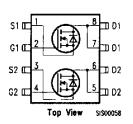
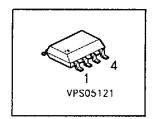


Preliminary Data

$\textbf{SIPMOS}^{\circledR} \textbf{ Small-Signal-Transistor}$


Features


• Dual N Channel

- Enhancement mode
- Avalanche rated
- Logic Level
- dv/dt rated

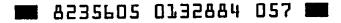
Product Summary

Drain source voltage	V _{DS}	60	٧
Drain-Source on-state resistance	R _{DS(on)}	0.15	Ω
Continuous drain current	Ь	2.6	Α

Туре	Package	Ordering Code
BSO 615N	SO 8	Q67041-S2843

Maximum Ratings, at $T_i = 25$ °C, unless otherwise specified

Parameter	Symbol	Value	Unit
Continuous drain current, one channel active	I _D	2.6	Α
Pulsed drain current, one channel active	/Dpulse	10.4	
T _A = 25 °C			
Avalanche energy, single pulse	EAS	60	mJ
$I_{\rm D} = 2.6 \text{ A}, \ V_{\rm DD} = 25 \text{ V}, \ R_{\rm GS} = 25 \ \Omega$			
Avalanche current, periodic limited by T _{imax}	/ _{AR}	2.6	Α
Avalanche energy, periodic limited by T_{imax}	E _{AR}	0.18	mJ
Reverse diode dv/dt	d <i>v</i> /d <i>t</i>	6	kV/μs
$I_{S} = 2.6 \text{ A}, V_{DS} = 40 \text{ V}, di/dt = 200 \text{ A/}\mu\text{s},$			
T _{jmax} = 150 °C			
Gate source voltage	$V_{\rm GS}$	±20	V
Power dissipation, one channel active	P _{tot}	2	w
T _A = 25 °C			
Operating temperature	$T_{\rm i}$	-55 +150	.c
Storage temperature	T _{stq}	-55 +150	
IEC climatic category; DIN IEC 68-1		55/150/56	


Thermal Characteristics

Parameter	Symbol	Values			Unit
		min.	typ.	max.]
Characteristics					
Thermal resistance, junction - soldering point	RthJS	•	•	35	K/W
Thermal resistance @ 10 sec., min. footprint	R _{th(JA)}	-	-	100	
Thermal resistance @ 10 sec.,	R _{th(JA)}	-	-	62.5	
6 cm ² cooling area ¹⁾					ĺ

Electrical Characteristics, at $T_i = 25$ °C, unless otherwise specified

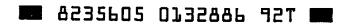
Parameter	Symbol		Unit		
		min.	typ.	max.	1
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}	60	•		V
$V_{GS} = 0 \text{ V}, I_D = 0.25 \text{ mA}$					
Gate threshold voltage, $V_{GS} = V_{DS}$	V _{GS(th)}	1.2	1.6	2	
<i>I</i> _D = 20 μA					
Zero gate voltage drain current	/oss				μA
$V_{\rm DS}$ = 60 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 25 °C		-	0.1	1	
$V_{\rm DS} = 60 \text{ V}, \ V_{\rm GS} = 0 \text{ V}, \ T_{\rm j} = 150 \text{ °C}$		-	10	100	
Gate-source leakage current	l _{GSS}	-	10	100	nA
$V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$					
Drain-Source on-state resistance	R _{DS(on)}				Ω
$V_{\rm GS} = 4.5 \text{ V}, I_{\rm D} = 2.6 \text{ A}$		-	0.12	0.15	

Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air.

