Small Signal MOSFET

20 V / -8.0 V, Complementary, +0.63 A / -0.775 A, SC-88

Features

- Complementary N and P Channel Device
- Leading -8.0 V Trench for Low R_{DS(on)} Performance
- ESD Protected Gate ESD Rating: Class 1
- SC-88 Package for Small Footprint (2 x 2 mm)
- Pb-Free Packages are Available

Applications

- DC-DC Conversion
- Load/Power Switching
- Single or Dual Cell Li-Ion Battery Supplied Devices
- Cell Phones, MP3s, Digital Cameras, PDAs

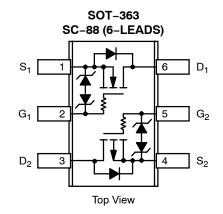
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage	N-Ch	V _{DSS}	20	V	
	P-Ch		-8.0		
Gate-to-Source Voltage		N-Ch	V_{GS}	±12	V
		P-Ch		±8.0	
Continuous Drain Current	N-Ch	T _A = 25°C	I _D	0.63	Α
– Steady State (Based on R _{θJA})		T _A = 85°C		0.46	
(Васса от Педд)	P-Ch	T _A = 25°C		-0.775	
		T _A = 85°C		-0.558	
Continuous Drain Current	N-Ch	T _A = 25°C		0.91	
– Steady State (Based on R _{e.II})		T _A = 85°C		0.65	
(Dased on Higgs)	P-Ch	T _A = 25°C		-1.1	
		T _A = 85°C		-0.8	
Pulsed Drain Current	tp ≤ 10 μs	I _{DM}	±1.2	Α	
Power Dissipation - Steady	T _A = 25°C	P_{D}	0.27	W	
(Based on R _{θJA})	T _A = 85°C		0.14		
Power Dissipation – Steady State T _A = 25°C				0.55	
(Based on R _{θJL})	T _A = 85°C		0.29		
Operating Junction and Sto	T _J ,	–55 to 150	°C		
Course Current (Body Diods)			T _{STG}		۸
Source Current (Body Diod	N-Ch	I _S	0.63	Α	
P-Ch				-0.775	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	ç

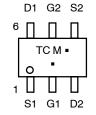
THERMAL RESISTANCE RATINGS (Note 1)

Junction-to-Ambient	Тур	$R_{\theta JA}$	400	°C/W
Steady State	Max		460	
Junction-to-Lead (Drain)	Тур	$R_{\theta JL}$	194	
Steady State	Max		226	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. Surface mounted on FR4 board using 1 oz Cu area = 0.9523 in sq.

ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D Max		
N-Ch 20 V	0.29 Ω @ 4.5 V			
	0.36 Ω @ 2.5 V	0.63 A		
	0.22 Ω @ -4.5 V			
P-Ch -8.0 V	0.32 Ω @ -2.5 V	-0.775 A		
	0.51 Ω @ -1.8 V			

