April 2007 # FDG8850NZ # Dual N-Channel PowerTrench[®] MOSFET 30V,0.75A,0.4 Ω #### **Features** - Max $r_{DS(on)} = 0.4\Omega$ at $V_{GS} = 4.5V$, $I_D = 0.75A$ - Max $r_{DS(on)} = 0.5\Omega$ at $V_{GS} = 2.7V$, $I_D = 0.67A$ - Very low level gate drive requirements allowing operation in 3V circuits(V_{GS(th)} <1.5V) - Very small package outline SC70-6 - RoHS Compliant #### **General Description** This dual N-Channel logic level enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for bipolar digital transistors and small signal MOSFETs. Since bias resistors are not required, this dual digital FET can replace several different digital transistors, with different bias resistor values. # MOSFET Maximum Ratings T_A = 25°C unless otherwise noted | Symbol | Parameter | | Ratings | Units | |-----------------------------------|--|-----------|-------------|-------| | V_{DS} | Drain to Source Voltage | | 30 | V | | V_{GS} | Gate to Source Voltage | | ±12 | V | | Drain Current -Continuous | | | 0.75 | ^ | | I _D | -Pulsed | | 2.2 | A | | D | Power Dissipation for Single Operation | (Note 1a) | 0.36 | 10/ | | P_{D} | | (Note 1b) | 0.30 | W | | T _J , T _{STG} | Operating and Storage Junction Temperature Range | | -55 to +150 | °C | #### **Thermal Characteristics** | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient Single operation | (Note 1a) | 350 | °C/W | |-----------------|--|-----------|-----|------| | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient Single operation | (Note 1b) | 415 | C/VV | #### **Package Marking and Ordering Information** | Device Marking | Device | Reel Size | Tape Width | Quantity | |----------------|-----------|-----------|------------|------------| | .50 | FDG8850NZ | 7" | 8mm | 3000 units | # Electrical Characteristics T_J = 25°C unless otherwise noted | Symbol | Parameter | ameter Test Conditions | | Тур | Max | Units | |--|---|--|----|-----|-----|-------| | Off Chara | cteristics | | | | | | | BV _{DSS} | Drain to Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS} = 0 V$ | 30 | | | V | | $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature Coefficient | I _D = 250μA, referenced to 25°C | | 25 | | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | $V_{DS} = 24V$, $V_{GS} = 0V$ | | | 1 | μΑ | | I _{GSS} | Gate to Source Leakage Current | $V_{GS} = \pm 12V, V_{DS} = 0V$ | | | ±10 | μА | #### On Characteristics | $V_{GS(th)}$ | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}, I_D = 250 \mu A$ | 0.65 | 1.0 | 1.5 | V | |--|--|--|------|----------------------|-------------------|-------| | $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate to Source Threshold Voltage Temperature Coefficient | I _D = 250μA, referenced to 25°C | | -3.0 | | mV/°C | | r _{DS(on)} | Static Drain to Source On Resistance | $V_{GS} = 4.5V, I_D = 0.75A$
$V_{GS} = 2.7V, I_D = 0.67A$
$V_{GS} = 4.5V, I_D = 0.75A, T_J = 125^{\circ}C$ | | 0.25
0.29
0.36 | 0.4
0.5