Data Book 162 06.99

Electrical Characteristics

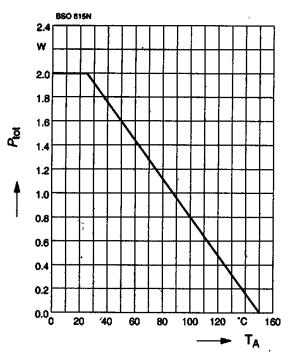
Parameter	Symbol	Values			Unit
	,	min.	typ.	max.	
Characteristics		•		•	
Transconductance	9ts	2.4	5.5	-	S
$V_{\text{DS}} \ge 2^* I_{\text{D}}^* R_{\text{DS(on)max}}$, $I_{\text{D}} = 2.6 \text{ A}$	1				
Input capacitance	G _{ss}	-	300	380	pF
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$				(· ·
Output capacitance	Coss	٠ -	90	120].
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}'$					ľ
Reverse transfer capacitance	Crss	-	50	65	
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$			`		. ,
Turn-on delay time	t _{d(on)}	-	12	20	ns
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 4.5 V, $I_{\rm D}$ = 2.6 A,				:	
$R_{\rm G} = 16 \Omega$					
Rise time	4	-	15	25	
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 4.5 V, $I_{\rm D}$ = 2.6 A,			<u> </u>		ı.
$R_{\rm G} = 16 \Omega$			1	•	
Turn-off delay time	t _{d(off)}	•	- 20	30	
$V_{\text{DD}} = 30 \text{ V}, \ V_{\text{GS}} = 4.5 \text{ V}, \ I_{\text{D}} = 2.6 \text{ A},$,	. `	•
$R_{\rm G} = 16 \Omega$					
Fall time	4	, -	15	25 -	
$V_{\text{DD}} = 30 \text{ V}, V_{\text{GS}} = 4.5 \text{ V}, I_{\text{D}} = 2.6 \text{ A},$					'
$R_{\rm G}$ = 16 Ω		r			

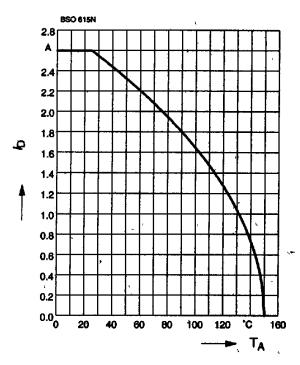


Electrical Characteristics, at $T_i = 25$ °C, unless otherwise specified

Parameter	Symbol		Unit		
at $T_i = 25$ °C, unless otherwise specified		min.	typ.	max.	
Dynamic Characteristics					
Gate charge at threshold	Q _{G(th)}	-	0.4	0.6	nC
$V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 0.1 A, $V_{\rm GS}$ = 1 V					
Gate charge at V _{gs} =5V	$Q_{g(5)}$	-	7	10	
$V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 2.6 A, $V_{\rm GS}$ = 0 to 5 V	3()				
Gate charge total	Q_g	-	14	20	nC
$V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 2.6 A, $V_{\rm GS}$ = 0 to 10 V	,				
Gate plateau voltage	V _(plateau)	-	3.6	-	V
$V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 2.6 A	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

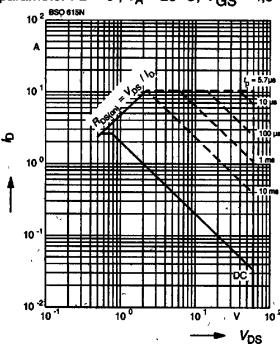
Reverse Diode


Inverse diode continuous forward current $T_A = 25$ °C	Is	-	-	2.6	A
Inverse diode direct current, pulsed $T_A = 25 ^{\circ}\text{C}$	/ _{SM}	-	-	10.4	
Inverse diode forward voltage V _{GS} = 0 V, I _F = 5.2 A	V _{SD}	-	0.95	1.2	V
Reverse recovery time $V_R = 30 \text{ V}, I_F = I_S$, $d_F/dt = 100 \text{ A/}\mu\text{s}$	t _{rr}	-	50	75	ns
Reverse recovery charge $V_{\rm R} = 30 \text{ V}, I_{\rm F} = I_{\rm S}, di_{\rm F}/dt = 100 \text{ A/}\mu\text{s}$	Q _{rr}	-	0.1	0.15	μC