MARKING DIAGRAM & PIN ASSIGNMENT

TC = Device Code

M = Date Code

Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	Symbol	N/P	Test Condition	on	Min	Тур	Max	Units
Breakdown Voltage Diam-to-Source Breakdown Vigripuss N Vigripus N Vigrip	OFF CHARACTERISTICS								
Drain-to-Source Breakdown Volgage Temperature Coefficient		V _{(BR)DSS}	N	V 0 V	$I_D = 250 \mu A$	20	27		V
Voltage Temperature Coefficient TyTy P P P P P P P P P	· ·		Р	VGS - U V	$I_D = -250 \mu\text{A}$	-8.0	-10.5		
Cient		V _{(BR)DSS}	N				22		mV/ °C
P		/ IJ	Р				-6.0		
P	Zero Gate Voltage Drain Cur-	I _{DSS}	N	V _{GS} = 0 V, V _{DS} = 16 V	T			1.0	μΑ
Leakage Current	rent		Р		I _J = 25 °C			1.0	
ON CHARACTERISTICS (Note 2) On CHARACTERISTICS (Note 2)		I _{GSS}	N	V - 0 V	V _{GS} = ±12 V			10	μΑ
Gate Threshold Voltage	Leakage Current		Р	v _{DS} = 0 v	$V_{GS} = \pm 8.0$			10	
Case Threshold Temperature Coefficient To P VGS = VDS To D D D D D D D D D	ON CHARACTERISTICS (Note 2	2)							
P	Gate Threshold Voltage	V _{GS(TH)}		V00 - V00		0.6	0.92	1.5	V
Temperature Coefficient TJ P P P P P P P P P			Р	VGS − VDS	$I_D = -250 \mu A$	-0.45	-0.83	-1.0	
Drain-to-Source On Resistance RDS(cn) N VGS = 4.5 V ID = 0.63 A 0.22 0.375 Ω		V _{GS(TH)} /							-mV/ °C
P V _{GS} = -4.5 V, I _D = -0.57 A 0.22 0.30	·	ŭ							
P		R _{DS(on)}							Ω
P V _{GS} = -2.5 V, I _D = -0.48 A 0.32 0.46 P V _{GS} = -1.8 V, I _D = -0.20 A 0.51 0.90 S V _{DS} = 4.0 V I _D = -0.57 A 2.0 S CHARGES AND CAPACITANCES	ance		-						_
P V _{GS} = -1.8 V, I _D = -0.20 A 0.51 0.90									_
Forward Transconductance									_
P V _{DS} = -4.0 V, I _D = -0.57 A 2.0								0.90	
Charges and Capacitance Ciss N P	Forward Transconductance	9FS							S
Input Capacitance	0114 D050 AND 04 D40(T4N)	<u> </u>	Р	$V_{DS} = -4.0 \text{ V}, I_D = -4.0 \text{ V}$	-0.57 A		2.0		
P					1 1/ 00 1/				
$ \begin{array}{ c c c c c c }\hline \text{Output Capacitance} & C_{OSS} & N & \\ P & & & & & & \\ P & & & & & \\ \hline \\ Reverse Transfer Capacitance} & C_{RSS} & N & \\ P & & & & & \\ \hline \\ Reverse Transfer Capacitance} & C_{RSS} & N & \\ P & & & & & \\ \hline \\ Reverse Transfer Capacitance} & Q_{G(TOT)} & N & V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V}, I_D = 0.7 \text{ A} & 1.3 & 3.0 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0 \text{ V}, I_D = 0.6 \text{ A} & 2.2 & 4.0 & 0.1 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0 \text{ V}, I_D = 0.6 \text{ A} & 2.2 & 4.0 & 0.1 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0 \text{ V}, I_D = 0.7 \text{ A} & 0.1 & 0.1 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0 \text{ V}, I_D = 0.7 \text{ A} & 0.1 & 0.2 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DS} = 10 \text{ V}, I_D = 0.7 \text{ A} & 0.2 & 0.2 & 0.00 \\ \hline \\ Qate - to-Drain Charge & Q_{GD} & N & V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V}, I_D = 0.7 \text{ A} & 0.4 & 0.5 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DS} = 10 \text{ V}, I_D = 0.7 \text{ A} & 0.4 & 0.5 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0 \text{ V}, I_D = 0.7 \text{ A} & 0.4 & 0.5 & 0.00 \\ \hline \\ Qate - to-Drain Charge & Q_{GD} & N & V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V}, I_D = 0.7 \text{ A} & 0.4 & 0.5 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0 \text{ V}, I_D = 0.7 \text{ A} & 0.4 & 0.5 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0 \text{ V}, I_D = 0.7 \text{ A} & 0.4 & 0.5 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0 \text{ V}, I_D = 0.7 \text{ A} & 0.4 & 0.5 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0 \text{ V}, I_D = 0.6 \text{ A} & 0.5 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0 \text{ V}, I_D = 0.6 \text{ A} & 0.5 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DD} = -10.0 \text{ A} & 0.5 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DD} = -10.0 \text{ A} & 0.00 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DD} = -10.0 \text{ A} & 0.00 & 0.00 \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DD} = -4.0 \text{ V}, & 0.022 \text{ V} \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DD} = -4.0 \text{ V}, & 0.023 \text{ V} \\ \hline \\ P & V_{GS} = -4.5 \text{ V}, V_{DD} = -4.0 \text{ V}, & 0.0023 \text{ V} \\ \hline \\ P & V_{GS} = 0 $	Input Capacitance	C _{ISS}							p⊢
