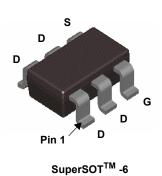
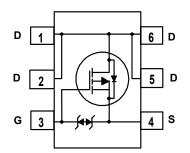


FDC610PZ P-Channel PowerTrench[®] MOSFET -30V, -4.9A, 42mΩ Features

- Max $r_{DS(on)}$ = 42m Ω at V_{GS} = -10V, I_D = -4.9A
- Max $r_{DS(on)}$ = 75m Ω at V_{GS} = -4.5V, I_D = -3.7A
- Low gate charge (17nC typical).
- High performance trench technology for extremely low r_{DS(on)}.
- SuperSOTTM –6 package: small footprint (72% smaller than standard SO–8) low profile (1mm thick).
- RoHS Compliant




General Description

This P-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance. These devices are well suited for battery power applications: load switching and power management, battery charging circuits, and DC/DC conversion.

Application

DC - DC Conversion

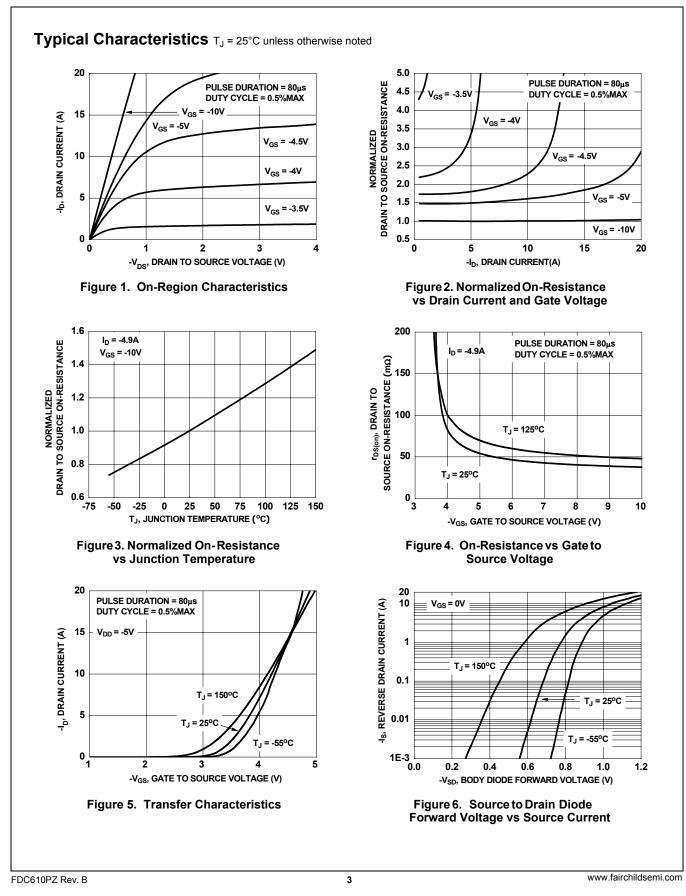
MOSFET Maximum Ratings TA= 25°C unless otherwise noted

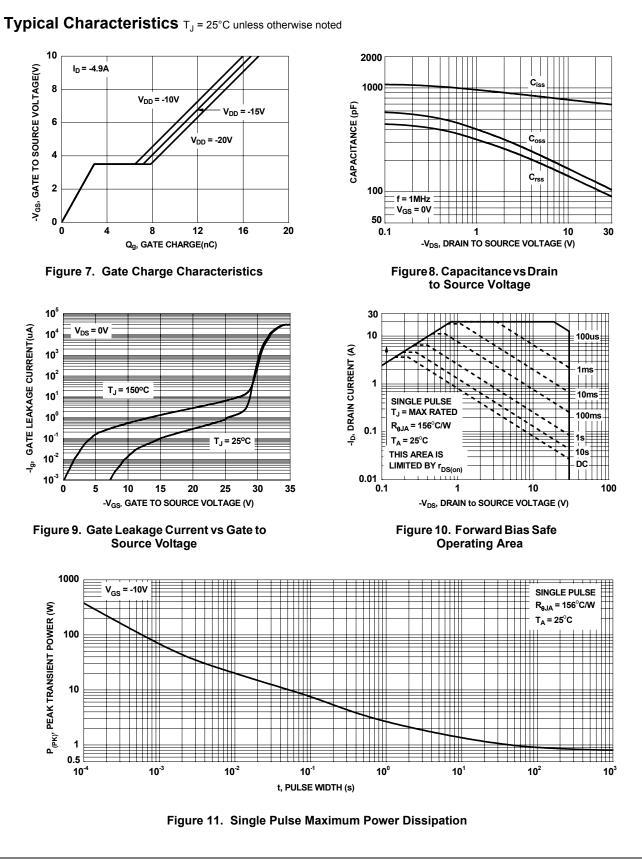
Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage		-30	V	
V _{GS}	Gate to Source Voltage		±25	V	
I _D	Drain Current -Continuous	(Note 1a)	-4.9	•	
	-Pulsed		-20	A	
P _D	Power Dissipation	(Note 1a)	1.6	14/	
	Power Dissipation	(Note 1b)	0.8	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	78	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	156	C/W