0.6 | Ω | | 9 _{FS} | Forward Transconductance | $V_{DS} = 5V, I_{D} = 0.75A$ | | 3 | | S | #### **Dynamic Characteristics** | C _{iss} | Input Capacitance | | 90 | 120 | pF | |------------------|------------------------------|---------------------------------------|----|-----|----| | C _{oss} | Output Capacitance | $V_{DS} = 10V, V_{GS} = 0V, f = 1MHZ$ | 20 | 30 | pF | | C _{rss} | Reverse Transfer Capacitance | | 15 | 25 | pF | #### **Switching Characteristics** (note 2) | t _{d(on)} | Turn-On Delay Time | | 4 | 10 | ns | |---------------------|-------------------------------|--|------|------|----| | t _r | Rise Time | V _{DD} = 5V, I _D = 0.5A, | 1 | 10 | ns | | t _{d(off)} | Turn-Off Delay Time | $V_{GS} = 4.5V, R_{GEN} = 6\Omega$ | 9 | 18 | ns | | t _f | Fall Time | | 1 | 10 | ns | | Q_q | Total Gate Charge | | 1.03 | 1.44 | nC | | Q_{gs} | Gate to Source Charge | V_{GS} =4.5V, V_{DD} = 5V, I_{D} = 0.75A | 0.29 | | nC | | Q_{ad} | Gate to Drain "Miller" Charge | | 0.17 | | nC | ## **Drain-Source Diode Characteristics and Maximum Ratings** | I _S | Maximum Continuous Drain-Source Diode Forward Current | | | | 0.3 | Α | |----------------|---|-----------------------------|----------|------|-----|---| | V_{SD} | Source to Drain Diode Forward Voltage | $V_{GS} = 0V, I_{S} = 0.3A$ | (Note 2) | 0.76 | 1.2 | V | #### Notes: ^{1.} RaJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JA}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design. a. 350°C/W when mounted on a 1 in² pad of 2 oz copper. b. 415°C/W when mounted on a minimum pad of 2 oz copper. Scale 1:1 on letter size paper. 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. ### Typical Characteristics T_J = 25°C unless otherwise noted Figure 1. On-Region Characteristics 2.6 Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage Figure 3. Normalized On - Resistance vs Junction Temperature Figure 4. On-Resistance vs Gate to Source Voltage Figure 5. Transfer Characteristics Figure 6. Source to Drain Diode Forward Voltage vs Source Current # **Typical Characteristics** $T_J = 25^{\circ}C$ unless otherwise noted Figure 7. Gate Charge Characteristics Figure 8. Capacitance vs Drain to Source Voltage V_{DS}, DRAIN to SOURCE VOLTAGE (V) Figure 9. Forward Bias Safe Operating Area Figure 10. Single Pulse Maximum Power Dissipation Figure 11. Transient Thermal Response Curve #### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx® i-Lo™ Power-SPM™ TinyBoost™ PowerTrench® Across the board. Around the world $^{\text{TM}}$ ImpliedDisconnect™ TinyBuck™ Programmable Active $\mathsf{Droop}^\mathsf{TM}$ TinyLogic[®] ActiveArray™ IntelliMAX™ Bottomless™ ISOPLANAR™ QFET® **TINYOPTO™** QS™ Build it Now™ MICROCOUPLER™ TinyPower™ CoolFET™ MicroPak™ QT Optoelectronics™ TinyWire™ $CROSSVOLT^{\text{TM}}$ MICROWIRE™ TruTranslation™ Quiet Series™ $\mathsf{CTL^{\mathsf{TM}}}$ µSerDes™ Motion-SPM™ RapidConfigure™ Current Transfer Logic™ MSX™ RapidConnect™ **UHC®** DOME™ MSXPro™ ScalarPump™ UniFET™ E²CMOS™ OCX^{TM} SMART START™ **VCX™** SPM[®] Wire™ EcoSPARK® OCXPro™ OPTOLOGIC® $\mathsf{STEALTH}^{\mathsf{TM}}$ EnSigna™ OPTOPLANAR® FACT Quiet Series™ SuperFET™ FACT[®] PACMAN™ SuperSOT™-3 $\mathsf{FAST}^{\mathbb{R}}$ PDP-SPM™ SuperSOT™-6 РОР™ SuperSOT™-8 FASTr™ FPS™ Power220® SyncFET™ FRFET® Power247® ТСМ™ The Power Franchise® GlobalOptoisolator™ PowerEdge™ GTO™ Ф тм PowerSaver™ HiSeC™ FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. # PRODUCT STATUS DEFINITIONS Definition of Terms | Datasheet Identification | Product Status | Definition | |--------------------------|------------------------|--| | Advance Information | Formative or In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only. | Rev. 126