P			-						_
Part		Coss		f = 1 MHz, V _{GS} = 0 V					_
P V _{DS} = -8.0 V 28 40									4
Total Gate Charge	Reverse Transfer Capacitance	CRSS							4
P V _{GS} = -4.5 V, V _{DS} = -5.0 V, I _D = -0.6 A 2.2 4.0	Total Gate Charge	0		\/					nC
$ \begin{array}{ c c c c c c } \hline \text{Threshold Gate Charge} & Q_{G(TH)} & N & V_{GS} = 4.5 \text{ V, } V_{DS} = 10 \text{ V, } I_{D} = 0.7 \text{ A} & 0.1 \\ \hline P & V_{GS} = -4.5 \text{ V, } V_{DS} = -5.0 \text{ V, } I_{D} = -0.6 \text{ A} & 0.1 \\ \hline P & V_{GS} = -4.5 \text{ V, } V_{DS} = -5.0 \text{ V, } I_{D} = -0.6 \text{ A} & 0.2 \\ \hline P & V_{GS} = -4.5 \text{ V, } V_{DS} = 10 \text{ V, } I_{D} = 0.7 \text{ A} & 0.2 \\ \hline P & V_{GS} = -4.5 \text{ V, } V_{DS} = 10 \text{ V, } I_{D} = 0.6 \text{ A} & 0.5 \\ \hline P & V_{GS} = -4.5 \text{ V, } V_{DS} = 10 \text{ V, } I_{D} = 0.6 \text{ A} & 0.5 \\ \hline SWITCHING CHARACTERISTICS (Note 3) & & & & & & & & & & & & & & & & & & $	Total date onlinge	Q G(101)							- '''
P V _{GS} = -4.5 V, V _{DS} = -5.0 V, I _D = -0.6 A 0.1	Threshold Gate Charge	Ости						4.0	1
Gate-to-Source Charge Q _{GS} N V _{GS} = 4.5 V, V _{DS} = 10 V, I _D = 0.7 A 0.2	coc.a cate ca.gc	~G(1H)							-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gate-to-Source Charge	Q _{GS}	N						_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ç								
$ \begin{array}{ c c c c c c c c c } \hline P & V_{GS} = -4.5 \ V, V_{DS} = -5.0 \ V, \ I_D = -0.6 \ A \\ \hline \hline SWITCHING CHARACTERISTICS (Note 3) \\ \hline Turn-On Delay Time & $t_{d(ON)}$ & N & 0.083 & μs \\ Rise Time & t_{f} & $V_{GS} = 4.5 \ V, \ V_{DD} = 10 \ V, & 0.227 & 0.786 & 0.506 \\ \hline Fall Time & t_{f} & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.786 & 0.506 & 0.786 & 0.003 &$	Gate-to-Drain Charge	Q_{GD}	N				0.4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		Р				0.5		1
Rise Time Tr V _{GS} = 4.5 V, V _{DD} = 10 V, 0.227 0.786 Turn-Off Delay Time t _d (OFF) Turn-On Delay Time t _d (ON) Turn-On Delay Time t _d (ON) Turn-Off Delay Time t _d (OFF) Turn-Off Delay Time Turn-O	SWITCHING CHARACTERISTIC	(Note 3)							
	Turn-On Delay Time	t _{d(ON)}	N				0.083		μs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time			$V_{GS} = 4.5 \text{ V}, V_{DD} =$	= 10 V,		0.227		1
	Turn-Off Delay Time	t _{d(OFF)}		$I_D = 0.5 A, R_G =$	20 Ω		0.786		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	t _f					0.506		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(ON)}	Р				0.013		
	Rise Time			$V_{GS} = -4.5 \text{ V}, V_{DD} =$	= -4.0 V,		0.023		
	Turn-Off Delay Time	t _{d(OFF)}		$I_D = -0.5 A, R_G =$	8.0 Ω		0.050		
Forward Diode Voltage $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.036		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			cs						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Forward Diode Voltage	V _{SD}	N	Voc = 0 V T ₁ - 25°C	I _S = 0.23 A		0.76	1.1	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Р	• GS - 0 •, 1J - 20 0	$I_S = -0.23 \text{ A}$		0.76	1.1	
Reverse Recovery Time t_{RR} N $v_{GS} = 0 \text{ V}$, $v_{GS} = 0 \text{ V}$ $v_{GS} = 0 V$				Vcc = 0 V T ₁ - 125°C	$I_S = 0.23 \text{ A}$		0.63		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Р	· us - o v, 1j - 125 0			0.63		
P $d_{IS}/d_t = 90 \text{ A/}\mu\text{s}$ $I_S = -0.23 \text{ A}$ 0.078	Reverse Recovery Time	t _{RR}					0.410		μs
			Р	$d_{IS}/d_t = 90 \text{ A}/\mu\text{s}$	$I_S = -0.23 \text{ A}$		0.078		

