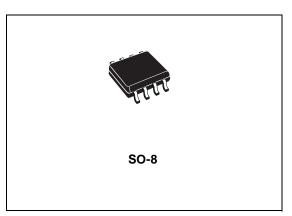
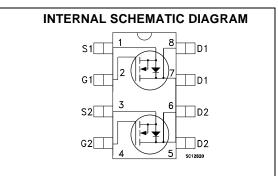


STS1DNC45

DUAL N-CHANNEL 450V - 4.1Ω - 0.4A SO-8 SuperMESH™ POWER MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STS1DNC45	450 V	< 4.5 Ω	0.4 A


- TYPICAL $R_{DS}(on) = 4.1\Omega$
- STANDARD OUTLINE FOR EASY AUTOMATED SURFACE MOUNT ASSEMBLY
- GATE CHARGE MINIMIZED



The SuperMESH™ series is obtained through an extreme optimization of ST's well established strip-based PowerMESH™ layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding applications. Such series complements ST full range of high voltage MOSFETs including revolutionary MDmesh™ products.

APPLICATIONS

- SWITCH MODE LOW POWER SUPPLIES (SMPS)
- DC-DC CONVERTERS
- LOW POWER, LOW COST CFL (COMPACT FLUORESCENT LAMPS)
- LOW POWER BATTERY CHARGERS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	450	V
V _{DGR}	Drain-gate Voltage (R _{GS} = 20 k Ω)	450	V
V _{GS}	Gate- source Voltage	± 30	V
I _D	Drain Current (continuous) at T _C = 25°C Drain Current (continuous) at T _C = 100°C	0.40 0.25	A A
I _{DM} (•)	Drain Current (pulsed)	1.6	Α
P _{TOT}	Total Dissipation at $T_C = 25^{\circ}C$ Dual Operation Total Dissipation at $T_C = 25^{\circ}C$ Single Operation	1.6 2	W W
dv/dt(1)	Peak Diode Recovery voltage slope	3	V/ns

⁽ullet) Pulse width limited by safe operating area

(1) $I_{SD} \le 0.4$ A, di/dt ≤ 100 A/ μ s, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$.

June 2003 1/8

STS1DNC45

THERMAL DATA

Rthj-amb(#)	Thermal Resistance Junction-ambient Max Single Operation Thermal Resistance Junction-ambient Max Dual Operation	62.5 78	°C/W
Tj	Max. Operating Junction Temperature	150	°C
T _{stg}	Storage Temperature	-65 to 150	°C

^(#) When Mounted on FR4 board (Steady State)

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	0.4	Α
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	30	mJ

ELECTRICAL CHARACTERISTICS ($T_{CASE} = 25~^{\circ}C$ UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	450			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μA
	Drain Current (V _{GS} = 0)	V _{DS} = Max Rating, T _C = 125 °C			50	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 30V			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.3	3	3.7	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V, I _D = 0.5 A		4.1	4.5	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} = 25 \text{ V}, I_{D} = 0.5 \text{ A}$		1.1		S
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz, V}_{GS} = 0$		160		pF
Coss	Output Capacitance			27.5		pF
C _{rss}	Reverse Transfer Capacitance			4.7		pF

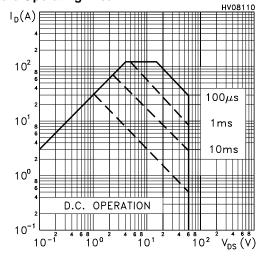
ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

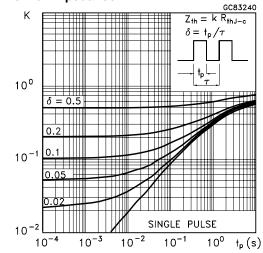
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 225 V, I _D = 0.5 A		6.7		ns
t _r	Rise Time	$R_G = 4.7\Omega V_{GS} = 10 V$ (see test circuit, Figure 3)		4		ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 360 \text{ V}, I_{D} = 1.5 \text{ A},$ $V_{GS} = 10 \text{ V}$		7 1.3 3.2	10	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$egin{array}{c} t_{r(\text{off})} \ t_{f} \ t_{c} \end{array}$	Off-voltage Rise Time Fall Time Cross-over Time	$V_{DD} = 360 \text{ V}, I_D = 1.5 \text{ A}$ $R_G = 4.7\Omega, V_{GS} = 10 \text{ V}$ (see test circuit, Figure 5)		8.5 12 18		ns ns ns

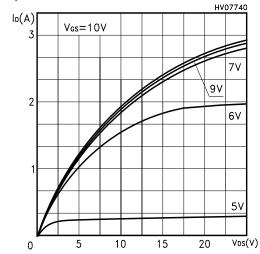

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				0.4	Α
I _{SDM} (2)	Source-drain Current (pulsed)				1.6	Α
V _{SD} (1)	Forward On Voltage	$I_{SD} = 0.4 \text{ A}, V_{GS} = 0$			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 0.4$ A, di/dt = 100A/ μ s, $V_{DD} = 100$ V, $T_j = 150$ °C (see test circuit, Figure 5)		225 530 4.7		ns nC A