Power Dissipation

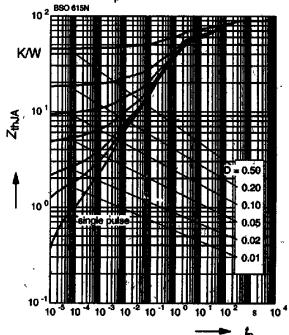
$$P_{\text{tot}} = f(T_A), V_{\text{GS}} = 4.5 \text{ V}$$

Drain current


$$I_{D} = f(T_{A}), V_{GS} = 4.5 \text{ V}$$

Safe operating area

$$I_{\rm D} = f(V_{\rm DS})$$

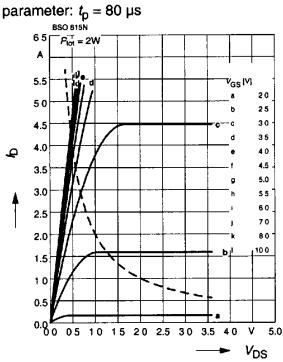

parameter :
$$D = 0$$
 , $T_A = 25$ °C, $V_{GS} = 4.5$ V

Transient thermal impedance

$$Z_{\text{thJA}} = f(t_{\text{p}})$$

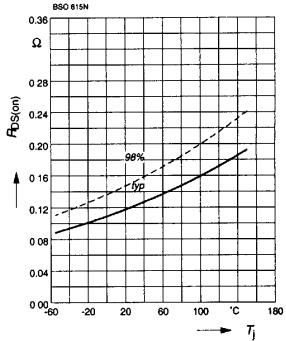
parameter :
$$D = t_D/T$$

Data Book


165

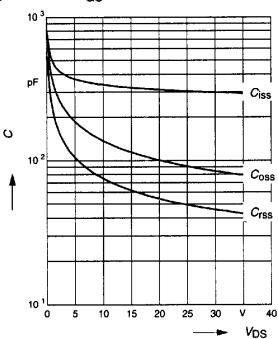
~ 06.99

Typ. output characteristics


$$I_{\mathsf{D}} = f\left(V_{\mathsf{DS}}\right)$$

Drain-source on-resistance

$$R_{\mathrm{DS}(\mathrm{on})} = f(T_{\mathrm{j}})$$

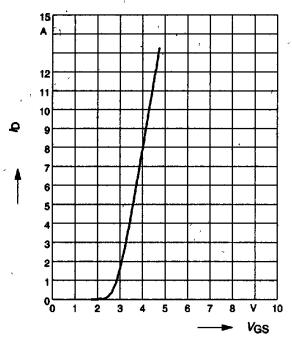

parameter : $I_D = 2.6 \text{ A}$, $V_{GS} = 4.5 \text{ V}$

Typ. capacitances

$$C = f(V_{DS})$$

parameter: $V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$

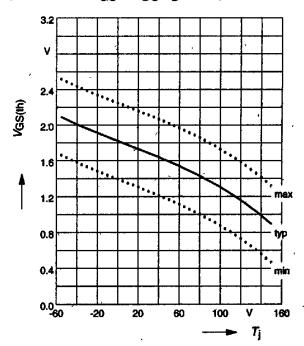
06.99 Data Book 166



Typ. transfer characteristics $I_{D}=f(V_{GS})$

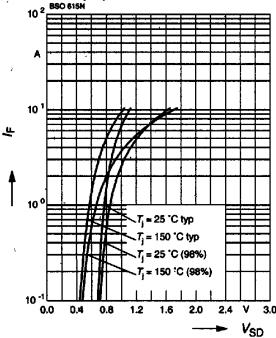