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL N-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

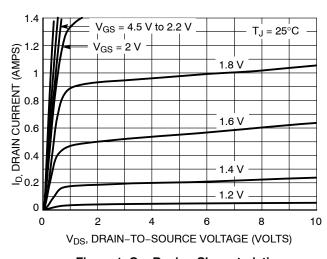


Figure 1. On-Region Characteristics

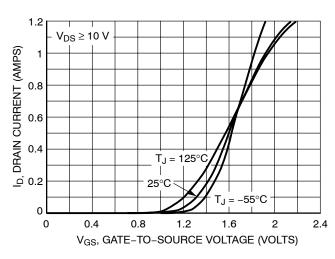


Figure 2. Transfer Characteristics

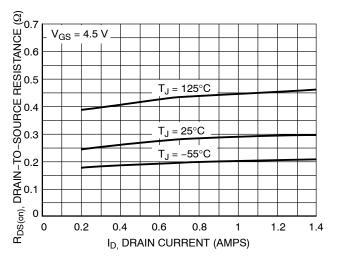


Figure 3. On-Resistance vs. Drain Current and Temperature

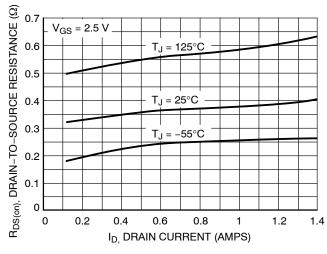


Figure 4. On-Resistance vs. Drain Current and Temperature

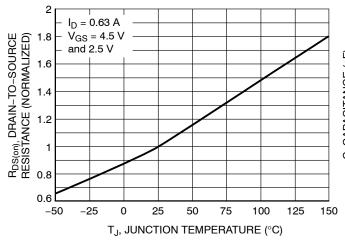


Figure 5. On–Resistance Variation with Temperature

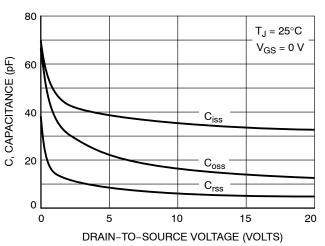


Figure 6. Capacitance Variation

TYPICAL N-CHANNEL PERFORMANCE CURVES ($T_J = 25$ °C unless otherwise noted)

