ase an	d case-to-ambient t	hermal resistan	ce wher	e the case thermal refe	rence is defined a	s the s	older mounting su	rface
the drain	pins. $R_{\theta JC}$ is guarant	teed by	$^{\prime}$ design while R $_{_{ ext{ heta}CA}}$	is determined b	y the us	er's board design.			-	
Q	<u> </u>									
		a)	78°C/W when	Q Q Q Q	b)	125°C/W when		c)	135°C/W wher	
			mounted on a 0.5in ² pad of 2		2)	mounted on a 0.02 in ² pad of		0)	mounted on a minimum pad.	
	0000		oz copper	0000		2 oz copper	0000		minimum pau.	
	6 6 6									
	etter size paper									
	ulse Width < 300µs, I		v < lo < 2.0%							
		Duty O	yole - 2.070							

FDFS2P102A Rev A1(W)

FDFS2P102A

FDFS2P102A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DenseTrenchTM DOMETM EcoSPARKTM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST[®] FASTr[™] FRFET[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] LittleFET[™] MicroFET[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART START[™] STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET[®] VCX™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. H3