parameter: $t_p = 80 \mu s$

2


 $V_{DS} \ge 2 \times I_D \times R_{DS(on) \text{ max}}$

Gate threshold voltage

 $V_{\mathrm{GS(th)}} = f(T_{\mathrm{j}})$

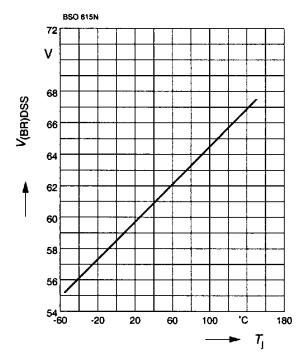

parameter : $V_{GS} = V_{DS}$, $I_D = 20 \mu A$

Forward characteristics of reverse diode

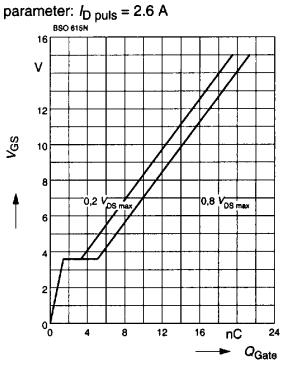
 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_j , $t_p = 80 \mu s$

Avalanche Energy $E_{AS} = f(T_i)$


parameter:
$$I_D = 2.6 \text{ A}, V_{DD} = 25 \text{ V}$$

$$R_{\rm GS} = 25~\Omega$$


Drain-source breakdown voltage

$$V_{(\mathsf{BR})\mathsf{DSS}} = f(T_{\mathsf{j}})$$

Typ. gate charge

$$V_{GS} = f(Q_{Gate})$$

8235605 0132890 350 📟

Gehäusemaßbilder

Package Outlines

(Maße in mm, wenn nicht anders angegeben) (Dimensions in mm, unless otherwise specified)

P-DSO-8-6/-7
Gewicht etwa 0.15 g
Approx. weight 0.15 g

0.33 ± 0.08 x 45°

4 - 0.2

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

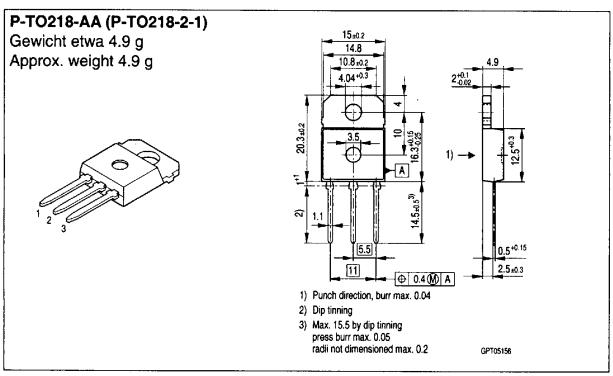
0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05

0.41 - 0.05


0.41 - 0.05

0.41 - 0.05

Bild 16

Figure 16

1) Does not include plastic or metal protrusion of 0.15 max, per side

Bild 17

Figure 17

Data Book

1055

06.99

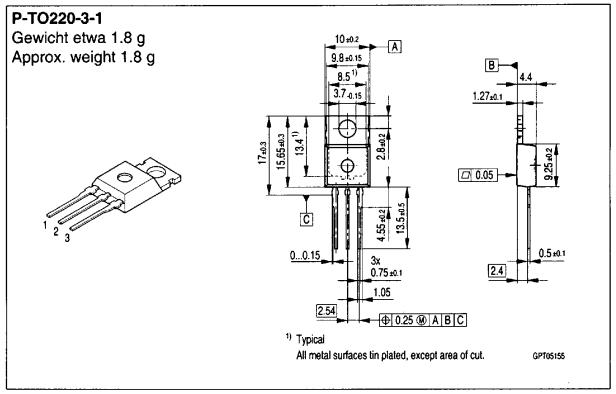


Bild 18 Figure 18

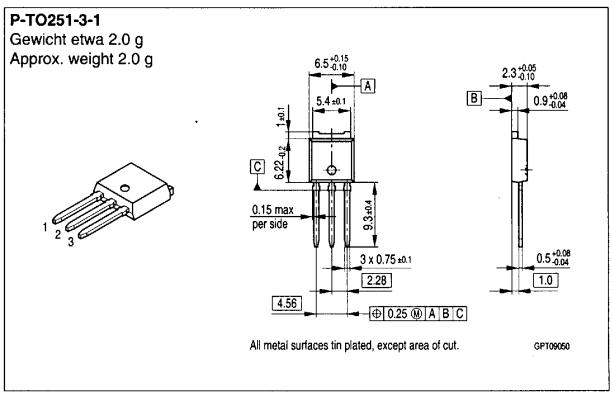


Bild 19 Figure 19

Data Book 1056 06.99

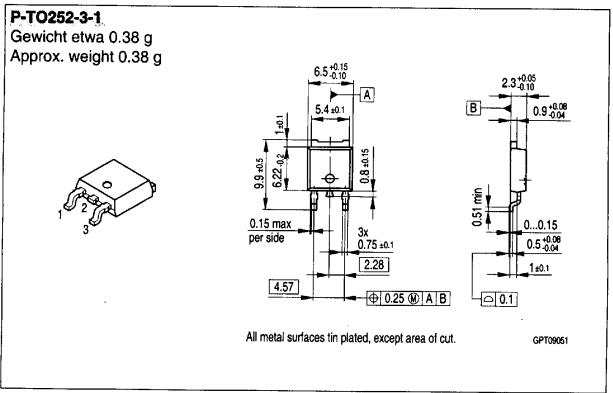
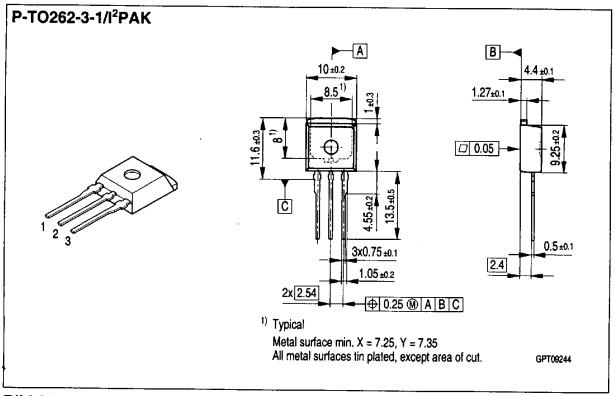
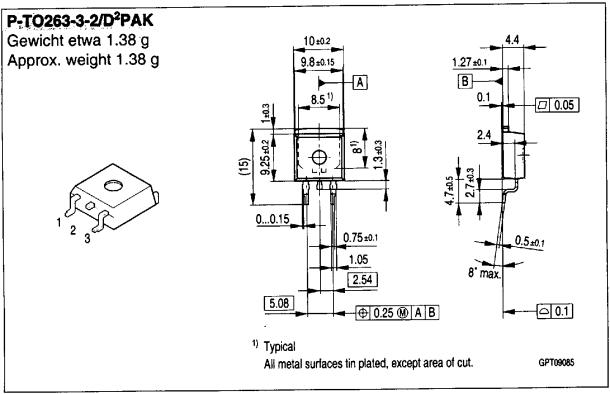