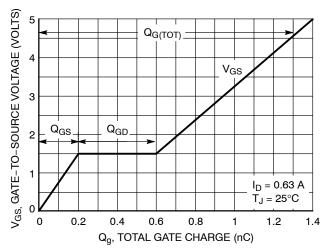


Figure 7. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

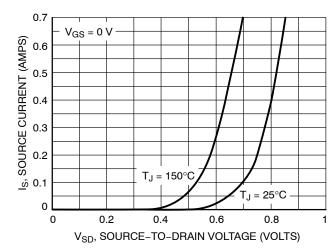


Figure 8. Diode Forward Voltage vs. Current

TYPICAL P-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

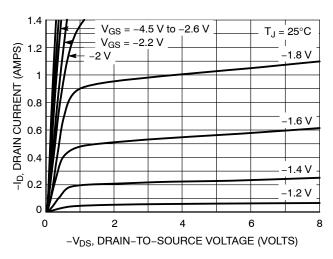


Figure 9. On-Region Characteristics

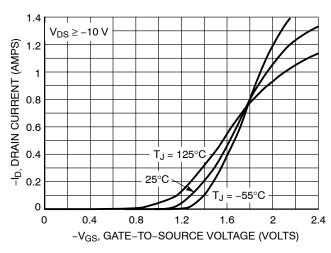


Figure 10. Transfer Characteristics

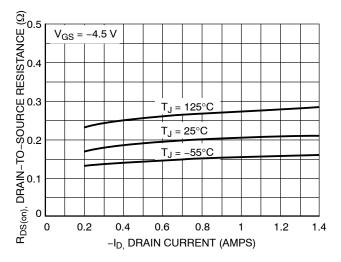


Figure 11. On–Resistance vs. Drain Current and Temperature

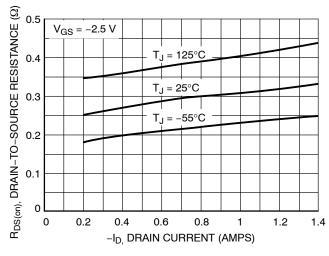


Figure 12. On-Resistance vs. Drain Current and Temperature

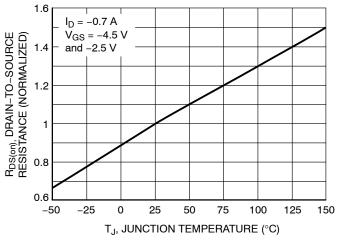


Figure 13. On–Resistance Variation with Temperature

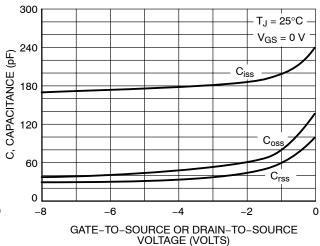


Figure 14. Capacitance Variation

TYPICAL P-CHANNEL PERFORMANCE CURVES ($T_J = 25$ °C unless otherwise noted)

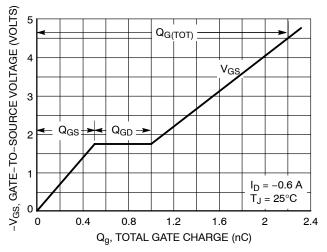


Figure 15. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

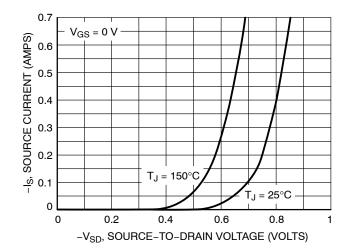
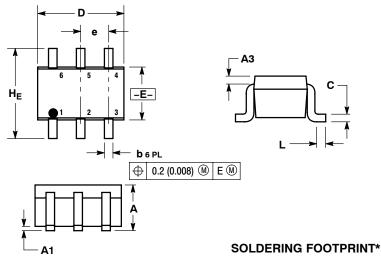


Figure 16. Diode Forward Voltage vs. Current


ORDERING INFORMATION

Device	Package	Shipping [†]
NTJD4105CT1	SOT-363	3000 / Tape & Reel
NTJD4105CT1G	SOT-363 (Pb-Free)	3000 / Tape & Reel
NTJD4105CT2	SOT-363	3000 / Tape & Reel
NTJD4105CT2G	SOT-363 (Pb-Free)	3000 / Tape & Reel
NTJD4105CT4	SOT-363	10,000 / Tape & Reel
NTJD4105CT4G	SOT-363 (Pb-Free)	10,000 / Tape & Reel

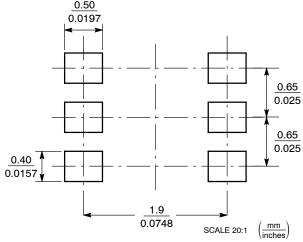
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE W**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
- 419B-01 OBSOLETE, NEW STANDARD 419B-02.


	MIL	LIMETE	ERS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.95	1.10	0.031	0.037	0.043	
A1	1 0.00 0.05		0.10	0.000	0.002	0.004	
А3		0.20 RE	F	(EF.		
b	0.10	0.21	0.30	0.004	0.008	0.012	
O	0.10	0.14	0.25	0.004	0.005	0.010	
D	1.80	2.00	2.20	0.070	0.078	0.086	
П	1.15 1.25		1.35	0.045	0.049	0.053	
Ф		0.65 BS	С	0	С		
L	. 0.10 0.20		0.30	0.004	0.008	0.012	
н_	2.00	2 10	2 20	0.070	0.000	0.006	

STYLE 26:

- PIN 1. SOURCE 1 2. GATE 1

 - 3. DRAIN 2 4. SOURCE 2

 - 5. GATE 2 6. DRAIN 1
- 0.50 0.0197

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 📖 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

NTJD4105C/D