Power MOSFET

20 V/-20 V, 4.6 A/-4.1 A, μCool™ Complementary, 2x2 mm, WDFN Package

Features

- Complementary N-Channel and P-Channel MOSFET
- WDFN Package with Exposed Drain Pad for Excellent Thermal Conduction
- Footprint Same as SC-88 Package
- Leading Edge Trench Technology for Low On Resistance
- 1.8 V Gate Threshold Voltage
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environments
- This is a Pb-Free Device

Applications

- Synchronous DC-DC Conversion Circuits
- Load/Power Management of Portable Devices like PDA's, Cellular Phones and Hard Drives
- Color Display and Camera Flash Regulators

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parar	neter		Symbol	Value	Unit	
Drain-to-Source Volta	N-Ch	V_{DSS}	20	V		
	P-Ch		-20			
Gate-to-Source Voltag	je	N-Ch	V_{GS}	±8.0	V	
		P-Ch				
N-Channel	Steady	$T_A = 25^{\circ}C$	I _D	3.8	Α	
Continuous Drain Current (Note 1)	State	$T_A = 85^{\circ}C$		2.8		
, ,	t≤5s	$T_A = 25^{\circ}C$		4.6		
P-Channel	Steady	T _A = 25°C	I _D	-3.3	Α	
Continuous Drain Current (Note 1)	State	$T_A = 85^{\circ}C$		-2.4		
Ourient (Note 1)	t≤5s	$T_A = 25^{\circ}C$		-4.1		
Power Dissipation	Steady		P_{D}	1.5	W	
(Note 1)	State	$T_A = 25^{\circ}C$				
	t ≤ 5 s			2.3		
N-Channel Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	2.6	Α	
Current (Note 2)	State	T _A = 85°C		1.9		
P-Channel	Steady	$T_A = 25^{\circ}C$	I_{D}	-2.3	Α	
Continuous Drain Current (Note 2)	State	T _A = 85°C		-1.6		
Power Dissipation (Note 2)	Steady State	T _A = 25°C	P_{D}	0.71	W	
Pulsed Drain Current	N-Ch	t _p = 10 μs	I _{DM}	18	Α	
	P-Ch	1		-20		
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C	

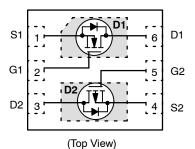
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm², 2 oz Cu.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
N-Channel 20 V	65 m Ω @ 4.5 V	3.8 A
	85 m Ω @ 2.5 V	2.0 A
	120 mΩ @ 1.8 V	1.7 A
D. Obsessed	100 mΩ @ –4.5 V	-4.1 A
P-Channel -20 V	135 m Ω @ –2.5 V	-2.0 A
	200 mΩ @ –1.8 V	-1.6 A


MARKING DIAGRAM WDFN6 JMM= **CASE 506AN**

JM = Specific Device Code = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
NTLJD3119CTAG	WDFN6 (Pb-Free)	3000/Tape & Reel
NTLJD3119CTBG	WDFN6 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications. including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
SINGLE OPERATION (SELF-HEATED)			
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	83	
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{ hetaJA}$	177	°C/W
Junction-to-Ambient – $t \le 5$ s (Note 3)	$R_{ hetaJA}$	54	
DUAL OPERATION (EQUALLY HEATED)			
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	58	
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{ hetaJA}$	133	°C/W
Junction–to–Ambient – t ≤ 5 s (Note 3)	$R_{ heta JA}$	40	

Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size (30 mm², 2 oz Cu).

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted)