Bild 20

Figure 20

Bild 21


Figure 21

Data Book

1057

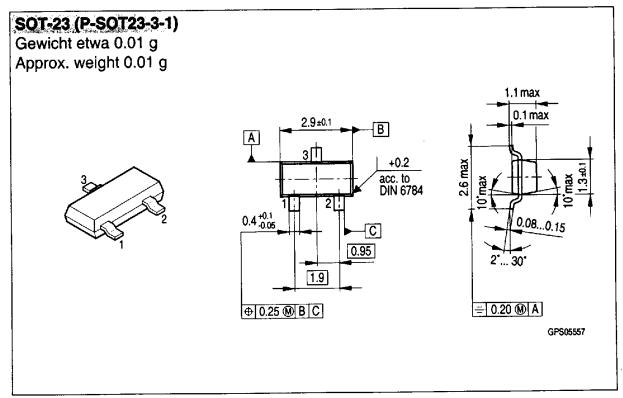
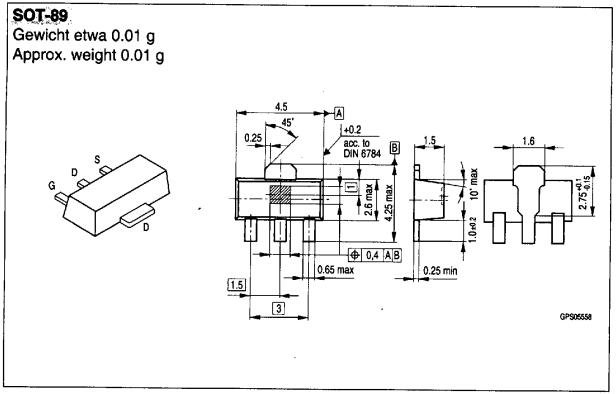

8235605 0133776 T97

Bild 22

Figure 22

Bild 23


Figure 23

Data Book

1058

8235605 0133777 923 🔜

Bild 24

Figure 24

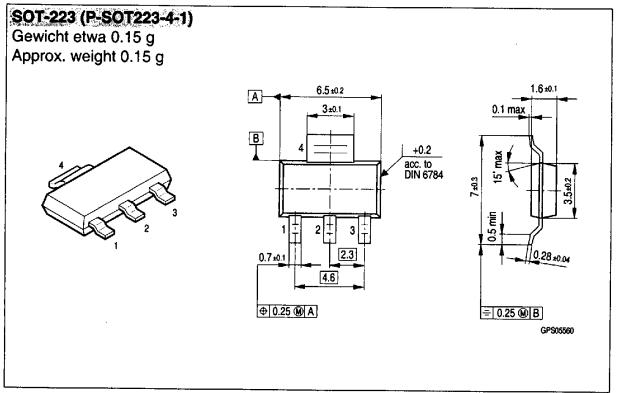


Bild 25

Figure 25

Data Book

1059

8235605 0133778 86T

06.99

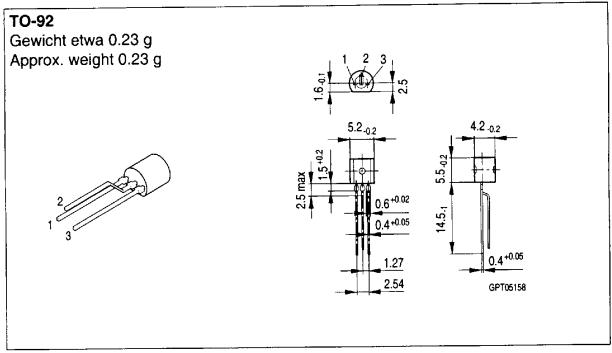


Bild 26 Figure 26

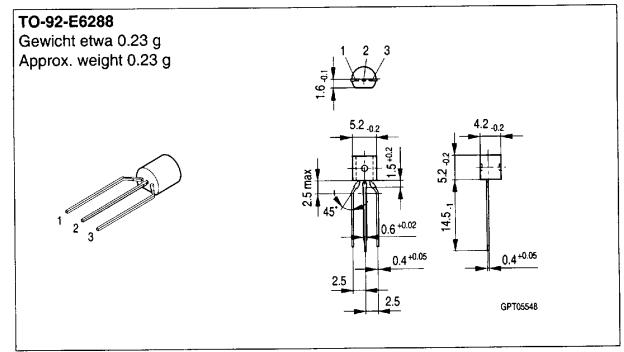


Bild 27 Figure 27

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

1060 BB 8235605 0133779 7T6

Data Book