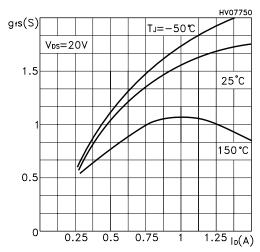

Note: 1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

2. Pulse width limited by safe operating area.

Safe Operating Area

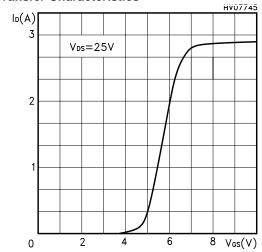


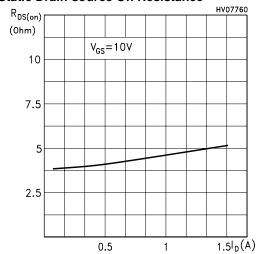
Thermal Impedance

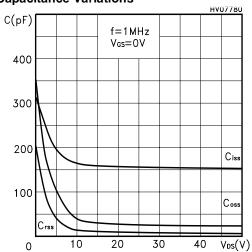


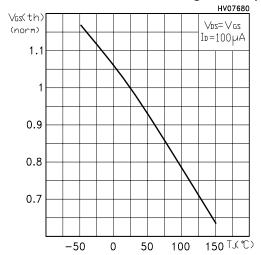
A7/°

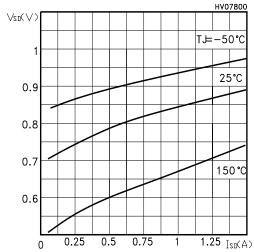

Output Characteristics

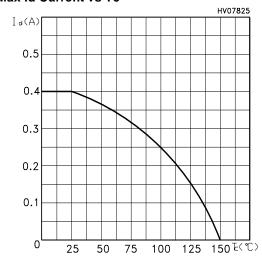

Transconductance

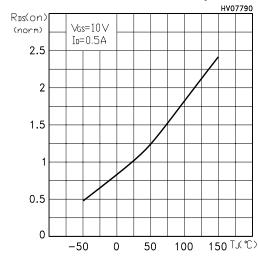

Gate Charge vs Gate-source Voltage

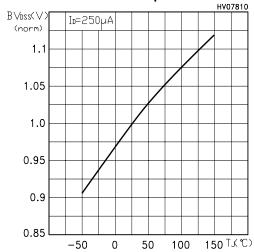

Transfer Characteristics


Static Drain-source On Resistance


Capacitance Variations


Normalized Gate Threshold Voltage vs Temp.


Source-drain Diode Forward Characteristics


Max Id Current vs Tc

Normalized On Resistance vs Temperature

Normalized BVDSS vs Temperature

Maximum Avalanche Energy vs Temperature

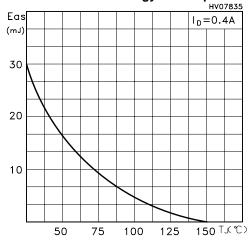


Fig. 1: Unclamped Inductive Load Test Circuit

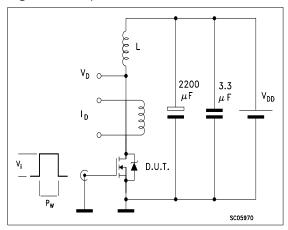
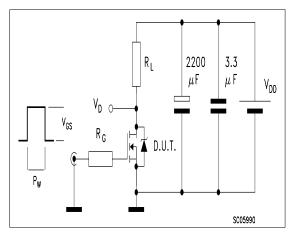



Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

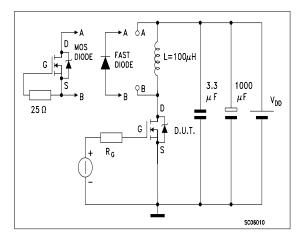


Fig. 2: Unclamped Inductive Waveform

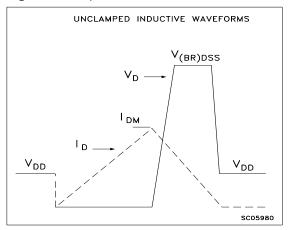
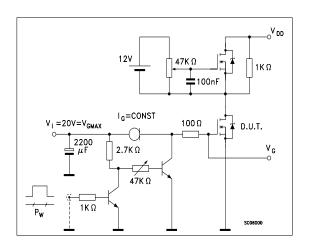
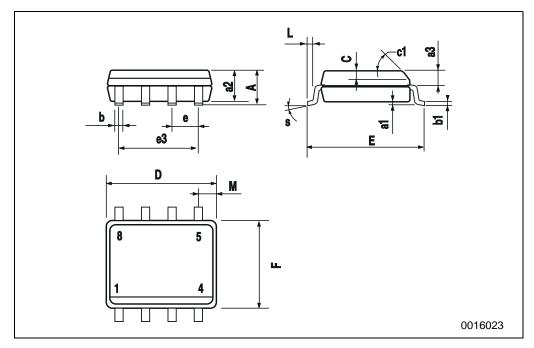




Fig. 4: Gate Charge test Circuit

SO-8 MECHANICAL DATA

DIM.		mm			inch	
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45 ((typ.)		
D	4.8		5.0	0.188		0.196
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S			8 (n	nax.)		

A7/°

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

57,