Parameter	Symbol	N/P	Test Condition	ons	Min	Тур	Max	Unit
OFF CHARACTERISTICS	I							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	N		I _D = 250 μA	20			V
		Р	V _{GS} = 0 V	I _D = -250 μA	-20			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS} /T _J	N				10.4		mV/°C
Temperature Coefficient		Р				9.95		
Zero Gate Voltage Drain Current	I _{DSS}	N	V _{GS} = 0 V, V _{DS} = 16 V				1.0	μΑ
		Р	V _{GS} = 0 V, V _{DS} = -16 V	T _J = 25 °C			-1.0	
		N	V _{GS} = 0 V, V _{DS} = 16 V				10	
		Р	V _{GS} = 0 V, V _{DS} = -16 V	T _J = 85 °C			-10	
Gate-to-Source Leakage Current	I _{GSS}	N	V _{DS} = 0 V, V _{GS} =	±8.0 V			±100	nA
		Р	V _{DS} = 0 V, V _{GS} =	±8.0 V			±100	
ON CHARACTERISTICS (Note 5)	•	•			•		•	
Gate Threshold Voltage	V _{GS(TH)}	N		I _D = 250 μA	0.4	0.7	1.0	V
		Р	$V_{GS} = V_{DS}$	I _D = -250 μA	-0.4	-0.7	-1.0	
Gate Threshold Temperature	V _{GS(TH)} /T _J	N		1		-3.0		mV/°C
Coefficient		Р	1			2.44		
Drain-to-Source On Resistance	R _{DS(on)}	N	V _{GS} = 4.5 V , I _D = 3.8 A			37	65	mΩ
		Р	$V_{GS} = -4.5 \text{ V}$, $I_D = -4.1 \text{ A}$			75	100	
		N	V_{GS} = 2.5 V , I_D = 2.0 A			46	85	
		Р	V _{GS} = 1.8 V , I _D = 1.7 A			101	135	
		N				65	120	
		Р				150	200	
Forward Transconductance	9FS	N	V _{DS} = 10 V, I _D =	1.7 A		4.2		S
		Р	$V_{DS} = -5.0 \text{ V}$, $I_D =$	= -2.0 A		3.1		
CHARGES, CAPACITANCES AND GA	ATE RESISTAN	ICE						
Input Capacitance	C _{ISS}	N		V _{DS} = 10 V		271		pF
		Р		V _{DS} = -10 V		531		
Output Capacitance	C _{OSS}	N	f 40MU- 1/ 01/	V _{DS} = 10 V		72		
		Р	f = 1.0 MHz, V _{GS} = 0 V	V _{DS} = -10 V		91		
Reverse Transfer Capacitance	C _{RSS}	N		V _{DS} = 10 V		43		
		Р		V _{DS} = -10 V		56		
Total Gate Charge	Q _{G(TOT)}	N	V _{GS} = 4.5 V, V _{DS} = 10 V, I _D = 3.8 A			3.7		nC
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_D = -2.0 \text{ A}$			5.5		
Threshold Gate Charge	Q _{G(TH)}	N	V _{GS} = 4.5 V, V _{DS} = 10 V, I _D = 3.8 A			0.3		
		P $V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_D = -2.0 \text{ A}$			0.7			
Gate-to-Source Charge	Q_{GS}	N	$V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V}, I_D = 3.8 \text{ A}$			0.6		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10$	V, I _D = -2.0 A		1.0		
Gate-to-Drain Charge	Q_{GD}	N	V _{GS} = 4.5 V, V _{DS} = 10	V, I _D = 3.8 A		1.0		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10$	V, I _D = -2.0 A		1.4]

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	N/P	Test Conditions		Min	Тур	Max	Unit
SWITCHING CHARACTERISTIC	S (Note 6)	•			•	•	•	
Turn-On Delay Time	t _{d(ON)}		N $V_{GS} = 4.5 \text{ V}, V_{DD} = 16 \text{ V},$ $I_{D} = 1.0 \text{ A}, R_{G} = 2.0 \Omega$			3.8		ns
Rise Time	t _r	N				4.7		
Turn-Off Delay Time	t _{d(OFF)}		I _D = 1.0 A, R _G =	2.0 Ω		11.1		
Fall Time	t _f	1				5.8		
Turn-On Delay Time	t _{d(ON)}					5.2		
Rise Time	t _r	٦ _	$V_{GS} = -4.5 \text{ V}, V_{DD}$	= -10 V,		13.2		
Turn-Off Delay Time	t _{d(OFF)}	P	$I_D = -2.0 \text{ A, } R_G =$	2.0 Ω		13.7		
Fall Time	t _f					19.1		
DRAIN-SOURCE DIODE CHAR	ACTERISTICS	•			•	•	•	
Forward Diode Voltage	V _{SD}	N		I _S = 1.0 A		0.69	1.0	V
		Р		I _S = -1.0 A		-0.75	-1.0	
		N		I _S = 1.0 A		0.52		
		Р		I _S = -1.0 A		-0.64		
Reverse Recovery Time	rse Recovery Time t _{RR} N		I _S = 1.0 A		10.2		ns	
		Р		I _S = -1.0 A		16.2		
Charge Time	t _a	N	1	I _S = 1.0 A		6.0		
		P V _{GS} = 0 V,	I _S = -1.0 A		10.6			
Discharge Time	t _b	N	-II / -II - 400 A / -	I _S = 1.0 A		4.2		
		Р		I _S = -1.0 A		5.6		
Reverse Recovery Charge	Q _{RR}	N		I _S = 1.0 A		3.0		nC
		P		I _S = -1.0 A		5.7		

^{5.} Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.