Package Marking and Ordering Information

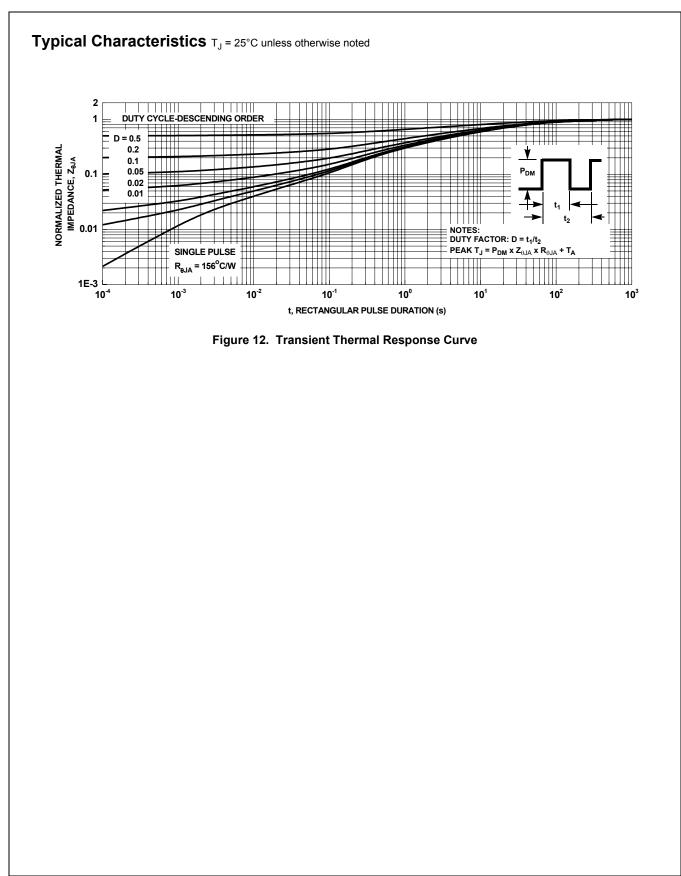

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
.610Z	FDC610PZ	SSOT6	7"	8mm	3000units


©2007 Fairchild Semiconductor Corporation FDC610PZ Rev.B

1

August 2007

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250μA, V _{GS} = 0V	-30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu A$, referenced to 25°C		-22		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -24V, V _{GS} = 0V			-1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 25V, V_{DS} = 0V$			±10	μA
	cteristics			Į		
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-1	-2.2	-3	V
$\Delta V_{GS(th)}$	Gate to Source Threshold Voltage		•	2.2	0	-
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Temperature Coefficient	$I_D = -250\mu A$, referenced to 25°C		6		mV/°C
		$V_{GS} = -10V, I_D = -4.9A$		36	42	
r _{DS(on)}	Static Drain to Source On Resistance	V_{GS} = -4.5V, I_{D} = -3.7A		58	75	mΩ
		V_{GS} = -10V, I_{D} = -4.9A, T_{J} = 125°C		50	60	1
9 _{FS}	Forward Transconductance	$V_{DD} = -10V, I_D = -4.9A$		15		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$y_{1} = 15y_{1}y_{2} = 0y_{1}$		755	1005	pF
C _{oss}	Output Capacitance	−V _{DS} = −15V, V _{GS} = 0V, _ f = 1MHz		145	195	pF
C _{rss}	Reverse Transfer Capacitance			125	190	pF
R _g	Gate Resistance	f = 1MHz		13		Ω
Switching	g Characteristics					
t _{d(on)}	Turn-On Delay Time			7	14	ns
t _r	Rise Time	$V_{DD} = -15V, I_D = -4.9A$		4	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = -10V, R_{GEN} = 6\Omega$		33	53	ns
t _f	Fall Time			23	37	ns
Qg	Total Gate Charge	V _{GS} = 0V to -10V		17	24	nC
Qg	Total Gate Charge	$V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -15V,$ $I_D = -4.9A$		9	13	nC
Q _{gs}	Gate to Source Gate Charge	I _D = -4.9A		2.9		nC
Q _{gd}	Gate to Drain "Miller" Charge			4.3		nC
Drain-Soເ	urce Diode Characteristics					
I _S	Maximum Continuous Drain-Source Dio	de Forward Current			-1.3	Α
V _{SD}	Source to Drain Diode Forward Voltage			-0.8	-1.2	V
t _{rr}	Reverse Recovery Time			19	35	ns
 Q _{rr}	Reverse Recovery Charge	I _F = –4.9A, di/dt = 100A/μs		9	18	nC
 R_{θJA} is determ the user's boa 	a. 78°C/W wh	r pad on a 1.5 x 1.5 in. board of FR-4 material. R _{0JC} is en mounted on a 2 oz copper.	b. 156°(y design whi	ounted on a	
2 Pulse Test Pu	ulse Width < 300µs, Duty cycle < 2.0%.					
	Jise Width < 300μ s, Duty cycle < 2.0%.					



FDC610PZ Rev. B

www.fairchildsemi.com

FDC610PZ P-Channel PowerTrench[®] MOSFET

FDC610PZ Rev. B

www.fairchildsemi.com

FDC610PZ P-Channel PowerTrench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Green FPS™ Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK[®] Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT FAST® FastvCore™ FPS™ FRFET® Global Power Resource[™]

Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ **OPTOLOGIC**® **OPTOPLANAR[®]** PDP-SPM™ Power220®

Power247® **POWEREDGE[®]** Power-SPM™ PowerTrench[®] Programmable Active Droop™ QFET[®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6

SuperSOT[™]-8 SyncFET™ The Power Franchise®

pthower

franchise TinyBoost™ TinyBuck™ TinyLogic® **TINYOPTO™** TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC® UniFET™ **VCX™**

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 131