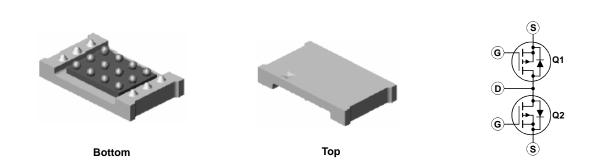


FDZ2554P

Monolithic Common Drain P-Channel 2.5V Specified Power Trench $^{\!(\!8\!)}$ BGA MOSFET -20V, -6.5A, 28m Ω

Features

- Max $r_{DS(on)}$ = 28m Ω at V_{GS} = -4.5V, I_D = -6.5A
- Max $r_{DS(on)} = 45m\Omega$ at $V_{GS} = -2.5V$, $I_D = -5A$
- Occupies only 0.10 cm² of PCB area: 1/3 the area of SO-8
- Ultra-thin package: less than 0.80 mm height when mounted to PCB
- Outstanding thermal transfer characteristics: significantly better than SO-8
- Ultra-low Qg x r_{DS(on)} figure-of-merit
- High power and current handling capability
- RoHS Compliant


General Description

Combining Fairchild's advanced 2.5V specified PowerTrench process with state-of-the-art BGA packaging, the FDZ2554P minimizes both PCB space and $r_{DS(on)}$. This monolithic common drain BGA MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, high current handling capability, ultra-low profile packaging, low gate charge, and low $r_{DS(on)}$.

June 2007

Applications

- Battery management
- Load Switch
- Battery protection

MOSFET Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

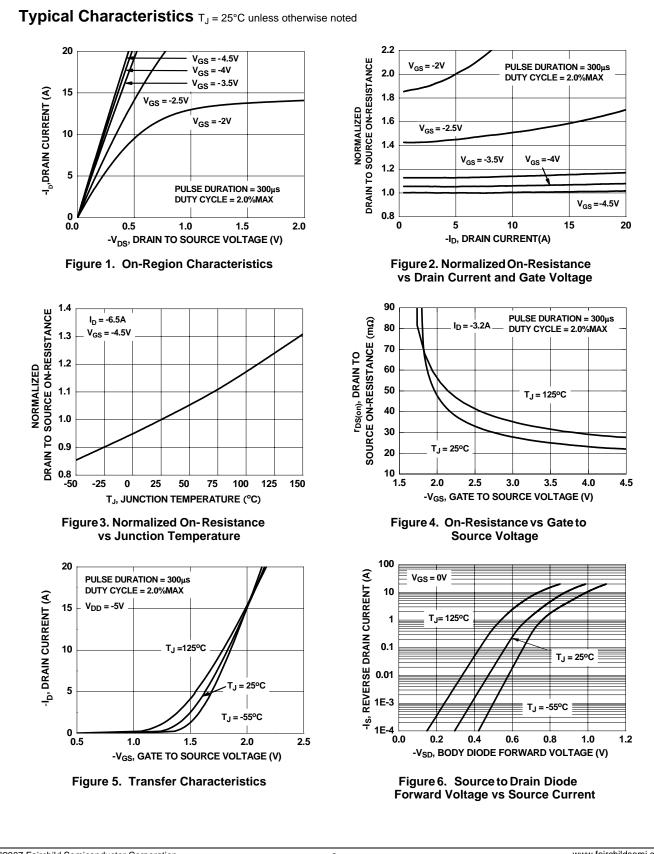
Symbol	Parameter	Ratings	Units	
V _{DS}	Drain to Source Voltage		-20	V
V _{GS}	Gate to Source Voltage		±12	V
	Drain Current -Continuous (Note 1a)		-6.5	•
D	-Pulsed		-20	A
P _D	Power Dissipation (Steady State) (Note 1a)		2.1	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	0.6	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	60	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	108	°C/VV
$R_{\theta JB}$	Thermal Resistance, Junction to Ball	(Note 1)	6.3	

Package Marking and Ordering Information

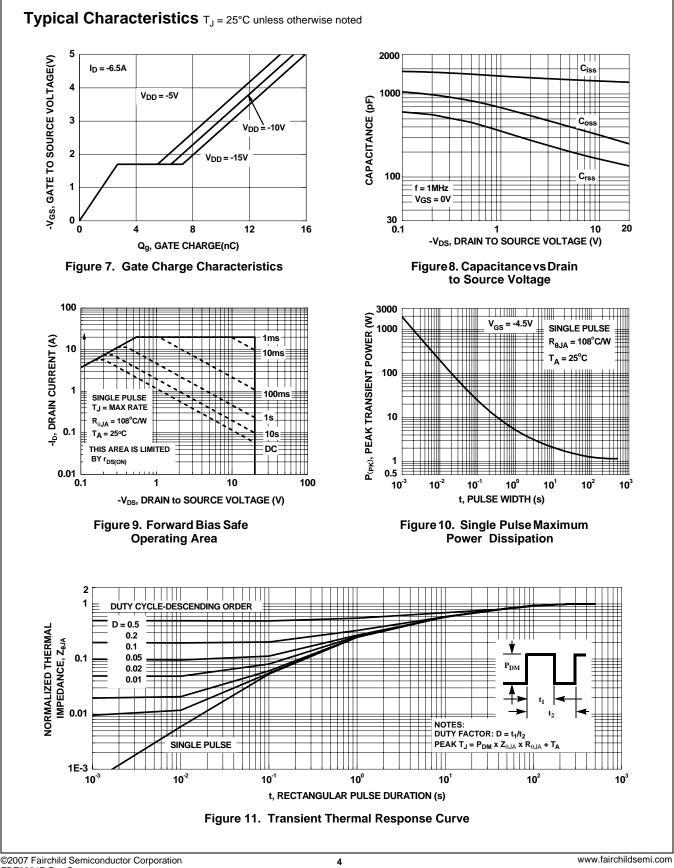
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
2554P	FDZ2554P	BGA 2.5X4.0	7"	12 mm	3000 units


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	octeristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250μA, V _{GS} = 0V	-20			V	
∆BV _{DSS}	Breakdown Voltage Temperature			12		m\//°C	
ΔT_{J}	Coefficient	$I_D = -250\mu A$, referenced to 25°C		-13		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16V, V_{GS} = 0V$			-1	μΑ	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 12V, V_{DS} = 0V$			±100	nA	
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -250 \mu A$	-0.6	-0.8	-1.5	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \mu A$, referenced to $25^{\circ}C$		3		mV/°C	
		$V_{GS} = -4.5V, I_{D} = -6.5A$		21	28		
(DC(on)	Static Drain to Source On Resistance	$V_{GS} = -2.5V$, $I_D = -5A$		36	45	mΩ	
DS(on)	DS(on) Static Drain to Source On Resistance	$V_{GS} = -4.5V, I_D = -6.5A, T_J = 125^{\circ}C$		30	43		
9 _{FS}	Forward Transconductance	$V_{DD} = -5V, I_D = -6.5A$		24		S	
Dvnamic	Characteristics						
C _{iss}	Input Capacitance			1430	1900	pF	
C _{oss}	Output Capacitance	$V_{DS} = -10V, V_{GS} = 0V,$		319	425	pF	
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		164	245	pF	
R _g	Gate Resistance	V _{GS} = 15mV, f = 1MHz		9.2		Ω	
	Characteristics			-			
	g Characteristics			10			
t _{d(on)}	Turn-On Delay Time	V _{DD} = -10V, I _D =-1A,		12 9	22	ns	
t _r	Rise Time	$-V_{GS} = -4.5V, R_{GEN} = 6\Omega$		9 62	18 100	ns	
t _{d(off)}	Turn-Off Delay Time			-		ns	
t _f	Fall Time			37	60	ns	
Q _g	Total Gate Charge	$V_{GS} = -4.5V$, $V_{DD} = -10V$		14	20	nC	
Q _{gs}	Gate to Source Charge	I _D = -6.5A		3		nC	
Q _{gd}	Gate to Drain "Miller" Charge			4		nC	
Drain-So	urce Diode Characteristics						
I _S	Maximum Continuous Drain-Source Diod	e Forward Current			-1.75	Α	
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0V, I _S = -1.75A (Note 2)		-0.7	-1.2	V	
t _{rr}	Reverse Recovery Time			25	40	ns	
Q _{rr}	Reverse Recovery Charge	$I_{F} = -6.5A, di/dt = 100A/\mu s$		20	32	nC	
NOTES:	Reverse Recovery charge			20	52	110	
side of the so	nined with the device mounted on a 1 in ² oz. copper pad c lder ball, $R_{\theta JB}$, is defined for reference. For $R_{\theta JC}$, the therr ad by design while $R_{\theta JA}$ is determined by the user's board	nal reference point for the case is defined as the to					
	J	a. 60°C/W when mounted on a 1 in ² pad of 2 oz copper.		b. 108 °C/W v minimum p	vhen mounte ad of 2 oz co		
		000	8.				

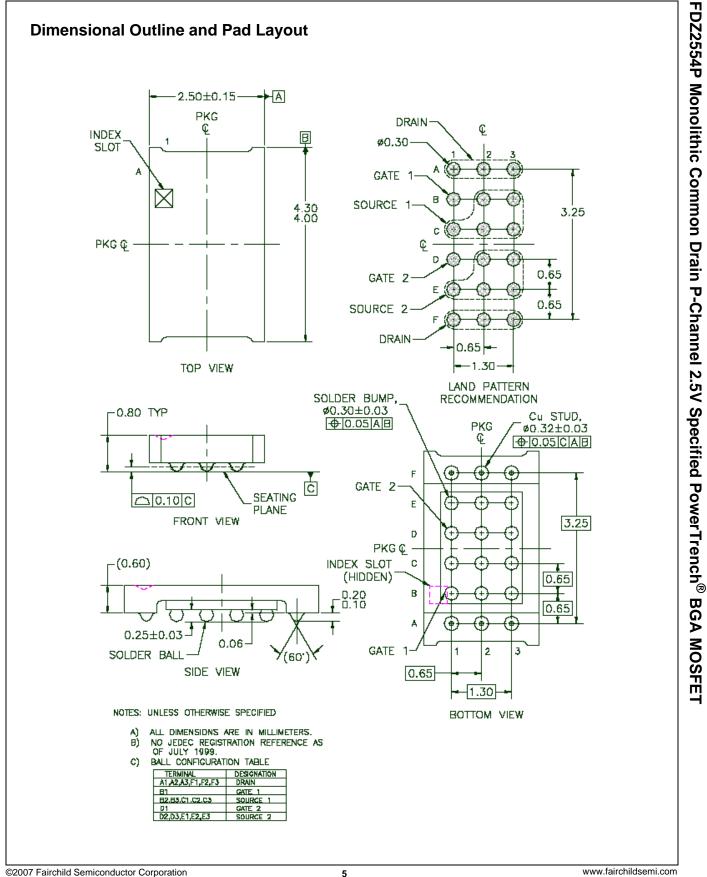
2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

.....

©2007 Fairchild Semiconductor Corporation FDZ2554P Rev B


www.fairchildsemi.com

©2007 Fairchild Semiconductor Corporation FDZ2554P Rev B


3

www.fairchildsemi.com

FDZ2554P Monolithic Common Drain P-Channel 2.5V Specified PowerTrench[®] BGA MOSFET

FDZ2554P Rev B

FDZ2554P Rev B

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx®	Green FPS™ e-Series™	POEWEREDGE [®]	SuperSOT™-8
Build it Now™	GOT™	Power-SPM [™]	SyncFET™
CorePLUS™	<i>i-Lo</i> ™	PowerTrench [®]	The Power Franchise [®]
CROSSVOLT™	IntelliMAX™	Programmable Active Droop [™]	Ш тм
CTL™	ISOPLANAR™	QFET [®]	TinyBoost™
Current Transfer Logic™	MegaBuck™	QS™	TinyBuck™
EcoSPARK [®]	MICROCOUPLER™	QT Optoelectronics [™]	TinyLogic [®]
FACT Quiet Series™	MicroFEET™	Quiet Series™	TINYOPTO™
FACT [®]	MicroPak™	RapidConfigure™	TinyPower™
FAST [®]	Motion-SPM [™]	SMART START™	TinyPWM™
FastvCore™	OPTOLOGIC [®]	SPM®	TinyWire™
FPS™	OPTOPLANAR [®]	STEALTH™	µSerDes™
FRFET [®]	PDP-SPM™	SuperFET™	UHC®
Global Power Resourse SM	Power220 [®]	SuperSOT™-3	UniFET™
Green FPS™	Power247 [®]	SuperSOT™-6	VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the backs. provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition	
Advance Information Formative or In Design		This datasheet contains the design specifications for produc development. Specifications may change in any manner without notice.	
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.	

©2007 Fairchild Semiconductor Corporation FDZ2554P Rev B