$\textbf{TYPICAL PERFORMANCE CURVES - N-CHANNEL} \ (T_J = 25^{\circ}C \ unless \ otherwise \ noted)$

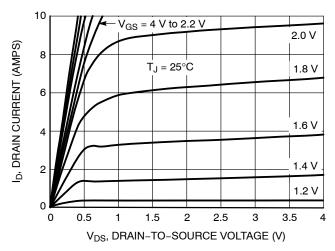


Figure 1. On-Region Characteristics

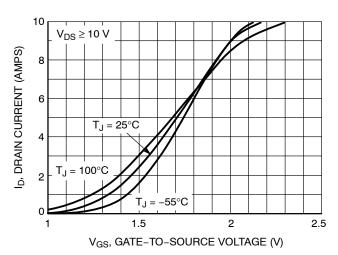


Figure 2. Transfer Characteristics

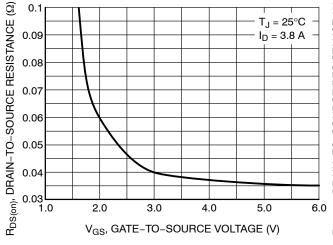


Figure 3. On-Resistance versus Drain Current

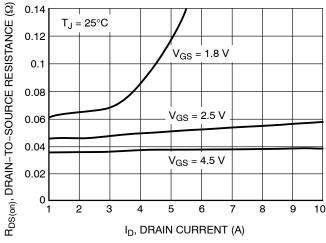


Figure 4. On-Resistance versus Drain Current and Gate Voltage

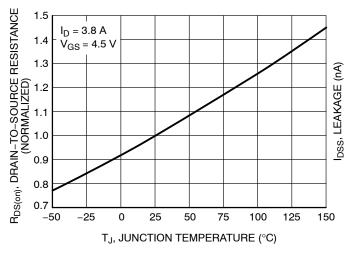


Figure 5. On–Resistance Variation with Temperature

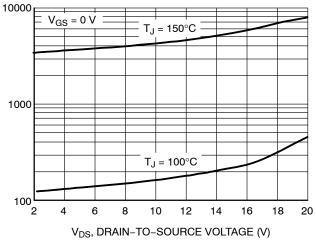
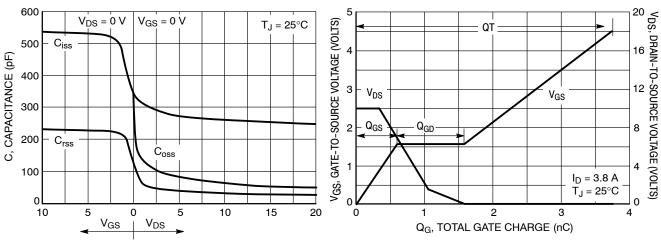



Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL PERFORMANCE CURVES - N-CHANNEL (T_J = 25°C unless otherwise noted)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

Figure 7. Capacitance Variation

Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

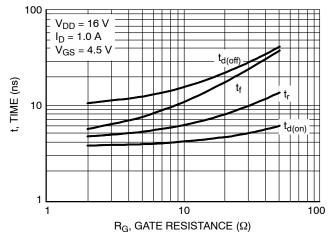


Figure 9. Resistive Switching Time Variation versus Gate Resistance

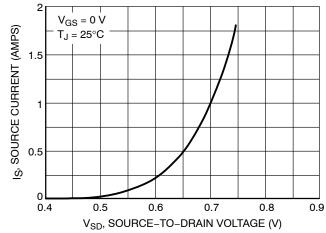


Figure 10. Diode Forward Voltage versus Current

$\textbf{TYPICAL PERFORMANCE CURVES - P-CHANNEL} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

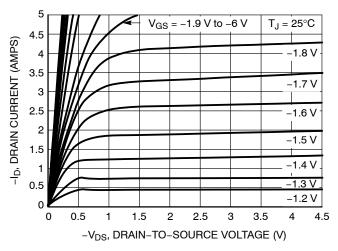


Figure 11. On-Region Characteristics

Figure 12. Transfer Characteristics

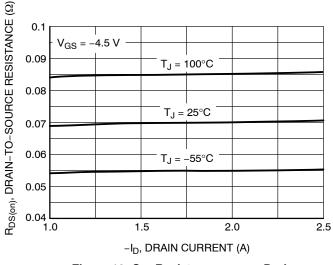
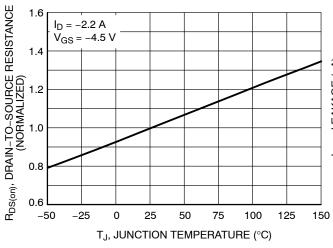



Figure 13. On-Resistance versus Drain Current

Figure 14. On-Resistance versus Drain Current and Gate Voltage

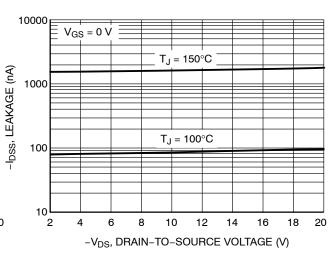
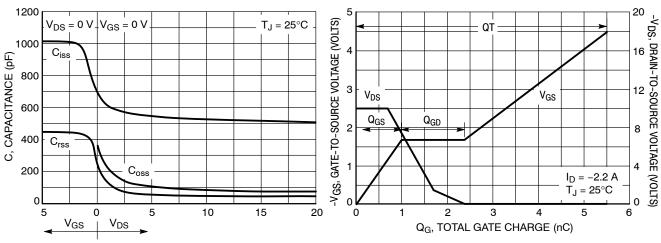



Figure 16. Drain-to-Source Leakage Current versus Voltage

$\textbf{TYPICAL PERFORMANCE CURVES} - \textbf{P-CHANNEL} \ (\textbf{T}_{J} = 25^{\circ} \textbf{C} \ unless \ otherwise \ noted)$

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

Figure 17. Capacitance Variation

Figure 18. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

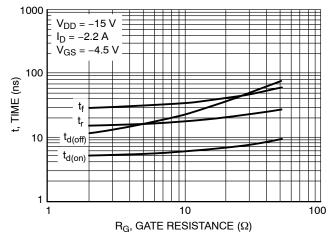


Figure 19. Resistive Switching Time Variation versus Gate Resistance

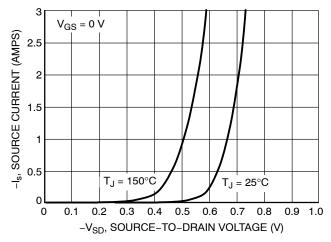


Figure 20. Diode Forward Voltage versus Current

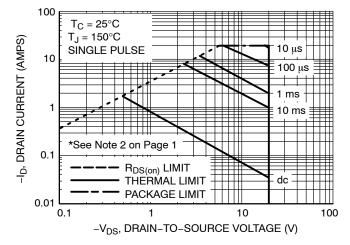


Figure 21. Maximum Rated Forward Biased Safe Operating Area

TYPICAL PERFORMANCE CURVES (T $_{J}$ = 25°C unless otherwise noted)

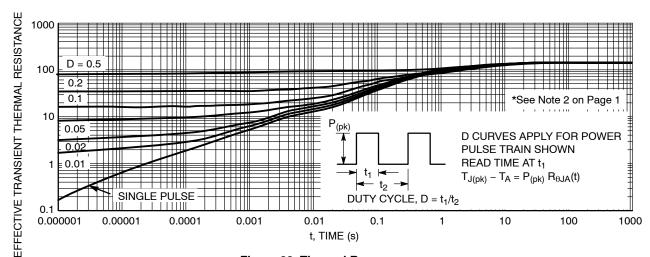
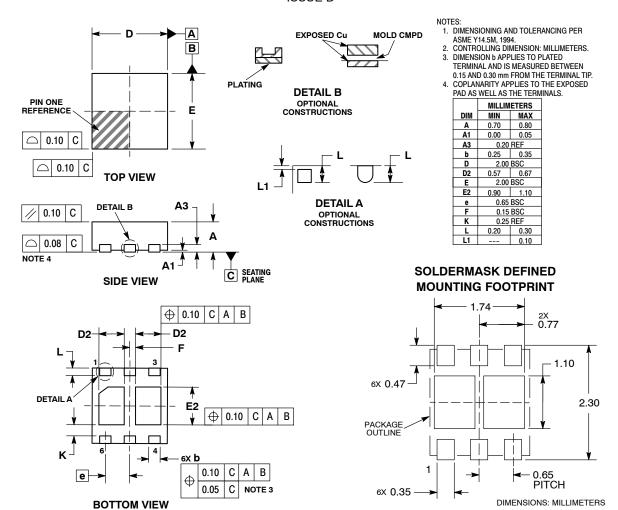



Figure 22. Thermal Response

PACKAGE DIMENSIONS

WDFN6, 2x2, 0.65PCASE 506AN-01 ISSUE D

μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and light are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative